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CORRECTION: RESULTS ON PRIME NEAR-RINGS WITH

(σ, τ)-DERIVATION

Math. J. Okayama Univ. 46 (2004), 1–7.

Öznur GÖLBAŞI and Neşet AYDIN

In the proof of Theorem 7 on pp.7 in [1], Brauer’s Trick method is used
wrongly, in which case the corrected should read as follows:

Theorem 7. Let N be a 2−torsion free prime left near-ring, D be a nonzero

(σ, τ)-derivation of N such that σD = Dσ, τD = Dτ. If [D(N), D(N)]σ,τ =
0 then N is commutative ring.

Proof. It is correctly shown in [1, Theorem 6] that D2(x) = 0 or D(x) ∈ Z,

for all x ∈ N. Choosing x such that D(x) ∈ Z. If D(x) = 0 then D2(x) = 0,

so we get D(x) ∈ Z\{0}. It follows D(y+z)σ(D(x+x)) = τ(D(x+x))D(y+
z), for all y, z ∈ N, by the hypothesis. That is (D(y) + D(z))σ(D(x)) +
(D(y)+D(z))σ(D(x)) = τ(D(x+x))D(y)+τ(D(x+x))D(z). Using D(x) ∈
Z and the hypothesis, we can arrive at σ(D(x))D(y) + σ(D(x))D(z) +
σ(D(x))D(y)+ σ(D(x))D(z) = D(y)σ(D(x+ x)) + D(z)σ(D(x+ x)). Com-
puting this equation, we have σ(D(x))D(z, y) = 0, for all y, z ∈ N. Since
D(x) ∈ Z\{0} and N is prime near-ring, we conclude that D(z, y) = 0, for
all y, z ∈ N. For any w ∈ N, we can write 0 = D(wz, wy) = D(w(z, y)),
and so we obtain D(w)σ(z, y) = 0, for all y, z, w ∈ N. By [1, Lemma 3 (i)],
(z, y) = 0, for all y, z ∈ N. Thus (N, +) is abelian.

Now, we have [D(D(x)y), D(z)]σ,τ = 0, for all y, z ∈ N. We calculate this
equation using [1, Lemma 2], D(x) ∈ Z and (N, +) is abelian, we have

τ(D(x))[D(y), D(z)]σ,τ = τ(D(z))D2(x)σ(y) − D2(x)σ(y)σ(D(z)).

Since the left term of this equation is zero by the hypothesis and σ is an
automorphism of N, we conclude that τ(D(z))D2(x)y = D2(x)yσ(D(z)),
for all y, z ∈ N. Replacing y by yt, t ∈ N in this equation and using this,
we obtain that D2(x)y[σ(D(z)), t] = 0, for all y, z, t ∈ N. By the primeness
of N, we infer D2(x) = 0 or D(N) ⊂ Z, for all x ∈ N. In the first case,
D2 = 0, and so D = 0 by [1, Lemma 4], contrary to our original hypothesis.
Hence D2(x) = 0 does not in fact occur. Thus we get D(N) ⊂ Z, then N is
commutative ring by [1, Theorem 2]. This completes the proof. �

The above proof, stemming from the authors’ oversight in editing and
proofreading, is immaterial for the other results, proofs and discussions of
the article.
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