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FP-GR-INJECTIVE MODULES

Xiaoyan YANG and Zhongkui LIU

Abstract. In this paper, we give some characterizations of FP-gr-
injective R-modules and graded right R-modules of FP-gr-injective di-
mension at most n. We study the existence of FP-gr-injective envelopes
and FP-gr-injective covers. We also prove that (1) (⊥gr-FI, gr-FI) is a
hereditary cotorsion theory if and only if R is a left gr-coherent ring, (2)

If R is right gr-coherent with FP-gr-id(RR) ≤ n, then (gr-FIn, gr-FI
⊥

n )

is a perfect cotorsion theory, (3) (⊥gr-FIn, gr-FIn) is a cotorsion the-
ory, where gr-FI denotes the class of all FP-gr-injective left R-modules,
gr-FIn is the class of all graded right R-modules of FP-gr-injective di-
mension at most n. Some applications are given.

1. Introduction.

All rings considered are associative with identity element and the R-
modules are unital. By R-Mod we will denote the Grothendieck category
of all left R-modules. Let G be a multiplicative group with neutral element
e. A graded ring R is a ring with identity 1 together with a direct decom-
position R =

⊕
σ∈GRσ (as additive subgroups) such that RσRτ ⊆ Rστ for

all σ, τ ∈ G. Thus Re is a subring of R, 1 ∈ Re and Rσ is an Re-bimodule
for every σ ∈ G. A graded left R-module is a left R-module M endowed
with an internal direct sum decomposition M =

⊕
σ∈GMσ, where each Mσ

is a subgroup of the additive group of M satisfying RσMτ ⊆ Mστ for all
σ, τ ∈ G. For graded left R-modules M and N , we put

HomR-gr(M,N) = {f : M → N |f is R-linear and f(Mσ) ⊆ Nσ ∀σ ∈ G}

is the group of all morphisms from M to N in the category R-gr of all graded
left R-modules. It is well known that R-gr is a Grothendieck category. An R-
linear map f : M → N is said to be a graded morphism of degree τ , τ ∈ G
if f(Mσ) ⊆ Mστ for all σ ∈ G. Graded morphisms of degree σ build an
additive subgroup HOMR(M,N)σ of HomR(M,N). Then HOMR(M,N) =⊕

σ∈GHOMR(M,N)σ is a graded abelian group of type G. We will denote

ExtiR-gr and EXTi
R as the right derived functors of HomR-gr and HOMR.

Let M be a graded right R-module and N a graded left R-module. The
abelian group M ⊗RN may be graded by putting (M ⊗RN)σ, σ ∈ G, equal
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to the additive subgroup generated by elements x⊗ y with x ∈Mα, y ∈ Nβ

such that αβ = σ. The object of Z-gr thus defined will be called the graded
tensor product of M and N .

If M =
⊕

σ∈GMσ is a graded left R-module and σ ∈ G, then M(σ) is
the graded left R-module obtained by putting M(σ)τ = Mτσ for all τ ∈ G;
the graded module M(σ) is called the σ-suspension of M . We can see the
σ-suspension as an isomorphism of categories Tσ : R-gr → R-gr, given on
objects as Tσ(M) = M(σ) for M ∈ R-gr.

For any element m =
∑

σ∈Gmσ of R, Supp(m) = {σ ∈ G|mσ 6= 0}.
Consider {Mi|i ∈ I} a set of graded left R-modules and let {

∏
i∈IMi, πi}

be the direct product in R-Mod of the underlying left R-modules Mi, where
πj :

∏
i∈IMi → Mj denotes the j-th canonical projection for each j ∈ I.

Given m ∈
∏
i∈IMi, define SUPP(m) =

⋃
i∈ISupp(πi(m)) ⊂ G. We can

define
∏R-gr
i∈I Mi = {m ∈

∏
i∈IMi|SUPP(m) is finite}. Then {

∏R-gr
i∈I Mi, πi}

is the direct product of the graded left R-modules {Mi|i ∈ I}. It is a graded

left R-module, where (
∏R-gr
i∈I Mi)σ = {m ∈

∏R-gr
i∈I Mi|SUPP(m) ⊂ {σ}}.

Observe that, as Re-modules (
∏R-gr
i∈I Mi)σ ∼=

∏
i∈I(Mi)σ for any σ ∈ G.

Given a graded left R-module M , we can define the graded character
module of M as M+ = HOMZ(M,Q/Z). We note then that it can be seen
as M+ =

⊕
σ∈G HomZ(Mσ−1 ,Q/Z).

The injective objects of R-gr will be called gr-injective modules. Pro-
jective (resp. flat) objects of R-gr will be called projective (resp. flat)
graded modules because M is gr-projective (resp. gr-flat) if and only if it
is a projective (resp. flat) graded module. We will denote the gr-injective
dimension of a graded module M by gr-idM and fdM will denote the flat
dimension of M . We will denote the gr-injective envelope of M by Eg(M).
We will call FP-gr-injective module to those graded R-module M such that
EXT1

R(N,M) = 0 for any finitely presented graded R-module N . It can be
proved that if R is gr-noetherian, M is gr-injective if and only if M is FP-
gr-injective and that in the case that R is gr-coherent, i.e. a graded ring R
such that given a family of graded flat R-modules {Fi}i∈I , then the graded

R-module
∏R-gr
i∈I Fi is flat, M is FP-gr-injective if and only if M+ is flat.

The FP-gr-injective dimension of a graded R-module M will be the least
integer n such that EXTn+1

R (N,M) = 0 for any finitely presented graded
R-module N .

