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LIFTED CODES OVER FINITE CHAIN RINGS

Steven T. Dougherty, Hongwei Liu and Young Ho Park

Abstract. In this paper, we study lifted codes over finite chain rings.

We use γ-adic codes over a formal power series ring to study codes over

finite chain rings.

1. Introduction

Codes over finite rings have been studied for many years. More recently,

codes over a wide variety of rings have been studied.

In this paper, we shall first define a series of chain rings and describe the

concept of γ-adic codes. Then we will study these γ-adic codes over this

class of chain rings.

We begin with some definitions. Throughout we let R be a finite com-

mutative ring with identity 1 6= 0. Let Rn = {(x1, · · · , xn) |xj ∈ R} be an

R-module. An R-submodule C of Rn is called a linear code of length n over

R. We assume throughout that all codes are linear.

For x,y ∈ Rn, the inner product of x,y is defined as follows: [x,y] =

x1y1 + · · · + xnyn. If C is a code of length n over R, we define C⊥ = {x ∈

Rn | [x, c] = 0, ∀ c ∈ C} to be the orthogonal code of C. Notice that C⊥ is

linear whether or not C is linear.

It is well known that for any linear code C over a finite Frobenius ring,

|C| · |C⊥| = Rn.

A finite ring is called a chain ring if its ideals are linearly ordered by

inclusion. In particular, this means that any finite chain ring has a unique

maximal ideal.

A finite chain ring is a Frobenius ring, so the identity above holds for

codes over finite chain rings. If C ⊆ C⊥, then C is called self-orthogonal.

Moreover, if C = C⊥, then C is called self-dual.

Let R be a finite chain ring, m the unique maximal ideal of R, and let

γ be the generator of the unique maximal ideal m. Then m = 〈γ〉 = Rγ,
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where Rγ = 〈γ〉 = {βγ |β ∈ R}. We have

(1) R = 〈γ0〉 ⊇ 〈γ1〉 ⊇ · · · ⊇ 〈γi〉 ⊇ · · · 〈γe〉 = {0}.

Let e be the minimal number such that 〈γe〉 = {0}. The number e is called

the nilpotency index of γ.

Let |R| denote the cardinality of R and R× the multiplicative group of all

units in R. Let F = R/m = R/〈γ〉 be the residue field with characteristic p,

where p is a prime number. We know that |F| = q = pr for some integers q

and r and |F×| = pr − 1. The following lemma is well-known (see [10], for

example).

Lemma 1.1. Let R be a finite chain ring with maximal ideal m = 〈γ〉,

where γ is a generator of m with nilpotency index e. For any 0 6= r ∈ R

there is a unique integer i, 0 ≤ i < e such that r = µγi, with µ a unit. The

unit µ is unique modulo γe−i. Let V ⊆ R be a set of representatives for the

equivalence classes of R under congruence modulo γ. Then

(i) for all r ∈ R there exist unique r0, · · · , re−1 ∈ V such that r =
∑e−1

i=0 riγ
i;

(ii) |V | = |F|;

(iii) |〈γj〉| = |F|e−j for 0 ≤ j ≤ e − 1.

By Lemma 1.1, the cardinality of R is:

(2) |R| = |F| · |〈γ〉| = |F| · |F|e−1 = |F|e = per.

Let R be a finite ring. We know from [10] that the generator matrix for a

code C over R is permutation equivalent to a matrix of the following form:

(3) G =























Ik0
A0,1 A0,2 A0,3 A0,e

γIk1
γA1,2 γA1,3 γA1,e

γ2Ik2
γ2A2,3 γ2A2,e

. . .
. . .
. . .

. . .

γe−1Ike−1
γe−1Ae−1,e























.

The matrix G above is called the standard generator matrix form of the code

C. It is immediate that a code C with this generator matrix has cardinality

(4) |C| = |F|
Pe−1

i=0
(e−i)ki = (pr)

Pe−1

i=0
(e−i)ki = (pre)k0(pr(e−1))k1 · · · (pr)ke−1 .
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In this case, the code C is said to have type

(5) 1k0(γ)k1(γ2)k2 · · · (γe−1)ke−1 .

