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LIFTED CODES OVER FINITE CHAIN RINGS

STEVEN T. DOUGHERTY, HONGWEI L1U AND YOUNG HO PARK

ABSTRACT. In this paper, we study lifted codes over finite chain rings.
We use ~v-adic codes over a formal power series ring to study codes over
finite chain rings.

1. INTRODUCTION

Codes over finite rings have been studied for many years. More recently,
codes over a wide variety of rings have been studied.

In this paper, we shall first define a series of chain rings and describe the
concept of v-adic codes. Then we will study these v-adic codes over this
class of chain rings.

We begin with some definitions. Throughout we let R be a finite com-
mutative ring with identity 1 # 0. Let R" = {(z1,--- ,zp)|2z; € R} be an
R-module. An R-submodule C' of R" is called a linear code of length n over
R. We assume throughout that all codes are linear.

For x,y € R", the inner product of x,y is defined as follows: [x,y] =
T1y1 + - + Tpyp. If C is a code of length n over R, we define O+ = {x €
R"|[x,c] =0, Yc € C} to be the orthogonal code of C. Notice that C* is
linear whether or not C' is linear.

It is well known that for any linear code C over a finite Frobenius ring,
C]-|C*H| = R™

A finite ring is called a chain ring if its ideals are linearly ordered by
inclusion. In particular, this means that any finite chain ring has a unique
maximal ideal.

A finite chain ring is a Frobenius ring, so the identity above holds for
codes over finite chain rings. If C C C*, then C is called self-orthogonal.
Moreover, if C = C*, then C is called self-dual.

Let R be a finite chain ring, m the unique maximal ideal of R, and let
v be the generator of the unique maximal ideal m. Then m = (v) = R7,
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where Ry = (y) = {#7| 0 € R}. We have

(1) R=(") 202202 (y)=A{0}.

Let e be the minimal number such that (v¢) = {0}. The number e is called
the nilpotency index of ~.

Let |R| denote the cardinality of R and R* the multiplicative group of all
units in R. Let ' = R/m = R/(7) be the residue field with characteristic p,
where p is a prime number. We know that |F| = ¢ = p" for some integers ¢
and r and [F*| = p” — 1. The following lemma is well-known (see [10], for
example).

Lemma 1.1. Let R be a finite chain ring with mazimal ideal m = (v),
where v is a generator of m with nilpotency index e. For any 0 # r € R
there is a unique integer i, 0 < i < e such that r = u~y*, with p a unit. The
unit p is unique modulo v*~*. Let V. C R be a set of representatives for the
equivalence classes of R under congruence modulo . Then

(i) for all r € R there exist unique ro, -+ ,re—1 € V such that r =
Zf;(} Ti’)/z;
(1) V] = |F|;

(iii) (/)] = [F|77 for 0 < j < e—1.
By Lemma 1.1, the cardinality of R is:
(2) R = [F| - [{(7)| = [F| - |[F|*~" = [F|* = p.

Let R be a finite ring. We know from [10] that the generator matrix for a
code C over R is permutation equivalent to a matrix of the following form:

I, Aor Aoz  Aog Ap.e
I, YA12 YA YALe

,)/e—llk671 76_1146—1,6

The matrix G above is called the standard generator matrix form of the code
C. Tt is immediate that a code C' with this generator matrix has cardinality

(4) |C| = [F[ZiSo (embi — (pryZiZo (ki — (preyko (prie=Dyka . (pryke-t,
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In this case, the code C' is said to have type

(5) 1k0 (’y)kl (72)k2 - (76—1)]%—1'

2. LirTs oF CODES OVER FINITE CHAIN RINGS

Let R be a finite chain ring with the maximal ideal (vy), where the nilpo-
tency index of v is e and R/(y) = F. We know that for any element a of R,
it can be written uniquely as

a=ag+ay+-+ac17,

where a; € [F, see [10] for example. For an arbitrary positive integer 7, we
define R; as
R, = {ao + a1y +---+ ai_lfyi_l |ai € F}

where 4/~ #£ 0, but v = 0 in R;, and define two operations over R;:

1—1 i—1 1—1
(6) dan' +> bt = D (w+b)
1=0 1=0 1=0
i1 -1 i1
(7) dart > bt = D ) aib)y®.
1=0 I'=0 5=0 I+l'=s

It is easy to get that all the R; are finite rings. Moreover, we have the
following lemma, the proof of which can be found in [9].