The forgetful functor U : R-gr→ R-Mod associates to M the underlying
ungraded R-module. This functor has a right adjoint F which associated
to M ∈ R-Mod the graded R-module F (M) =

⊕
σ∈G(σM), where each σM

is a copy of M written {σx : x ∈ M} with R-module structure defined by
r∗τx = στ (rx) for each r ∈ Rσ. If f : M → N is R-linear, then F (f) :
F (M) → F (N) is a graded morphism given by F (f)(σx) = σf(x).
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Let F be a class of graded R-modules for a graded ring R. If ϕ : C →M is
a graded morphism, where C ∈ F and M ∈ R-gr, then ϕ : C →M is called
an F -precover of M if HomR-gr(C

′, C) → HomR-gr(C
′,M) → 0 is exact for

all C ′ ∈ F . Moreover, if whenever a graded morphism f : C → C such that
ϕ ◦ f = ϕ is an automorphism of C, then ϕ : C → M is called an F -cover
of M . F -envelope and F -preenvelope are defined dually. Let ϕ : C → M
be an F -cover of M . If for any graded morphism f : C ′ →M with C ′ ∈ F ,
there is a unique graded morphism g : C ′ → C such that ϕg = f , then we
say that ϕ has the unique mapping property. Dually we have the definition
of an F -envelope has the unique mapping property.

2. FP-gr-injective envelopes of graded modules.

In this section, we give some characterizations of FP-gr-injective modules
and prove that (⊥gr-FI, gr-FI) is a hereditary cotorsion theory if and only
if R is a left gr-coherent ring, where gr-FI denotes the class of all FP-gr-
injective left R-modules.

An exact sequence 0 →M ′ →M →M ′′ → 0 in R-gr is said to be gr-pure
if for any N ∈ gr-R, the sequence 0 → N⊗RM

′ → N⊗RM → N⊗RM
′′ → 0

is exact in Z-gr.

Proposition 2.1. Let R be a ring graded by a group G. Then the following
are equivalent for a graded left R-module M :

(1) M is FP-gr-injective;
(2) The functor HOMR(−,M) is exact with respect to every exact se-

quence 0 → A→ B → C → 0 in R-gr with C finitely presented;
(3) M(σ) is FP-gr-injective for all σ ∈ G;
(4) M(σ) is gr-injective with respect to every exact sequence 0 → A →

B → C → 0 in R-gr with C finitely presented for all σ ∈ G;
(5) M is gr-pure in every graded left R-module that contains it;
(6) M is gr-pure in every gr-injective left R-module that contains it;
(7) M is gr-pure in Eg(M).

Proof. (1) ⇔ (2) is clear by definition. (3) ⇒ (1) and (5) ⇒ (6) ⇒ (7) are
obvious.

(2) ⇒ (3) Let 0 → A → B → C → 0 be exact in R-gr with C finitely
presented. Then

0 −→ HOMR(C,M)σ −→ HOMR(B,M)σ −→ HOMR(A,M)σ −→ 0
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is exact for all σ ∈ G. Consider the following commutative diagram:
0 - HOMR(C, M)στ

- HOMR(B, M)στ
- HOMR(A, M)στ

- 0

0 - HomR-gr(C, M(στ))

∼=

?

- HomR-gr(B, M(στ))

∼=

?

- HomR-gr(A, M(στ))

∼=

?

0 - HOMR(C, M(σ))τ

∼=

?

- HOMR(B, M(σ))τ

∼=

?

- HOMR(A, M(σ))τ

∼=

?

with the upper row exact for every τ ∈ G. So

0 −→ HOMR(C,M(σ)) −→ HOMR(B,M(σ)) −→ HOMR(A,M(σ)) −→ 0

is exact, which means that M(σ) is FP-gr-injective for all σ ∈ G.
(2) ⇔ (4) By HOMR(−,M)σ = HomR-gr(−,M(σ)) for every σ ∈ G.
(1) ⇒ (5) Let 0 →M → L→ L/M → 0 be exact, N a finitely presented

graded left R-module. Then

0 −→HOMR(N,M) −→ HOMR(N,L)

−→ HOMR(N,L/M) −→ EXT1
R(N,M) = 0

is exact. So M is gr-pure in L by [9, Proposition 3.1].
(7) ⇒ (1) Let N be any finitely presented graded left R-module. Then

0 −→HOMR(N,M) −→ HOMR(N,Eg(M))

−→ HOMR(N,Eg(M)/M) −→ 0

is exact, and so EXT1
R(N,M) = 0, which implies that M is FP-gr-injective.

�

Remark 2.2. By the definition and Proposition 2.1, we see that the class
of all FP-gr-injective R-modules is closed under graded direct summands,
graded direct products and graded pure submodules.

Lemma 2.3. Let R be a ring graded by a group G. If M is an FP-injective
left R-module, then F (M) is FP-gr-injective.

Proof. Let 0 → A
f
−→ B → C → 0 be exact in R-gr with C finitely presented,

g : A→ F (M) a graded morphism. Since F is a right adjoint functor of the
forgetful functor, we have the commutative diagram:

0 // A

��

// B

~~}}
}}

}}
}}

// C // 0

M
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Now, again by the adjoint situation between the forgetful functor and F
we have a graded morphism B → F (M) such that the following diagram is
commutative:

0 // A

��

// B

||yyyyyyyy

// C // 0

F (M)

which shows that F (M) is gr-injective with respect to the exact sequence

0 → A
f
−→ B → C → 0. Let σ ∈ G and g : A → F (M)(σ) be a graded

morphism. Since 0 → A(σ−1)
T

σ−1 (f)
−−−−−→ B(σ−1) → C(σ−1) → 0 is exact and

C(σ−1) is finitely presented, there exists a graded morphism h : B(σ−1) →
F (M) such that hTσ−1(f) = Tσ−1(g), and so Tσ(h)f = g for Tσ(h) : B →
F (M)(σ), which gives that F (M)(σ) is gr-injective with respect to the exact
sequence 0 → A → B → C → 0 for all σ ∈ G. Therefore F (M) is FP-gr-
injective by Proposition 2.1. �

Corollary 2.4. Let R be a ring graded by a finite group G and M ∈ R-gr.
Then M is FP-gr-injective if and only if M is an FP-injective left R-module.