2. Lifts of Codes over Finite Chain Rings

Let R be a finite chain ring with the maximal ideal 〈γ〉, where the nilpo-

tency index of γ is e and R/〈γ〉 = F. We know that for any element a of R,

it can be written uniquely as

a = a0 + a1γ + · · · + ae−1γ
e−1,

where ai ∈ F, see [10] for example. For an arbitrary positive integer i, we

define Ri as

Ri = {a0 + a1γ + · · · + ai−1γ
i−1 | ai ∈ F}

where γi−1 6= 0, but γi = 0 in Ri, and define two operations over Ri:

i−1
∑

l=0

alγ
l +

i−1
∑

l=0

blγ
l =

i−1
∑

l=0

(al + bl)γ
l(6)

i−1
∑

l=0

alγ
l ·

i−1
∑

l′=0

bl′γ
l′ =

i−1
∑

s=0

(
∑

l+l′=s

alb
′

l)γ
s.(7)

It is easy to get that all the Ri are finite rings. Moreover, we have the

following lemma, the proof of which can be found in [9].

Lemma 2.1. For any positive integer i, we have

(i) R×

i = {
i−1
∑

l=0

alγ
l | 0 6= a0 ∈ F};

(ii) the ring Ri is a chain ring with maximal ideal 〈γ〉.

We define R∞ as the ring of formal power series as follows:

R∞ = F[[γ]] = {

∞
∑

l=0

alγ
l | al ∈ F}.

The following lemma is well-known.

Lemma 2.2. We have that (i) R×
∞ = {

∞
∑

l=0

alγ
l | a0 6= 0};

(ii) the ring R∞ is a principal ideal domain.
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Lemma 2.3. Let C be a nonzero linear code over R∞ of length n, then any
generator matrix of C is permutation equivalent to a matrix of the following
form:
(8)

G =

0

B

B

B

B

B

B

B

B

B

B

@

γm0Ik0
γm0A0,1 γm0A0,2 γm0A0,3 γm0A0,r

γm1Ik1
γm1A1,2 γm1A1,3 γm1A1,r

γm2Ik2
γm2A2,3 γm2A2,r

. . .
. . .

. . .
. . .

γm
r−1Ik

r−1
γm

r−1Ar−1,r

1

C

C

C

C

C

C

C

C

C

C

A

,

where 0 ≤ m0 < m1 < · · · < mr−1 for some integer r. The column blocks

have sizes k0, k1, · · · , kr and the ki are nonnegative integers adding to n.

Proof. Before proving the lemma, we note that all nonzero elements in

R∞ can be written in the form γia, where a = a0 + a1γ + · · · + · · · with

a0 6= 0 and i ≥ 0. This means that a is a unit in R∞.

Let Ω be an arbitrary set of generators of code C, a generator matrix G

can be obtained by eliminating those elements which can be written as a

linear combination of other elements in the set Ω. In order to obtain the

standard form in this lemma, we do the following operations. First we take

one nonzero element with form γm0a, where m0 is the minimal nonnegative

integer such that m0 = min{i | γia is a coordinate in an element of Ω}. By

applying column and row permutations and by dividing a row by a unit,

the element in position (1, 1) of matrix G can be replaced by γm0 . Since

those nonzero elements which are in the first column of matrix G have the

form γjb with j ≥ m0 and b a unit, these elements can be replaced by zero

when they are added by the first row which multiplied by −γj−m0b−1. Then

we continue this process by using elementary operations, and the standard

form of G is obtained. �

Definition 1. A code C with generator matrix of the form given in Equa-

tion (8) is said to be of type

(γm0)k0(γm1)k1 · · · (γmr−1)kr−1 ,

where k = k0 + k1 + · · · + kr−1 is called its rank and kr = n − k.

A code C of length n with rank k over R∞ is called a γ-adic [n, k] code.