Lemma 2.1. For any positive integer i, we have
i—1
(i) Ri>< ={> al’yl\() # ag € F};
=0

(ii) the ring R; is a chain ring with mazimal ideal (7).

We define R, as the ring of formal power series as follows:
Roo =F[M] = {>_at | € F}.
=0

The following lemma is well-known.

Lemma 2.2. We have that (i) RX, = {Y_ a;y' | ag # 0};
=0

(ii) the ring R is a principal ideal domain.
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Lemma 2.3. Let C be a nonzero linear code over Ry, of length n, then any
generator matriz of C is permutation equivalent to a matriz of the following
form:

(8)

YOIk, Y™ Ao Y Ao Y™ Ao Y™ Ao,
M, M AL, AT AL LA,
Y g, Y Az "2 Az
G= ,
,-ymr—l Ik,r,1 ,-ymr—lAT_LT
where 0 < mg < my < --+ < my_1 for some integer r. The column blocks
have sizes ko, k1, -+ , k. and the k; are nonnegative integers adding to n.

Proof. Before proving the lemma, we note that all nonzero elements in
Ro can be written in the form ~'a, where a = ag + ay;y + --- + --- with
ag # 0 and ¢ > 0. This means that a is a unit in R.

Let €2 be an arbitrary set of generators of code C, a generator matrix ¢
can be obtained by eliminating those elements which can be written as a
linear combination of other elements in the set 2. In order to obtain the
standard form in this lemma, we do the following operations. First we take
one nonzero element with form ~4"°a, where mg is the minimal nonnegative
integer such that mg = min{i |y’ais a coordinate in an element of Q}. By
applying column and row permutations and by dividing a row by a unit,
the element in position (1,1) of matrix G can be replaced by 7. Since
those nonzero elements which are in the first column of matrix G have the
form /b with j > mg and b a unit, these elements can be replaced by zero
when they are added by the first row which multiplied by —y/~™0b~!. Then
we continue this process by using elementary operations, and the standard
form of GG is obtained. O

Definition 1. A code C with generator matrix of the form given in Equa-
tion (8) is said to be of type

(Y™ 0)R0 (ym )R (R

where k = kg + k1 + -+ k,._1 1s called its rank and k, = n — k.

A code C of length n with rank k over R is called a y-adic [n, k| code.
We call k the rank of C and denote the rank by rank(C) = k.
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The following lemma and theorem are direct generalization from [3]. The
proofs are simply generalizations to those for the p-adic case.

Lemma 2.4. If C is a linear code over Ry then C+ has type 1™ for some
m.

We denote the transpose of a matrix M by M7,

Theorem 2.5. Let C be a linear code of length n over Rs. If C has a
standard generator matriz G as in equation (8), then we have
(i) the dual code C* of C has a generator matriz

(9) H = ( By, Bor-1 -+ Bo2 Bo1 Iy, ) :
j—1
where By j = — z; BO,ZA;F_j,T_l — AZ_W forall1 <j<r;

(i3) rank(C) + rank(Ct) = n.

Example 1. Let C be a code of length 5 over Ro, with a standard generator
matriz as follows:

Y0 P4y YAy ) o0&
(10)  G=[ 0 7 P?(1+2y) F0+9) F(1+39%)
0 0 v YA+ 2+
Then the dual code C+ of C has a generator matriz
3 3 _ 2
(11) - v ) 27+272 (14++%) 1 0 .
1+3y+9% 1+5y—9" —(2+v) 0 1

This gives that
rank(C) + rank(Ct) =3 +2 =5.