Proof. “⇐” By Lemma 2.3, F (M) is FP-gr-injective, and so M is FP-gr-
injective since M is a direct summand of F (M).

“⇒” Let 0 → A → B → C → 0 be exact in R-Mod with C finitely
presented. Then 0 → F (A) → F (B) → F (C) → 0 is exact in R-gr and F (C)
is finitely presented since G is finite. Consider the following commutative
diagram:

0 - HomR-gr(F (C), M) - HomR-gr(F (B), M) - HomR-gr(F (A), M) - 0

0 - HomR(C, M)

∼=

?

- HomR(B, M)

∼=

?

- HomR(A, M)

∼=

?

with the upper row exact. ThereforeM is an FP-injective leftR-module. �

Theorem 2.5. Let R be a ring graded by a group G. Then every graded
R-module has an FP-gr-injective preenvelope.

Proof. Let M be a graded R-module. We take Nβ an infinite cardinal num-
ber such that Card(M)Card(R)Card(G) ≤ Nβ. Set

Y = {A|A is an FP-gr-injective R-module and Card(A) ≤ Nβ}.

Let {Ai}i∈I be a family of representatives of this class with the index set I.

Let Hi = HomR-gr(M,Ai) for every i ∈ I and let B =
∏R-gr
i∈I (

∏R-gr
j∈Hi

(Ai)j),
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where (Ai)j = Ai for each j ∈ Hi. Then B is FP-gr-injective. De-
fine ϕ : M → B so that the composition of ϕ with the projective map

B →
∏R-gr
j∈Hi

(Ai)j maps x ∈ Bσ to (h(x))h∈Hi
for any σ ∈ G. Then ϕ

is a graded morphism. We claim that ϕ : M → B is an FP-gr-injective
preenvelope. Let ϕ′ : M → B′ with B′ an FP-gr-injective R-module. By
[9, Lemma 2.3], the graded submodule ϕ′(M) can be enlarged to a graded
pure submodule ϕ′(M)∗ ⊆ B′ with Card(ϕ′(M)∗) ≤ Nβ and ϕ′(M)∗ is FP-
gr-injective by Remark 2.2. Thus ϕ′(M)∗ is isomorphic to one of the Ai.
By the construction of the map ϕ, it is easy to see that ϕ′ can be factored
through ϕ. �

Definition 2.6. ([9]) A pair (F , C) of classes of graded R-modules is a
cotorsion theory in R-gr if the following properties are satisfied:

Ext1R-gr
(F,C) = 0 for every F ∈ F , C ∈ C.

Ext1R-gr
(F,C) = 0 for every F ∈ F , implies C ∈ C.

Ext1R-gr
(F,C) = 0 for every C ∈ C, implies F ∈ F .

A cotorsion theory (F , C) is called hereditary if whenever 0 → F ′ → F →
F ′′ → 0 is exact in R-gr with F , F ′′ ∈ F , then F ′ is also in F . A cotorsion
theory (F , C) is said to be perfect if every graded R-module has an F-cover
and an C-envelope.

Let FI denote the class of all FP-injective left R-modules. It is well
known that (⊥FI,FI) is a hereditary cotorsion theory if and only if R is a
left coherent ring. Here we have a graded version.

Theorem 2.7. Let gr-FI denote the class of all FP-gr-injective left R-
modules. Then (⊥gr-FI, gr-FI) is a hereditary cotorsion theory if and only
if R is a left gr-coherent ring.

Proof. “⇒” Let I be a finitely generated graded left ideal of R, N an FP-
injective left R-module and let 0 → N → E → C → 0 be exact in R-Mod
with E injective. Then 0 → F (N) → F (E) → F (C) → 0 is exact in R-gr
with F (E) gr-injective, and so F (C) is FP-gr-injective by Lemma 2.3 and
hypothesis. Hence

Ext1R-gr(I, F (N)) ∼= Ext2R-gr(R/I, F (N)) ∼= Ext1R-gr(R/I, F (C)) = 0.

Consider the following commutative diagram:

0 - HomR-gr(I, F (N)) - HomR-gr(I, F (E)) - HomR-gr(I, F (C)) - 0

0 - HomR(I, N)

∼=

?

- HomR(I, E)

∼=

?

- HomR(I, C)

∼=

?
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with the upper row exact. Thus Ext1R(I,N) = 0, which means that I is
finitely presented.

“⇐” Let X ∈ ⊥gr-FI. Then X(σ) ∈ ⊥gr-FI for all σ ∈ G by a proof dual
to that of Lemma 2.3. Let M ∈ (⊥gr-FI)⊥ and N be a finitely presented
graded left R-module. Then N ∈ ⊥gr-FI and M(σ) ∈ (⊥gr-FI)⊥ for all
σ ∈ G by analogy with the proof of Lemma 2.3. Thus EXT1

R(N,M)σ =
Ext1R-gr(N,M(σ)) = 0, and so EXT1

R(N,M) = 0, which implies that M ∈
gr-FI. Let 0 → A → B → C → 0 be exact in R-gr with A and B FP-gr-
injective. Then 0 → C+ → B+ → A+ → 0 is exact and A+, B+ are flat, and
so C+ is flat. Hence C is FP-gr-injective. It follows that (⊥gr-FI, gr-FI)
is a hereditary cotorsion theory. �

3. FP-gr-injective covers of graded modules.

In this section, we give some characterizations of gr-coherent rings and
prove that if R is left gr-coherent, then every graded left R-module has an
FP-gr-injective cover. Some applications are given.