We call k the rank of C and denote the rank by rank(C) = k.
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The following lemma and theorem are direct generalization from [3]. The

proofs are simply generalizations to those for the p-adic case.

Lemma 2.4. If C is a linear code over R∞ then C⊥ has type 1m for some

m.

We denote the transpose of a matrix M by MT .

Theorem 2.5. Let C be a linear code of length n over R∞. If C has a

standard generator matrix G as in equation (8), then we have

(i) the dual code C⊥ of C has a generator matrix

(9) H =
(

B0,r B0,r−1 · · · B0,2 B0,1 Ikr

)

,

where B0,j = −
j−1
∑

l=1

B0,lA
T
r−j,r−l − AT

r−j,r for all 1 ≤ j ≤ r;

(ii) rank(C) + rank(C⊥) = n.

Example 1. Let C be a code of length 5 over R∞ with a standard generator

matrix as follows:

(10) G =







γ2 0 γ2(1 + γ) γ2(1 + γ + γ2) γ2

0 γ2 γ2(1 + 2γ) γ2(1 + γ2) γ2(1 + 3γ2)

0 0 γ4 γ4(1 + γ2) γ4(2 + γ)






.

Then the dual code C⊥ of C has a generator matrix

(11) H =

(

γ3 2γ + 2γ3 −(1 + γ2) 1 0

1 + 3γ + γ2 1 + 5γ − γ2 −(2 + γ) 0 1

)

.

This gives that

rank(C) + rank(C⊥) = 3 + 2 = 5.

For two positive integers i < j, we define a map as follows:

Ψj
i : Rj → Ri,(12)

j−1
∑

l=0

alγ
l 7→

i−1
∑

l=0

alγ
l.(13)

If we replace Rj with R∞ then we denote Ψ∞
i by Ψi. Let a, b be two

arbitrary elements in Rj . It is easy to get that

(14) Ψj
i (a + b) = Ψj

i (a) + Ψj
i (b), Ψj

i (ab) = Ψj
i (a)Ψj

i (b).
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If a, b ∈ R∞. We have that

(15) Ψi(a + b) = Ψi(a) + Ψi(b), Ψi(ab) = Ψi(a)Ψi(b).

We note that the two maps Ψi and Ψj
i can be extended naturally from

Rn
∞ to Rn

i and Rn
j to Rn

i respectively.

Remark 1. The construction method above gives a series of chain rings (up

to the principal ideal domain R∞) as follows:

R∞ → · · · → Re → Re−1 → · · · → R1 = F

Definition 2. Let i, j be two integers such that 1 ≤ i ≤ j < ∞. We say

that an [n, k] code C1 over Ri lifts to an [n, k] code C2 over Rj, denoted by

C1 � C2, if C2 has a generator matrix G2 such that Ψj
i (G2) is a generator

matrix of C1. It can be proven that C1 = Ψj
i (C2). If C is a [n, k] γ-adic

code, then for any i < ∞, we call Ψi(C) a projection of C. We denote Ψi(C)

by Ci.

Lemma 2.6. Let M be a matrix over R∞ with type 1k. If M ′ is a standard

form of M , then for any positive integer i, Ψi(M
′) is a standard form of

Ψi(M).

Proof. We note that M has type 1k, hence Ψi(M) has type 1k. We

know M ′ is a standard form of M , this implies that there exist elementary

matrices P1, · · · , Ps and Q1, · · · , Qt such that

P1 · · ·PsMQ1 · · ·Qt = M ′.

Hence for any positive integer i, by Equation (15), we have that

Ψi(P1) · · ·Ψi(Ps)Ψi(M)Ψi(Q1) · · ·Ψi(Qt) = Ψi(M
′).

Since the inverse matrices of elementary matrices are the same type of ele-

mentary matrices, we have that Ψi(M
′) is a standard form of Ψi(M). �

Remark 2. In the lemma above we must assume that M has type 1k. For

example, if we take

(16) M =

(

γ5 γ5 + γ7

0 γ15

)

,

then some of its projections are the zero matrix.
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Let C be a code over R∞, we know that C ⊆ (C⊥)⊥. But in general

C 6= (C⊥)⊥. For example, let C = 〈γi〉 be a code of length 1 over R∞ for

some i. Then C⊥ = {0} and (C⊥)⊥ = R∞ since R∞ is a domain. This means

that C ( (C⊥)⊥. We have the following proposition.