For two positive integers i < j, we define a map as follows:

(12) \I!z R — R,
j—1 i—1
(13) dayt = D an.
1=0 1=0
If we replace R; with Ry, then we denote ¥3° by ;. Let a,b be two
arbitrary elements in R;. It is easy to get that

(14) W (a+b) = Wl (a) + W(b), W(ab) = W (a)¥) (D).
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If a,b € Ry. We have that
(15) \Ifi(a + b) = \Ill(a) + \I/Z(b), \Iil(ab) = \I/Z(a)\I’Z(b)

We note that the two maps W¥; and \Ifz can be extended naturally from
RZ, to R} and R} to R respectively.

Remark 1. The construction method above gives a series of chain rings (up
to the principal ideal domain R ) as follows:

R — +++ —- R, — Reey — -++— Ry =F

Definition 2. Let i,j be two integers such that 1 < i < 7 < co. We say
that an [n, k] code C1 over R; lifts to an [n, k] code Cy over Rj, denoted by
Ch =X Oy, if Cy has a generator matriz Go such that \Ilg(Gg) 1$ a generator
matriz of C1. It can be proven that C7 = \Ifi(Cg) If C is a [n,k] v-adic
code, then for any i < oo, we call ¥;(C) a projection of C. We denote ¥;(C)
by C*.

Lemma 2.6. Let M be a matriz over Ro, with type 1¥. If M is a standard
form of M, then for any positive integer i,V;(M') is a standard form of

Proof. We note that M has type 1*, hence ¥;(M) has type 1¥. We
know M’ is a standard form of M, this implies that there exist elementary
matrices Py, -+, P; and Q1,- -+, Q¢ such that

P ---PMQ; Q= M.
Hence for any positive integer i, by Equation (15), we have that
Wi(Pr) - Wi(Ps)Wi(M)(Q1) - - - Ui(Qr) = Wi (M)

Since the inverse matrices of elementary matrices are the same type of ele-
mentary matrices, we have that ¥;(M’) is a standard form of ¥;(M). O

Remark 2. In the lemma above we must assume that M has type 1%. For
example, if we take

5 oAb AT
v+
(16) Mz( 0 15 ),
y

then some of its projections are the zero matrix.
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Let C be a code over R, we know that C C (Ct)%. But in general
C # (CY)*. For example, let C = (7%) be a code of length 1 over Ry, for
some i. Then C*+ = {0} and (C*)* = Ry since Ry is a domain. This means
that C C (C+)*. We have the following proposition.

Proposition 2.7. Let C be a linear code over Ry,. Then C = (C+)* if and
only if C has type 1* for some k.

Proof.  First we note that (Ct)t C C. If C is a linear code then by
Lemma 2.4, the code C* is a linear code with type 1% for some k. This
implies that (C1)* has type 17~ (=) = 1%, O

Proposition 2.8. Let C be a self-orthogonal code over Rs,. Then the code
U;(C) is a self-orthogonal code over R; for all i < oo.

Proof. We have that [v, w] = 0 for all v,w € C since C is a self-orthogonal
code over R.,. This gives that

S vw = > i(w)¥i(w) (mody') = W([v, w]) (mod ') = 0 (mod ).
=1 =1
Hence ¥;(C) is a self-orthogonal code over R;. O

By Lemma 2.6, we know that for a y-adic [n, k] code C of type 1*, C* =
W;(C) is an [n, k] code of type 1* over R;. In the following, we consider codes
over chain rings that are projections of v-adic codes.

Note that C* < C*t! for all i. Thus if a code C over R of type 1% is
given, then we obtain a series of lifts of codes as follows:

cl<e?<...<0 <.

Conversely, let C' be an [n, k] code over F = R./(y) = Ry, and let G = G
be its generator matrix. It is clear that we can define a series of generator
matrices G; € My, (R;) such that \IJ;L:H(GL-H) = Gy, where My, (R;) de-
notes all the matrices with k rows and n columns over R;. This defines a
series of lifts C; of C to R; for all 7. Then this series of lifts determines a
code C such that C* = C}, the code is not necessarily unique.