Lemma 3.1. Let R be a graded ring, A a finitely generated graded left
R-module. Then A is finitely presented if and only if HomR-gr(A, lim−→Mi) ∼=

lim−→HomR-gr(A,Mi), where {Mi}i∈I is a family of gr-injective left R-modules.

Proof. “⇒” By [15, Chap.V, Proposition 3.4].
“⇐” Let E be a gr-injective cogenerator of R-gr. Define H : R-gr→ R-gr

as follows. Let H(N) =
∏R-gr
i∈IN

Ei, where Ei = E and IN = HomR-gr(N,E).

If α ∈ HomR-gr(N1, N2), let α∗ : HomR-gr(N2, E) → HomR-gr(N1, E) be
canonical. Then H(α) : H(N1) → H(N2) via β 7→ β · α∗. Note that
H(N) is gr-injective. The evaluation map hN : N → H(N) yields a natural
transformation.

Let (Xi, ϕji) be a direct system of graded R-modules. Then
(H(Xi), H(ϕji)) is a direct system and

0 → lim−→Xi → lim−→H(Xi) → lim−→H(Xi)/Xi → 0

is exact. So we have the following commutative diagram:

0 - HomR-gr(A, lim
−→

Xi) - HomR-gr(A, lim
−→

H(Xi)) - HomR-gr(A, lim
−→

H(Xi)/Xi)

0 - lim
−→

HomR-gr(A, Xi)

α

?

- lim
−→

HomR-gr(A, H(Xi))

β

?

- lim
−→

HomR-gr(A, H(Xi)/Xi)

γ

?

Since β is an isomorphism, α is monic. Similarly, we have γ is monic. So α is
an isomorphism, which implies that A is finitely presented by [15, Chap.V,
Proposition 3.4]. �
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Theorem 3.2. The following are equivalent for a ring R graded by a group
G:

(1) R is left gr-coherent;
(2) Any direct limit of FP-gr-injective left R-modules is FP-gr-injective;
(3) EXT1

R(N, lim−→Mi) → lim−→EXT1
R(N,Mi) is an isomorphism for any

finitely presented graded left R-module N and direct system {Mi}i∈Λ of
graded left R-modules;

(4) EXT2
R(N,M) = 0 for any finitely presented graded left R-module N

and FP-gr-injective left R-module M .

Proof. (1) ⇒ (4) and (3) ⇒ (2) are obvious.
(1) ⇒ (3) Let N be any finitely presented graded left R-module. Then

there exists an exact sequence 0 → K → P → N → 0 in R-gr with P finitely
generated projective and K finitely generated . Consider the following com-
mutative diagram with exact rows:

HOMR(P, lim−→Mi) - HOMR(K, lim−→Mi) - EXT1
R(N, lim−→Mi) - 0

lim−→HOMR(P,Mi)

∼=

?

- lim−→HOMR(K,Mi)

∼=

?

- lim−→EXT1
R(N,Mi)

?

- 0

So EXT1
R(N, lim−→Mi) → lim−→EXT1

R(N,Mi) is an isomorphism.

(2) ⇒ (1) Let I be a finitely generated graded left ideal of R and {Mi}i∈Λ
be a family of gr-injective left R-modules. Then lim−→Mi is FP-gr-injective,

and so EXT1
R(R/I, lim−→Mi) = 0. Thus we have the following commutative

diagram with exact rows:

0 - HomR-gr(R/I, lim
−→

Mi) - HomR-gr(R, lim
−→

Mi) - HomR-gr(I, lim
−→

Mi) - 0

0 - lim
−→

HomR-gr(R/I, Mi)

α

?

- lim
−→

HomR-gr(R, Mi)

β

?

- lim
−→

HomR-gr(I, Mi)

γ

?

- 0

Since α, β are isomorphisms, then γ is an isomorphism, and so I is finitely
presented by Lemma 3.1.

(4) ⇒ (1) By analogy with the proof of Theorem 2.7. �

Theorem 3.3. Let R be left gr-coherent. Then every graded left R-module
has an FP-gr-injective cover.

Proof. Let M be any graded left R-module and A → M be any graded
morphism with A FP-gr-injective. We want to show that A → M can be
factored through an FP-gr-injective left R-module B with Card(B) ≤ Nβ for
some cardinal number Nβ. If Card(A) ≤ Nβ , set A = B. So suppose that
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Card(A) > Nβ . Consider a graded submodule S ⊆ A maximal with respect
to the two properties that S is gr-pure in A and that S ⊆ Ker(A → M).
Let B = A/S. Then B is FP-gr-injective by Remark 2.2 and Theorem
2.7. We wish to argue that Card(B) ≤ Nβ. Consider a submodule S′ ⊆ A
maximal with respect to the two properties that S′ is pure in A and that
S′ ⊆ Ker(A → M). Then S′ ⊆ S and Card(A/S′) ≤ Nβ by the proof of
[14, Lemma 2.5]. Since 0 → S/S′ → A/S′ → A/S → 0 is exact, we have
Card(B) ≤ Nβ.

Set Y = {B|B is an FP-gr-injective left R-module and Card(B) ≤ Nβ}.
Let {Bi}i∈I be a family of representatives of this class with the index set I.

Then
⊕

i∈I B
(HomR-gr(Bi,M))
i →M is an FP-gr-injective precover by analogy

with the proof of [14, Lemma 2.4], which implies that every graded left
R-module has an FP-gr-injective cover by Theorem 3.2 and [1, Theorem
2.10]. �

Lemma 3.4. Let R be a ring graded by a group G. Then 0 → A → B →
C → 0 is a gr-pure exact sequence in R-gr if and only if 0 → A(σ) →
B(σ) → C(σ) → 0 is gr-pure exact for all σ ∈ G.