Proposition 2.7. Let C be a linear code over R∞. Then C = (C⊥)⊥ if and

only if C has type 1k for some k.

Proof. First we note that (C⊥)⊥ ⊆ C. If C is a linear code then by

Lemma 2.4, the code C⊥ is a linear code with type 1n−k for some k. This

implies that (C⊥)⊥ has type 1n−(n−k) = 1k. �

Proposition 2.8. Let C be a self-orthogonal code over R∞. Then the code

Ψi(C) is a self-orthogonal code over Ri for all i < ∞.

Proof. We have that [v,w] = 0 for all v,w ∈ C since C is a self-orthogonal

code over R∞. This gives that

n
∑

l=1

vlwl ≡
n
∑

l=1

Ψi(vl)Ψi(wl) ( mod γi) ≡ Ψi([v,w]) ( mod γi) ≡ 0 ( mod γi).

Hence Ψi(C) is a self-orthogonal code over Ri. �

By Lemma 2.6, we know that for a γ-adic [n, k] code C of type 1k, Ci =

Ψi(C) is an [n, k] code of type 1k over Ri. In the following, we consider codes

over chain rings that are projections of γ-adic codes.

Note that Ci � Ci+1 for all i. Thus if a code C over R∞ of type 1k is

given, then we obtain a series of lifts of codes as follows:

C1 � C2 � · · · � Ci � · · ·

Conversely, let C be an [n, k] code over F = Re/〈γ〉 = R1, and let G = G1

be its generator matrix. It is clear that we can define a series of generator

matrices Gi ∈ Mk×n(Ri) such that Ψi+1
i (Gi+1) = Gi, where Mk×n(Ri) de-

notes all the matrices with k rows and n columns over Ri. This defines a

series of lifts Ci of C to Ri for all i. Then this series of lifts determines a

code C such that Ci = Ci, the code is not necessarily unique.

Let C be a γ-adic [n, k] code of type 1k, and G, H be a generator and

parity-check matrices of C. Let Gi = Ψi(G) and Hi = Ψi(H). Then Gi and

Hi are generator and parity check matrices of Ci respectively.

Lemma 2.9. Let i < j < ∞ be two positive integers, then
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(i) γj−iGi ≡ γj−iGj (mod γj);

(ii) γj−iHi ≡ γj−iHj (mod γj).

Proof. Let xl be the row vectors of Gi and yl be the row vectors of Gj.

Since we have that Gi = Ψj
i (Gj), this implies that xl ≡ yl ( mod γi). Thus

γj−ixl ≡ γj−iyl ( mod γj).

The proof of (ii) is similar. �

Lemma 2.10. Let i < j < ∞ be two positive integers. Then

(i) γj−iCi ⊆ Cj;

(ii) v = γiv0 ∈ Cj if and only if v0 ∈ Cj−i;

(iii) Ker(Ψj
i ) = γiCj−i.

Proof. (i) Let v be an arbitrary codeword of Ci. By Lemma 2.9 (ii), we

have that

Hj(γ
j−iv)T = γj−iHjv

T ≡ γj−iHiv
T ≡ 0 ( mod γj).

This implies that γj−iCi ⊆ Cj.

(ii) We know that γiv0 ∈ Cj if and only if γiHjv
T
0 ≡ 0 ( mod γj). By

Lemma 2.9(ii), we have that

γiHj = γj−(j−i)Hj ≡ γj−(j−i)Hj−i ≡ γiHj−i ( mod γj).

This implies that γiv0 ∈ Cj ⇔ γiHj−iv
T
0 ≡ 0 ( mod γj). Hence we have that

γiv0 ∈ Cj ⇔ Hj−iv
T
0 ≡ 0 ( mod γj−i) ⇔ v0 ∈ Cj−i.