Let C be a ~-adic [n, k| code of type 1%, and G, H be a generator and
parity-check matrices of C. Let G; = ¥,;(G) and H; = V;(H). Then G; and
H; are generator and parity check matrices of C? respectively.

Lemma 2.9. Let 1 < j < oo be two positive integers, then
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(i) ¥ 7'Gi =47 7'Gj (mod 47);
(i4) v/~ H; = 47 7*H; (mod~7).

Proof. Let x; be the row vectors of G; and y; be the row vectors of Gj.
Since we have that G; = \I/g(Gj), this implies that x; = y; (mod~*). Thus
V7% =97y (mod 47).

The proof of (ii) is similar. O

Lemma 2.10. Let i < j < 0o be two positive integers. Then
(i) vt € ¢
(i) v =~'vo € C7 if and only if vo € C?7°;
(iii) Ker(W)) = ~'CI~.

Proof. (i) Let v be an arbitrary codeword of C*. By Lemma 2.9 (ii), we
have that

Hi(v~v)" =7 Hjv" =+ Hiv" = 0(mody’).

This implies that 47/ ~'C* C C7.
(ii) We know that y'vo € C7 if and only if v’ H;vl = 0(mod+?). By
Lemma 2.9(ii), we have that

V'Hj ="V H; = 4"V H;_; = 4'Hj_; (mod 7).
This implies that vy € C7 < y*H;_;v{ = 0 (mod~’). Hence we have that
Y'vo €0 & Hjjvg =0 (mody' ™) & v e 77"

(iii) By the definition of Kernel and (ii), we know that the vector v &
Ker(¥?) if and only if v € €/ and v = ~'vg, where vo € C/~". Thus the
result follows. d

Remark 3. Lemma 2.10(iii) shows that the Hamming weight enumerator
of Ker(W?) is equal to the Hamming weight enumerator of ci—,

We now study the weights of codewords in the lifts of a code. Suppose
i < j. By Lemma 2.10(i), we know that any weight of a codeword in C* is
a weight of a codeword in C/. This implies that if v € C’ then there exists
a w € C7 such that wy(w) = wy(v), where wy(-) denotes the Hamming
weight of a vector. But in general the converse is not always true. We have
the following theorem.
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Theorem 2.11. Let C be a v-adic code. Then the following two results hold.
(i) the minimum Hamming distance dy(C?) of C* is equal to d = dy(Cl)
for all v < ooy
(ii) the minimum Hamming distance doo = dp(C) of C is at least d =
dy (Ch).

Proof. (i) Let vg be a vector of C! with minimal Hamming weight d
of C!. By Lemma 2.10(iii), we know that v~ 1vg is a codeword of C* with
Hamming weight d. Hence dy(C?) < d for all i. Now we use induction on
the index number i and assume that dy(C’) = d for all j < i. Suppose that
dy (C**1) < d and there is a non-zero vector v € C**! such that wy(v) < d.
Then wy (P (v)) < wy(v) < d. Since we have that dy(C?) = d we
must have that U'™'(v) = 0 in C’. This implies that v € Ker(¥!*1). By
Lemma 2.10(iii), we get that v = 7%vg, where 0 # vy € C!. This means that
0 < wi(vp) = wi(v) < d, which is a contradiction.

(ii) If there exists a non-zero codeword v € C such that wy(v) < d, then
let N be a sufficiently large integer such that ¥y (v) # 0. We would have
that wy (VN (v)) < wy(v) < d, which is a contradiction. O

In the remainder of this section, we focus on MDS and MDR codes. It is
well known (see [7]) that for codes C of length n over any alphabet of size
m

(17) dg(C) <n —log,, (|C]) + 1.

Codes meeting this bound are called MDS (M aximal Distance Separable)
codes.

For a code C of length n over an finite Quasi-Frobenius ring R, Horimoto
and Shiromoto (see [6]) define the following:

rc = min{l | there exists a monomorphism C' — R as R — modules}.
If C is linear, then we have (see [6])
(18) dp(C) <n—rc+1.