Proof. “⇒” Let M be a graded right R-module and σ ∈ G. We have to
prove the exactness of

0 −→M ⊗R A(σ) −→M ⊗R B(σ) −→M ⊗R C(σ) −→ 0,

which is equivalent to proving the exactness of each of the homogeneous
components

0 −→ (M ⊗R A(σ))τ −→ (M ⊗R B(σ))τ −→ (M ⊗R C(σ))τ −→ 0,

i.e., the exactness of

0 −→Mα ⊗Re
A(σ)β −→Mα ⊗Re

B(σ)β −→Mα ⊗Re
C(σ)β −→ 0

with αβ = τ . Since 0 → A→ B → C → 0 is gr-pure exact, we have

0 −→Mα ⊗Re
Aβσ −→Mα ⊗Re

Bβσ −→Mα ⊗Re
Cβσ −→ 0

is exact with αβσ = τσ, which implies that 0 → A(σ) → B(σ) → C(σ) → 0
is gr-pure exact.

“⇐” is trivial. �

A graded left R-module Q is called pure gr-injective if for every pure

sequence 0 → L
α
−→ M

β
−→ N → 0 in R-gr and every graded morphism

ϕ : L→ Q, there exists ψ : M → Q such that ψα = ϕ.

Lemma 3.5. Let R be a ring graded by a group G. Then H is a pure gr-
injective left R-module if and only if H(σ) is pure gr-injective for all σ ∈ G.

Proof. By analogy with the proof of Lemma 2.3. �
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Proposition 3.6. The following are true for any graded ring R of type G:
(1) A graded left R-module M is FP-gr-injective if and only if for any pure

gr-injective left R-module H, every graded morphism f : M → H factors
through a gr-injective left R-module.

(2) If M is a pure gr-injective left R-module and f : C → M is an
FP-gr-injective cover of M , then C is gr-injective.

Proof. (1) “⇒” Consider the exact sequence 0 → M → Eg(M) → C → 0.
Then the sequence is gr-pure by Proposition 2.1. So there exists a graded
morphism g : Eg(M) → H such that g|M = f , as required.

“⇐” It is enough to show that the exact sequence 0 → M → Eg(M) →
C → 0 is gr-pure. Let H be a graded right R-module. Then H+(σ−1) is
pure gr-injective for all σ ∈ G by Lemma 3.5. For any graded morphism
f : M → H+(σ−1), there are a gr-injective left R-module E and graded
morphisms g : M → E, h : E → H+(σ−1) such that f = hg by hypothesis.
Thus there exists a graded morphism k : Eg(M) → E such that k|M = g,
and so hk|M = f . Consider the following commutative diagram:

HomR-gr(E
g(M), H+(σ−1)) - HomR-gr(M, H+(σ−1)) - 0

HOMR(Eg(M), H+)
σ−1

∼=

?

- HOMR(M, H+)
σ−1

∼=

?

HomZ((H ⊗R Eg(M))σ, Q/Z)

∼=

?

- HomZ((H ⊗R M)σ, Q/Z)

∼=

?

with the upper row exact. Then 0 → (H ⊗R M)σ → (H ⊗R E
g(M))σ is

exact for all σ ∈ G. Therefore 0 → H⊗RM → H⊗RE
g(M) → H⊗RC → 0

is exact and M is FP-gr-injective.
(2) By (1), there exist a gr-injective left R-module E and graded mor-

phisms g : C → E, h : E → M such that f = hg, and so there is a graded
morphism k : E → C such that fk = h since f is a cover. Thus fkg = f
and kg is an isomorphism, which implies that C is isomorphic to a direct
summand of E, and hence C is gr-injective. �

Lemma 3.7. Let R be left gr-coherent and M a graded left R-module. Then
FP-gr-idM ≤ n if and only if there is an exact sequence 0 → M → E0 →
· · · → En → 0 in R-gr with each Ei FP-gr-injective.

Proof. Easy. �

Proposition 3.8. The following are equivalent for a left gr-coherent ring
R of type G:

(1) RR is FP-gr-injective;
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(2) Every (finitely presented) graded left R-module has an epic FP-gr-
injective cover;

(3) Every (finitely presented) graded right R-module has a monic gr-flat
preenvelope;

(4) Every (finitely presented) graded right R-module is a graded submodule
of a gr-flat right R-module.

Proof. (2) ⇒ (1) and (3) ⇔ (4) are obvious.
(1) ⇒ (2) Let M be a graded left R-module. Then M has an FP-gr-

injective cover f : C → M . On the other hand, there is an exact sequence⊕
σ∈S R(σ) → M → 0 for some S ⊆ G. Let N be any finitely presented

graded left R-module and 0 → K → P → N → 0 be exact in R-gr, where
P is finitely generated projective and K is finitely generated. Consider the
following commutative diagram:

HOMR(N,⊕σ∈SR(σ)) - HOMR(P,⊕σ∈SR(σ)) - HOMR(K,⊕σ∈SR(σ))

HomR(N,⊕σ∈SR(σ))

∼=

?

- HomR(P,⊕σ∈SR(σ))

∼=

?

- HomR(K,⊕σ∈SR(σ))

?

⊕σ∈SHOMR(N, R(σ))

∼=

?

- ⊕σ∈SHOMR(P, R(σ))

∼=

?

- ⊕σ∈SHOMR(K, R(σ))

?