(iii) By the definition of Kernel and (ii), we know that the vector v ∈

Ker(Ψj
i ) if and only if v ∈ Cj and v = γiv0, where v0 ∈ Cj−i. Thus the

result follows. �

Remark 3. Lemma 2.10(iii) shows that the Hamming weight enumerator

of Ker(Ψj
i ) is equal to the Hamming weight enumerator of Cj−i.

We now study the weights of codewords in the lifts of a code. Suppose

i < j. By Lemma 2.10(i), we know that any weight of a codeword in Ci is

a weight of a codeword in Cj . This implies that if v ∈ Ci then there exists

a w ∈ Cj such that wH(w) = wH(v), where wH(·) denotes the Hamming

weight of a vector. But in general the converse is not always true. We have

the following theorem.
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Theorem 2.11. Let C be a γ-adic code. Then the following two results hold.

(i) the minimum Hamming distance dH(Ci) of Ci is equal to d = dH(C1)

for all i < ∞;

(ii) the minimum Hamming distance d∞ = dH(C) of C is at least d =

dH(C1).

Proof. (i) Let v0 be a vector of C1 with minimal Hamming weight d

of C1. By Lemma 2.10(iii), we know that γi−1v0 is a codeword of Ci with

Hamming weight d. Hence dH(Ci) ≤ d for all i. Now we use induction on

the index number i and assume that dH(Cj) = d for all j ≤ i. Suppose that

dH(Ci+1) < d and there is a non-zero vector v ∈ Ci+1 such that wH(v) < d.

Then wH(Ψi+1
i (v)) ≤ wH(v) < d. Since we have that dH(Ci) = d we

must have that Ψi+1
i (v) = 0 in Ci. This implies that v ∈ Ker(Ψi+1

i ). By

Lemma 2.10(iii), we get that v = γiv0, where 0 6= v0 ∈ C1. This means that

0 < wH(v0) = wH(v) < d, which is a contradiction.

(ii) If there exists a non-zero codeword v ∈ C such that wH(v) < d, then

let N be a sufficiently large integer such that ΨN (v) 6= 0. We would have

that wH(ΨN (v)) ≤ wH(v) < d, which is a contradiction. �

In the remainder of this section, we focus on MDS and MDR codes. It is

well known (see [7]) that for codes C of length n over any alphabet of size

m

(17) dH(C) ≤ n − logm(|C|) + 1.

Codes meeting this bound are called MDS (Maximal Distance Separable)

codes.

For a code C of length n over an finite Quasi-Frobenius ring R, Horimoto

and Shiromoto (see [6]) define the following:

rC = min{l | there exists a monomorphism C → Rl as R − modules}.

If C is linear, then we have (see [6])

(18) dH(C) ≤ n − rC + 1.

Codes meeting this bound are called MDR(Maximal Distance with respect

to Rank) codes. For codes over R∞ we say that an MDR code is MDS if

it is of type 1k for some k. See [4] and [5] for a discussion of this bound for

several rings.
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A linear code C over R is called free if C is isomorphic as a module to Rt

for some t. This implies that if C is free then rC = rank(C). We have the

following two theorems.

Theorem 2.12. Let C be a linear code over R∞. If C is an MDR or MDS

code then C⊥ is an MDS code.

Proof. Assume C is a code of length n and rank k with dH(C) = n−k+1.

Then we know that C⊥ is type 1n−k. Since R∞ is a domain, we get that any

n− k columns of the generator matrix of C⊥ are linearly independent. This

gives that the minimum Hamming weight of C⊥ is n−(n−k)+1 = k+1. �

Theorem 2.13. Let C be a linear code over Ri, and C̃ be a lift code of C

over Rj, where j > i. If C is an MDS code over Ri then the code C̃ is an

MDS code over Rj.

Proof. Assume C is a [n, k] code with minimum Hamming distance dH .