Codes meeting this bound are called MDR (M aximal Distance with respect
to Rank) codes. For codes over R, we say that an MDR code is MDS if
it is of type 1% for some k. See [4] and [5] for a discussion of this bound for

several rings.
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A linear code C over R is called free if C is isomorphic as a module to R?
for some ¢t. This implies that if C' is free then r¢ = rank(C). We have the
following two theorems.

Theorem 2.12. Let C be a linear code over Rso. If C is an MDR or M DS
code then C*+ is an MDS code.

Proof. Assume C is a code of length n and rank k with dg(C) =n—k+1.
Then we know that Ct is type 1" *. Since R is a domain, we get that any
n — k columns of the generator matrix of C- are linearly independent. This
gives that the minimum Hamming weight of Ct isn—(n—k)+1=k+1. O

Theorem 2.13. Let C be a linear code over R;, and C be a lift code of C
over Rj, where j > 4. If C is an M DS code over R; then the code C is an
MDS code over R;.

Proof. Assume C'is a [n, k] code with minimum Hamming distance dp.
We have that dg = n—k+1 since C' is an M DS code. Let v be a codeword
of C such that wy(v) = dy. Then for any nonzero codeword v/ € C, we
have that wy(v') > wy(v). We know that C is a [n, k] code, and that v
can be viewed as a codeword of C' since we can write v = (vy, - - - , v,) where

Let w be any lifted codeword of v. Then we have that wy(w) > wg(v). On
the other hand, for any lift codeword w’ of v/, where v/ € C, we also have
that wy(w') > wgy(v') > wy(v). This means that the minimum Hamming
weight of C' is dy and this implies that C is an M DS code for all j >i. O

3. SELF-DUAL ~-ADIC CODES
In this section, we describe self-dual codes over Ro,. We fix the ring R
with
Row—++— Ri— - — Ry — Ry
and Ry = [F, where ¢ = p” for some prime p and nonnegative integer r. The

field IF,, is said to be the underlying field of the rings. The following theorem
can be found from [7].

Theorem 3.1. (i) If p =2 orp =1(mod4), then a self-dual code of length
n exists over [Fy if and only if n = 0 (mod 2);
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(i1) If p = 3 (mod4), then a self-dual code of length n exists over Iy if
and only if n =0 (mod4).

Theorem 3.2. If i is even, then self-dual codes of length n exist over R;
for all n.

Proof. Let C be the code with generator matrix G = fy%In. It is clear
that C is self-orthogonal over R; since v3y2 =~% =0 in R;. We have that
IC| = (q2)" = (¢)2 = |Ry|2. Therefore C is self-dual. O

Theorem 3.3. Let i be odd and C be a code over R; with type
1Ro (y)kr(y2)k2 o (yi=1YRim1 - Then C is a self-dual code if and only if C is
self-orthogonal and k; = k;—; for all j.

Proof. We know that C* has type 1¥i(y)ki-1(42)Fi-2 ... (y*=1)¥1 Hence
the only if part follows. Now assume that C' is a self-orthogonal code of
length n and kj = k;_; for all j. Let I = | %], where | | denotes the greatest
integer function. Since ¢ is odd, we have

7

i—1 ;
(19) n:ij:2ikj:22kj.
j=0 j=0 J=0

Since (' is self-orthogonal, C' is self-dual if and only if |C| = (¢')2. We have
that

i—1 i—1 i—1 i
log,|C| = > (i—jkj=iY kj— Y jkj=in—Y jkj=in—S5,
j=0 j=0 j=0 =0
where S = ) jk;. By Equation (19), we have that
j=0
1—1 1—1 7
S = ijj +z(n—2kj) :ZTL—Z(Z—j)kJ
7=0 7=0 7=0
= in—Y (i—jkij=in—Y» jkj=in—S.
5=0 j=0

This implies that S = % and log, |C] = in — o — 1 Therefore C is
self-dual. ]

Theorem 3.4. If C is a self-dual code of length n over Ry then V;(C) is a
self-dual code of length n over R; for all i < oo.