- 0

with the lower row exact. Then the upper row exact. Hence

EXT1
R(N,⊕σ∈SR(σ)) = 0

and
⊕

σ∈S R(σ) is FP-gr-injective. So f is epic.
(1) ⇒ (3) Let E be any gr-injective right R-module. Then there ex-

ists an exact sequence
⊕

σ∈S R(σ) → E+ → 0 for some S ⊆ G, and
hence 0 → E++ → (

⊕
σ∈S R(σ))+ is exact. Since E++ is gr-injective and

(
⊕

σ∈S R(σ))+ is flat, we have E++ is flat, and so E is flat and (3) follows.
(3) ⇒ (1) Since (RR)+ has a monic gr-flat preenvelope, (RR)+ is flat, and

so RR is FP-gr-injective. �

We denote l.FP-gr-dimR= sup{FP-gr-idM |M is a graded leftR-module}.

Proposition 3.9. The following are equivalent for a left gr-coherent ring
R of type G:

(1) l.FP-gr-dimR ≤ 1;
(2) Every graded left R-module has a monic FP-gr-injective cover;
(3) Every graded right R-module has an epic gr-flat preenvelope;
(4) The kernel of any FP-gr-injective (pre)cover of a graded left R-module

is FP-gr-injective;
(5) The cokernel of any FP-gr-injective preenvelope of a graded left R-

module is FP-gr-injective;
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(6) The cokernel of any gr-flat preenvelope of a graded right R-module is
gr-flat;

(7) The kernel of any gr-flat (pre)cover of a graded right R-module is
gr-flat.

Proof. (1) ⇒ (2) Let M be any graded left R-module. Then M has an FP-
gr-injective cover f : C → M . Since 0 → Kerf → C → Imf → 0 is exact,
we have Imf is FP-gr-injective by Lemma 3.7. So the inclusion Imf → M
is a monic FP-gr-injective cover.

(2) ⇒ (4) Let f : L→M be an FP-gr-injective precover of a graded left
R-module M and K = Kerf and let g : C →M be a monic FP-gr-injective
cover. Consider the pullback of f and g:

P
α

- C

L

β

?
f

- M

g

?

By the definition of precover, there is a factorization C → L → M of the
graded morphism C → M . This means that there is a graded morphism
γ : C → P such that αγ = 1C , and so P ∼= K⊕C since Kerα ∼= K. Similarly
P ∼= L. Thus K ⊕ C ∼= L, which gives that K is FP-gr-injective.

(4) ⇒ (1) It is enough to show that any quotient of an FP-gr-injective
left R-module is FP-gr-injective. Let M be a quotient of an FP-gr-injective
left R-module. Note that M has an FP-gr-injective cover f : C →M . Then
f is an epimorphism. Since Kerf is FP-gr-injective, we have Kerf+ and
C+ are flat, and so M+ is flat. Thus M is FP-gr-injective since R is left
gr-coherent.

(1) ⇒ (3) Let M be a graded right R-module. Then M has a gr-flat
preenvelope f : M → L. Consider the exact sequence 0 → Imf → L →
L/Imf → 0. Then 0 → (L/Imf)+ → L+ → Imf+ → 0 is exact in R-gr
and L+ is FP-gr-injective, and hence Imf+ is FP-gr-injective by Lemma 3.7.
Therefore f : M → Imf is an epic gr-flat preenvelope.

(3) ⇒ (6) The proof is dual to that of (2) ⇒ (4).
(6) ⇒ (1) By a proof dual to that of (4) ⇒ (1), we can show that any

graded submodule of a gr-flat rightR-module is gr-flat. LetM be any graded
left R-module. Then FP-gr-idM= fdM+ ≤ 1, and hence l.FP-gr-dimR ≤ 1.

(1) ⇔ (5) is obvious.
(1) ⇔ (7) By analogy with the proof of (1) ⇔ (6). �

Proposition 3.10. The following are equivalent for a graded ring R of type
G:
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(1) R is left gr-coherent and l.FP-gr-dimR ≤ 2;
(2) Every graded left R-module has an FP-gr-injective cover with the

unique mapping property.

Proof. (1) ⇒ (2) Let M be any graded left R-module. Then M has an
FP-gr-injective cover f : C → M by (1). It is enough to show that, for
any FP-gr-injective left R-module A and any graded morphism g : A → C
such that fg = 0, we have g = 0. In fact, there is a morphism in R-Mod
β : C/Img → M such that βη = f , where η : C → C/Img is the natural
map, and so there exists a graded morphism β′ : C/Img → M such that
β′η = f by [15, Lemma I.2.1]. Since l.FP-gr-dimR ≤ 2, C/Img is FP-gr-
injective. Thus there exists a graded morphism α : C/Img → C such that
β′ = fα, which gives the following commutative diagram:

0 // Kerg
i // A

g //

0 ��@
@@

@@
@@

@ C

f

��

η // C/Img //

β′

{{wwwwwwww
0

M

Thus fαη = f , and hence αη is an isomorphism. It follows that η is monic,
and so g = 0.

(2) ⇒ (1) We first prove that R is left gr-coherent. Let {Ci, ϕij} be a direct
system with each Ci FP-gr-injective. Then lim−→Ci has an FP-gr-injective

cover α : E → lim−→Ci with the unique mapping property. Let αi : Ci →

lim−→Ci satisfy αi = αjϕ
i
j whenever i ≤ j. Then there is a graded morphism

fi : Ci → E such that αi = αfi for any i. It follows that αfi = αfjϕ
i
j , and

so fi = fjϕ
i
j whenever i ≤ j. Therefore, by the definition of direct limits

and [15, Lemma I.2.1], there exists a graded morphism β : lim−→Ci → E such

that the following diagram is commutative:

Ci
αi

- lim−→Ci

Cj

ϕi
j

?
fj

- E

β

?

Thus (αβ)αi = αfi = αi for any i, which means that αβ = 1lim
−→

Ci
by the

definition of direct limits, and so lim−→Ci is a direct summand of E. Hence

lim−→Ci is FP-gr-injective, it follows that R is left gr-coherent by Theorem 3.2.