We have that dH = n−k+1 since C is an MDS code. Let v be a codeword

of C such that wH(v) = dH . Then for any nonzero codeword v′ ∈ C, we

have that wH(v′) ≥ wH(v). We know that C̃ is a [n, k] code, and that v

can be viewed as a codeword of C̃ since we can write v = (v1, · · · , vn) where

vl = al
0 + al

1γ + · · · + al
i−1γ

i−1 + 0γi + · · · + 0γj−1.

Let w be any lifted codeword of v. Then we have that wH(w) ≥ wH(v). On

the other hand, for any lift codeword w′ of v′, where v′ ∈ C, we also have

that wH(w′) ≥ wH(v′) ≥ wH(v). This means that the minimum Hamming

weight of C̃ is dH and this implies that C̃ is an MDS code for all j > i. �

3. Self-Dual γ-adic Codes

In this section, we describe self-dual codes over R∞. We fix the ring R∞

with

R∞ → · · · → Ri → · · · → R2 → R1

and R1 = Fq where q = pr for some prime p and nonnegative integer r. The

field Fq is said to be the underlying field of the rings. The following theorem

can be found from [7].

Theorem 3.1. (i) If p = 2 or p ≡ 1 ( mod 4), then a self-dual code of length

n exists over Fq if and only if n ≡ 0 ( mod 2);
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(ii) If p ≡ 3 ( mod 4), then a self-dual code of length n exists over Fq if

and only if n ≡ 0 ( mod 4).

Theorem 3.2. If i is even, then self-dual codes of length n exist over Ri

for all n.

Proof. Let C be the code with generator matrix G = γ
i
2 In. It is clear

that C is self-orthogonal over Ri since γ
i
2 γ

i
2 = γi = 0 in Ri. We have that

|C| = (q
i
2 )n = (qi)

n
2 = |Ri|

n
2 . Therefore C is self-dual. �

Theorem 3.3. Let i be odd and C be a code over Ri with type

1k0(γ)k1(γ2)k2 · · · (γi−1)ki−1 . Then C is a self-dual code if and only if C is

self-orthogonal and kj = ki−j for all j.

Proof. We know that C⊥ has type 1ki(γ)ki−1(γ2)ki−2 · · · (γi−1)k1 . Hence

the only if part follows. Now assume that C is a self-orthogonal code of

length n and kj = ki−j for all j. Let l = ⌊ i
2⌋, where ⌊ ⌋ denotes the greatest

integer function. Since i is odd, we have

(19) n =

i
∑

j=0

kj = 2

i−1

2
∑

j=0

kj = 2

l
∑

j=0

kj.

Since C is self-orthogonal, C is self-dual if and only if |C| = (qi)
n
2 . We have

that

logq |C| =
i−1
∑

j=0

(i − j)kj = i
i−1
∑

j=0

kj −
i−1
∑

j=0

jkj = in −
i
∑

j=0

jkj = in − S,

where S =
i
∑

j=0
jkj . By Equation (19), we have that

S =

i−1
∑

j=0

jkj + i(n −

i−1
∑

j=0

kj) = in −

i
∑

j=0

(i − j)kj

= in −

i
∑

j=0

(i − j)ki−j = in −

i
∑

j=0

jkj = in − S.

This implies that S = in
2 and logq |C| = in − in

2 = in
2 . Therefore C is

self-dual. �

Theorem 3.4. If C is a self-dual code of length n over R∞ then Ψi(C) is a

self-dual code of length n over Ri for all i < ∞.
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Proof. Since C is a self-dual, we have that C = C⊥. This gives that

C = C⊥ = (C⊥)⊥. By Proposition 2.7, the code C has type 1k for some k.

Hence we have that k = n − k, this gives that k = n
2 . It is easy to get that

rank(Ψi(C)) = n
2 and so Ψi(C) has (pri)

n
2 elements. By Proposition 2.8,

Ψi(C) is self-orthogonal. Therefore Ψi(C) is a self-dual code. �

Corollary 3.5. Let C be a self-dual code of length n over R∞. Recall that

p is the characteristic of the underlying field F. We have

(i) If p = 2 or p ≡ 1 ( mod 4), then n ≡ 0 ( mod 2);

(ii) If p ≡ 3 ( mod 4), then n ≡ 0 ( mod 4).