50 S. T. DOUGHERTY, H. LIU AND Y. H. PARK

Proof. Since C is a self-dual, we have that C = C*. This gives that
C = Ct = (C*H)*. By Proposition 2.7, the code C has type 1* for some k.
Hence we have that k = n — k, this gives that k = 5. It is easy to get that
rank(V;(C)) = 5 and so ¥;(C) has (p"")2 elements. By Proposition 2.8,
U, (C) is self-orthogonal. Therefore ¥;(C) is a self-dual code. O

Corollary 3.5. Let C be a self-dual code of length n over Ry. Recall that
p is the characteristic of the underlying field F. We have

(i) If p=2 or p=1(mod4), then n =0 (mod2);

(i) If p = 3 (mod4), then n =0 (mod4).

Proof. This result follows by Theorem 3.4 and Theorem 3.1. U
The following theorem gives a method to construct a self-dual code over
[ from a self-dual code over R;.

Theorem 3.6. Let i be odd. A self-dual code of length n over R; induces a
self-dual code of length n over IF,.

Proof. Let C be a code over R; of type 1%0(y)k1(y2)k2 ... (yi=h)Fim1 with
standard generator matrix GG as follows:

I, Aox Ao2  Aogs Ao
Y, YA12 YAi3 YA
V2, ~*Ass V2 Ag;i
G = . )
Vo e, YT A
Let
I, Aon Ao2 Aogs Ao
I, A2 Az Ar
. I, Ass Ag
G = ,
I, Api

where [ = [%]. By Equation (19), G is a (5) x n matrix over R;. Let
G = W!(G) be the matrix over F, and let C be the code over F, with

generator matrix G. It is clear that rank(C) = 5, and thus it remains to
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show that C is self-orthogonal. Let v/, w” be any two row vectors of G,
suppose v/ = ¥} (v/) and w” = ¥} (w'), where v = v*v/ and w = v'w’ are
row vectors of G with s,¢t <. We have that

0= [v,w] = [y*V/,y'W'] = ¥*T[v/, w'].

This implies that [v/, w'] = 0 since s+t < i. In particular, the constant term
in their inner product is zero. This means that [v"’,w"] = [v/,w/]=0. O

Theorem 3.7. Let R = R, be a finite chain ring, F = R/(v), where |F| =
qg=7p",2 # p a prime. Then any self-dual code C' over IF can be lifted to a
self-dual code over R .

Proof. Let G1 = (I | A1) be a generator matrix of C over R;(= ). Since
C is self-orthogonal, we have that

I+ AAT =0 (mod 7).

We show in the following by induction that there exist matrices G; = (I | A;)
such that U/ (Gyy1) = G; and T + A; AT =0 (mod +?) for all i. Suppose
we have that I + AiAZT = 7%S;. Let Ajy1 = A; +~'M, we want to find a
matrix M such that

(20) I+ A AL =0 (mod 4.
We know
I+ A AL =T+ A AT + 47 (AMT + MAT)
= ~1(S; + A;MT + M AT,
This gives that the matrix M should satisfy
(21) Si + AiMT + MAT =0 (mod 7).

In order to find all solutions to this equation, we consider the map 7 :
M, (F) — M, (F) defined by n(M) = A;MT + MAT. Tt is easy to get that
7 is linear and the kernel of 7 is

Ker(n) = {KA; | where K is skew-symmetric}.

It follows since A;M7T + M Al = 0 if and only if (M AT)T + M AT = 0 if and
only if M AT = K is skew-symmetric if and only if M = K(AT)™! = —K A;.
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Note that A;AT = —TI over F and gcd(2,p) = 1. This implies that 2 is a
unit in [F. Hence

77(2_152‘142‘) = 2_1(A1A§SZT -+ SZAlAZT) = 2_1(—2)Si =-5;.

Therefore the solutions to (20) exist and they are given by

Aiy1 = A +4'M,

where M = 271(S; + K)A; (mod ~) with any skew-symmetric K. O
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