Next we prove that l.FP-gr-dimR ≤ 2. Let M be any graded left R-
module and
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H

θ

��
0 // M // E0

ϕ // E1

λ
>>|||||||| ψ // N

γ

UU

// 0

be exact with E0 and E1 gr-injective. Let θ : H → N be an FP-gr-injective
cover with the unique mapping property. Then there exists a graded mor-
phism λ : E1 → H such that ψ = θλ. Thus θλϕ = ψϕ = 0 = θ0, and so
λϕ = 0, which implies that Kerψ = Imϕ ⊆ Kerλ. Hence there is a graded
morphism γ : N → H such that γψ = λ by [15, Lemma I.2.1]. Therefore
θγψ = ψ, and so θγ = 1N since ψ is epic. It follows that N is isomorphic
to a direct summand of H, and thus N is FP-gr-injective, that is, l.FP-gr-
dimR ≤ 2. �

A graded ring R of type G is gr-regular if and only if all graded left (right)
R-modules are flat by [15, Lemma I.5.4].

Proposition 3.11. The following are equivalent for a graded ring R of type
G:

(1) R is gr-regular;
(2) Every graded left R-module is FP-gr-injective;
(3) Every finitely presented graded left R-module is projective;
(4) R is left gr-coherent and M is FP-gr-injective for any M ∈ ⊥gr-FI;
(5) M is projective for any M ∈ ⊥gr-FI;
(6) M is flat for any M ∈ ⊥gr-FI;
(7) Every graded left R-module has an FP-gr-injective envelope with the

unique mapping property;
(8) R is left gr-coherent and M has an FP-gr-injective envelope with the

unique mapping property for any M ∈ ⊥gr-FI.

Proof. (2) ⇒ (5) ⇒ (6) ⇒ (3) ⇒ (2) ⇒ (7) and (2) ⇒ (4) ⇒ (8) are obvious.
(4) ⇒ (3) Let M be a finitely presented graded left R-module and 0 →

K → P → M → 0 be exact in R-gr with P finitely generated projective.
Then K is finitely presented, and so K is FP-gr-injective by (4), which
means that the sequence is split. Thus M is projective.

(1) ⇒ (2) Since R is gr-regular, we have R is left gr-coherent by [15,
Lemma I.5.4]. Let M be a graded left R-module. Then M+ is flat, and so
M is FP-gr-injective.

(2) ⇒ (1) Let M be a graded right R-module. Then M+ is FP-gr-
injective, and so M is flat. Hence R is gr-regular.

(7) ⇒ (2) Let M be any graded left R-module and µM : M → E(M)
be an FP-gr-injective envelope with the unique mapping property. Set L =
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CokerµM . Then L has an FP-gr-injective envelope µL : L→ E(L). Consider
the following commutative diagram:

0 // M

0 ""EE
EE

EE
EE

E

µM // E(M)

µLη

��

η // L

µL}}zz
zz

zz
zz

z

// 0

E(L)

Since µLηµM = 0 = 0µM , then µLη = 0. Thus L = Imη ⊆ KerµL = 0, and
so M is FP-gr-injective.

(8) ⇒ (4) Let M ∈ ⊥gr-FI and µM : M → E(M) an FP-gr-injective
envelope with the unique mapping property. Then CokerµM ∈ ⊥gr-FI. So
M is FP-gr-injective by analogy with the proof of (7) ⇒ (2). �

4. Relative FP-gr-injective modules.

In this section, we prove that if R is right gr-coherent, then

(1) (gr-FIn, gr-FI⊥
n ) is a perfect cotorsion theory whenever

FP-gr-id(RR) ≤ n,
(2) (⊥gr-FIn, gr-FIn) is a cotorsion theory, where gr-FIn is the class

of all graded right R-modules of FP-gr-injective dimension at most
n.

Lemma 4.1. Let R be a graded ring and M a graded left R-module. Then
fdM = gr-idM+ = FP-gr-idM+.

Proof. By EXTi
R(N,M+) ∼= TorRi (N,M)+ for all i ≥ 1 and any graded right

R-module N . �

Lemma 4.2. Let R be right gr-coherent and M a graded right R-module.
Then fdM+ = FP-gr-idM .

Proof. By EXTi
R(N,M)+ ∼= TorRi (N,M+) for all i ≥ 1 and any finitely

presented graded right R-module N . �

For a fixed non-negative integer n, let gr-FIn (gr-Fn) be the class of all
graded right (left) R-modules of FP-gr-injective (flat) dimension at most n.
Now we have the following result.

Theorem 4.3. Let n be a fixed non-negative integer. Then the following
hold:

(1) If R is right gr-coherent with FP-gr-id(RR) ≤ n, then (gr-FIn,
gr-FI⊥

n ) is a perfect cotorsion theory.
(2) For any graded ring R, (gr-Fn, gr-F⊥

n ) is a perfect hereditary cotorsion
theory.
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Proof. (1) Let 0 → A → B → C → 0 be gr-pure in gr-R with B ∈ gr-FIn.
Then 0 → C+ → B+ → A+ → 0 splits by [9, Proposition 3.1], and hence
A+, C+ ∈ gr-Fn, which implies that A,C ∈ gr-FIn. Therefore, by [9,
Lemma 3.2], if L ∈ gr-FIn, then L can be written as the direct union of
a continuous chain of graded submodules (Lα)α<λ with λ an ordinal num-
ber such that L0 ∈ gr-FIn, Lα+1/Lα ∈ gr-FIn when α + 1 < λ with
Card(L0), Card(Lα+1/Lα) ≤ Card(R)Card(G). If N is a graded right R-
module such that Ext1R-gr(L0, N) = 0 and Ext1R-gr(Lα+1/Lα, N) = 0 when-