Proof. This result follows by Theorem 3.4 and Theorem 3.1. �

The following theorem gives a method to construct a self-dual code over

F from a self-dual code over Ri.

Theorem 3.6. Let i be odd. A self-dual code of length n over Ri induces a

self-dual code of length n over Fq.

Proof. Let C be a code over Ri of type 1k0(γ)k1(γ2)k2 · · · (γi−1)ki−1 with

standard generator matrix G as follows:

G =























Ik0
A0,1 A0,2 A0,3 A0,i

γIk1
γA1,2 γA1,3 γA1,i

γ2Ik2
γ2A2,3 γ2A2,i

. . .
. . .

. . .
. . .

. . .

γi−1Iki−1
γi−1Ai−1,i























.

Let

G̃ =























Ik0
A0,1 A0,2 A0,3 A0,i

Ik1
A1,2 A1,3 A1,i

Ik2
A2,3 A2,i

. . .
. . .

. . .
. . .

. . .

Ikl
Al,i























,

where l = ⌊ i
2⌋. By Equation (19), G̃ is a (n

2 ) × n matrix over Ri. Let
˜̃G = Ψi

1(G̃) be the matrix over Fq and let ˜̃C be the code over Fq with

generator matrix ˜̃G. It is clear that rank( ˜̃C) = n
2 , and thus it remains to
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show that ˜̃C is self-orthogonal. Let v′′,w′′ be any two row vectors of ˜̃G,

suppose v′′ = Ψi
1(v

′) and w′′ = Ψi
1(w

′), where v = γsv′ and w = γtw′ are

row vectors of G with s, t ≤ l. We have that

0 = [v,w] = [γsv′, γtw′] = γs+t[v′,w′].

This implies that [v′,w′] = 0 since s+t < i. In particular, the constant term

in their inner product is zero. This means that [v′′,w′′] = [v′,w′] = 0. �

Theorem 3.7. Let R = Re be a finite chain ring, F = R/〈γ〉, where |F| =

q = pr, 2 6= p a prime. Then any self-dual code C over F can be lifted to a

self-dual code over R∞.

Proof. Let G1 = (I | A1) be a generator matrix of C over R1(= F). Since

C is self-orthogonal, we have that

I + A1A
T
1 ≡ 0 (mod γ).

We show in the following by induction that there exist matrices Gi = (I | Ai)

such that Ψi+1
i (Gi+1) = Gi and I + AiA

T
i ≡ 0 (mod γi) for all i. Suppose

we have that I + AiA
T
i = γiSi. Let Ai+1 = Ai + γiM , we want to find a

matrix M such that

(20) I + Ai+1A
T
i+1 ≡ 0 (mod γi+1).

We know

I + Ai+1A
T
i+1 = I + AiA

T
i + γi(AiM

T + MAT
i )

= γi(Si + AiM
T + MAT

i ).

This gives that the matrix M should satisfy

(21) Si + AiM
T + MAT

i ≡ 0 (mod γ).

In order to find all solutions to this equation, we consider the map η :

Mn(F) → Mn(F) defined by η(M) = AiM
T + MAT

i . It is easy to get that

η is linear and the kernel of η is

Ker(η) = {KAi | where K is skew-symmetric}.

It follows since AiM
T +MAT

i = 0 if and only if (MAT
i )T +MAT

i = 0 if and

only if MAT
i = K is skew-symmetric if and only if M = K(AT

i )−1 = −KAi.
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Note that AiA
T
i = −I over F and gcd(2, p) = 1. This implies that 2 is a

unit in F. Hence

η(2−1SiAi) = 2−1(AiA
t
iS

T
i + SiAiA

T
i ) = 2−1(−2)Si = −Si.

Therefore the solutions to (20) exist and they are given by

Ai+1 = Ai + γiM,

where M ≡ 2−1(Si + K)A1 (mod γ) with any skew-symmetric K. �
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