ever α + 1 < λ, then Ext1R-gr(L,N) = 0 by the proof of [9, Proposition

3.3]. Thus gr-FI⊥
n = X⊥, where X is a set of representatives of all graded

modules H ∈ gr-FIn with Card(H) ≤ Card(R)Card(G). We note that gr-
FIn is closed under direct sums, extensions, direct limits since R is right
gr-coherent, and contains all gr-projective modules since FP-gr-id(RR) ≤ n.
Hence (gr-FIn, gr-FI⊥

n ) is a cotorsion theory by [1, Corollary 2.13]. Since
(gr-FIn, gr-FI⊥

n ) is cogenerated by the set X, (gr-FIn, gr-FI⊥
n ) is a com-

plete cotorsion theory by [1, Corollary 2.7]. Moreover, (gr-FIn, gr-FI⊥
n )

is a perfect cotorsion theory since gr-FIn is closed under direct limits by
Lemma 3.1.

(2) Note that gr-Fn is closed under direct sums, extensions, direct lim-
its, gr-pure submodules, cokernels of gr-pure monomorphisms and contains
all gr-projective modules. An argument similar to that of (1) shows that
(gr-Fn, gr-F⊥

n ) is a perfect cotorsion theory. On the other hand, let 0 →
A → B → C → 0 be exact in R-gr with B, C ∈ gr-Fn, then A ∈ gr-Fn. So
(gr-Fn, gr-F⊥

n ) is hereditary. �

Lemma 4.4. Let R be a graded ring of type G. Then M is an FP-gr-
injective right R-module if and only if EXT1

R(R(σ)/A,M) = 0 for all finitely
generated graded submodules A of R(σ)R and all σ ∈ G.

Proof. “⇒” is obvious.
“⇐” Let N be a finitely presented graded right R-module. Then there is

an exact sequence 0 → A →
⊕

σ∈G0
R(σ) → N → 0, where G0 is a finite

subset of G and A is finitely generated. So

N ∼= (⊕σ∈G0
R(σ))/A ∼= ⊕σ∈G0

(R(σ) +A/A) ∼= ⊕σ∈G0
(R(σ)/R(σ) ∩A).

Consider the sequence 0 → A → R(σ) + A → (R(σ) + A)/A → 0. Since
A,R(σ) + A are finitely generated, we have R(σ)/R(σ) ∩ A ∼= (R(σ) +
A)/A is finitely presented, and so R(σ) ∩ A is finitely generated. Thus
EXT1

R(N,M) ∼= EXT1
R(

⊕
σ∈G0

(R(σ)/R(σ) ∩ A),M) = 0, which implies
that M is FP-gr-injective. �

Theorem 4.5. The following hold for a right gr-coherent ring R of type G
and a fixed integer n ≥ 0:
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(1) Every graded left R-module has a gr-Fn-preenvelope.
(2) (⊥gr-FIn, gr-FIn) is a cotorsion theory.

Proof. (1) Analogous to the ungraded case.
(2) Let M be a graded right R-module. M admits a gr-injective resolution

0 −→M −→ E0 −→ · · · −→ En−1 −→ En −→ · · · .

Write Ln = Im(En−1 → En), L0 = M . Then M ∈ gr-FIn if and only if
Ln is FP-gr-injective if and only if EXT1

R(R(σ)/A,Ln) = 0 for all finitely
generated graded submodules A of R(σ)R and all σ ∈ G by Lemma 4.4.
This means that EXTn+1

R (R(σ)/A,M) = 0 for all finitely generated graded
submodules A of R(σ)R and all σ ∈ G by dimension shifting. Denote by
KA the n-th syzygy module of the finitely presented graded right R-module
R(σ)/A. Then EXTn+1

R (R(σ)/A,M) = 0 if and only if EXT1
R(KA,M) =

0. Set Xσ =
⊕
KA, where the sum is over all finitely generated graded

submodules A of R(σ)R. Let

X = {⊕σ∈G0
Xσ | G0 is a finite subset of G}.

Then X is a set and gr-FIn = X⊥. Thus (⊥gr-FIn, gr-FIn) is a cotorsion
theory. �

Proposition 4.6. Let R be a right gr-coherent ring of type G and n a fixed
non-negative integer. Then the following are equivalent:

(1) FP-gr-id(RR) ≤ n;
(2) Every graded left R-module has a monic gr-Fn-preenvelope;
(3) Every (FP-) gr-injective left R-module belongs to gr-Fn;
(4) Every graded right R-module has an epic gr-FIn-cover;
(5) Every gr-flat right R-module belongs to gr-FIn.

Proof. (1) ⇒ (2) Let M be a graded left R-module. Then M has a gr-Fn-
preenvelope f : M → L by Theorem 4.5. Since there is an exact sequence
0 →M → (

⊕
σ∈GR(σ))+ and fd(

⊕
σ∈GR(σ))+ = FP-gr-id

⊕
σ∈GR(σ) ≤ n

by Proposition 2.1 and Lemma 3.7, we see that f is monic.
(2) ⇒ (3) Let M be an FP-gr-injective left R-module. Then there exists a

gr-pure exact sequence 0 →M → L with L ∈ gr-Fn by (2) and Proposition
2.1, and hence L+ →M+ → 0 splits. So M ∈ gr-Fn by Lemma 4.1.

(3) ⇒ (1) Since (RR)+ is gr-injective, fd(RR)+ ≤ n by (3). Thus FP-gr-
id(RR) = fd(RR)+ ≤ n.

(1) ⇒ (4) By Theorem 4.3. (4) ⇒ (1) and (5) ⇒ (1) are obvious.
(3) ⇒ (5) LetM be a gr-flat right R-module. Then FP-gr-idM = fdM+ ≤

n by (3). �
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