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INFINITE MATRICES ASSOCIATED WITH POWER

SERIES AND APPLICATION TO OPTIMIZATION AND

MATRIX TRANSFORMATIONS

Bruno de Malafosse and Adnan Yassine

Abstract. In this paper we first recall some properties of triangle
Toeplitz matrices of the Banach algebra Sr associated with power se-
ries. Then for boolean Toeplitz matrices M we explicitly calculate the
product M

N that gives the number of ways with N arcs associated
with M. We compute the matrix BN (i, j), where B (i, j) is an infinite
matrix whose the nonzero entries are on the diagonals m − n = i or
m − n = j. Next among other things we consider the infinite boolean
matrix B+

∞
that have infinitely many diagonals with nonzero entries and

we explicitly calculate
`

B+
∞

´N
. Finally we give necessary and sufficient

conditions for an infinite matrix M to map c
`

BN (i, 0)
´

to c.

1. Introduction

In this paper among other things our aim is to give the number of ways
with N arcs associated with a boolean Toeplitz infinite matrix M. For this
we need to compute the infinite boolean matrix MN . It is well-known that
this number is equal to the entry

[
MN

]
nm

lying in the n-th row and the

m-th column of MN . Since we are led to make computations with infinite
matrices it is natural to focus on Toeplitz triangular matrices. We then
consider M as an operator from sr to itself, where sr = (1/α)−1 ∗ l∞with
αn = rn for all n, (cf. [16, 18]). Then the isomorphism ϕ allows us to
associate with a power series a triangle Toeplitz matrix mapping sr to itself.
Since Sr can be considered as a Banach algebra of infinite matrices and is
also the set of all matrices mapping sr to itself, we will make computations
in this space. We will consider the boolean matrix B (i, j) whose the nonzero
entries are on the diagonals defined by m−n = i or m−n = j and compute
the matrix BN (i, j), to obtain the number of ways with N arcs associated
with B (i, j). We will see that in each of the cases i < j ≤ 0 or 0 ≤ i < j ≤ 0
the matrix BN (i, j) is of Toeplitz and the problem is more complicated in
the case when i < 0 < j, since BN (i, j) is not a triangular Toeplitz matrix.
In Subsection 4.1.3 we deal with the case i = −1 and j = 1 that was used
in the study of the stability and the convergence of numerical schemes for
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finite difference method (cf. [1, 17]). Furthermore since an infinite boolean
matrix can be considered as a matrix map between sequence spaces we focus
on the characterization of the set

(
c
(
BN (i, 0)

)
, c
)
. This result extends in

a certain sense some of those given in [14] such as the characterization of(
c
(
∆N
)
, c
)

where ∆ is the well-known operator of first differences.
This paper is organized as follows. In Section 2 we recall some definitions

and properties of matrix transformations. In Section 3 we give some prop-
erties of the map ϕ which associate with a power series an infinite Toeplitz
matrix and give an application to the infinite linear system ϕ (eaz) x = b. In
Section 4 we consider the boolean matrix B (i, j) whose the nonzero entries
are on the diagonals m − n = i or m − n = j and compute the number of
ways with N arcs associated with B (i, j). Next we consider infinite matri-
ces which have infinitely many diagonals with nonzero entries, such as B+

∞

which is usually denoted by ΣT in the literature and we explicitly calcu-

late (B+
∞)

N
. Finally in Section 5 we study matrix transformations mapping

c
(
BN (i, 0)

)
to c.

2. Matrices considered as operators in sr or sα

We will denote by s, c0, c, l∞ the sets of all sequences, the set of sequences
that converge to zero, that are convergent and that are bounded respectively.
By cs we will denote the set of all the convergent series. Using Wilansky’s
notation we will write sr = (1/α)−1 ∗ l∞with αn = rn for all n, (cf. [5, 18]),
that is

sr =

{
x = (xn)n≥1 : ‖x‖sr

= sup
n

( |xn|
rn

)
< ∞

}

where r > 0. It is known that sr with the norm ‖x‖sr
is a Banach space.

For a given infinite matrix M = (anm)n,m≥1 we define the operators Mn

for any integer n ≥ 1, by Mn (x) =
∑∞

m=1 anmxm where x = (xm)m≥1, and
the series are assumed convergent for all n. So we are led to the study of
the operator M defined by Mx = (Mn (x))n≥1 mapping between sequence
spaces.

The product MM′ of two infinite matrices M and M′ = (a′nm)n,m≥1 is
well defined if the series

∑∞
k=1 anka

′
km are convergent for all n, m.

By (E, F ) where E, F ⊂ s, we will denote the set of all matrices M =
(anm)n,m≥1 mapping from E to F .

Now let r, u > 0 and denote by Sr,u the set of infinite matrices M such
that

‖M‖Sr,u
= sup

n≥1

(
1

un

∞∑

m=1

|anm| rm

)
< ∞.
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The set Sr,u is a Banach space with the norm ‖M‖Sr,u
. Let E and F be any

subsets of s. It was proved in [13] that M ∈ (sr, su) if and only if M ∈ Sr,u.
So we can write that (sr, su) = Sr,u.

When r = u we obtain the Banach algebra with identity Sr,u = Sr, (see
[5]) normed by ‖M‖Sr

= ‖M‖Sr,r
. We also have M ∈ (sr, su) if and only

if M ∈ Sr.
When r = 1, we obtain s1 = l∞. It is well known, see [2, 14] that

(s1, s1) = (c0, s1) = (c, s1) = S1. We also have M ∈ (c0, c0) if and only if
M ∈ S1 and limn→∞ anm = 0 for all m ≥ 1.

By U+ we denote the set of all sequences α = (αn)n≥1 with αn > 0 for
all n. We obtain similar results considering the set Sα of all matrices M
such that ‖M‖Sα

= supn≥1

(
α−1

n

∑∞
m=1 |anm|αm

)
< ∞. The set Sα with

the norm ‖M‖Sα
is a Banach space and we have Sα = (sα, sα) , where

sα = (1/α)−1 ∗ l∞, (cf. [1, 5 , 7, 8, 10, 11, 12, 13]).
For any subset E of s, we put

ME = {Y ∈ s : there is X ∈ E Y = MX} .

If F is a subset of s, we shall denote F (M) = {X ∈ s : Y = MX ∈ F}.
To explicitly calculate MN where M is an infinite Toeplitz boolean ma-

trix, we need the following results.

3. Triangular Toeplitz matrices of Sr and power series

A Toeplitz matrix is an infinite matrix whose entries are of the form
[M]nm = am−n with n, m ≥ 1. Here we focus on triangular Toeplitz matrices
and consider M as an operator mapping sr into itself, with r > 0. Let

(3.1) f (z) =
∞∑

k=0

akz
k

be a power series defined in the open disk |z| < R. We can associate with f
the upper infinite triangular Toeplitz matrix M = ϕ (f) ∈

⋂
0<r<R

Sr defined

by

ϕ (f) =




a0 a1 a2 .
a0 a1 .

0 a0 .
.


 .

For pratical reasons, we will write ϕ [f (z)] instead of ϕ (f). So we can
associate with 1 the matrix I and we can associate with zk for k integer,
the matrix whose the only nonzero entries are equal to 1 and are on the
diagonal of equation m = n + k.
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In the following we will use the notation |f |• (z) =
∑∞

k=0 |ak| zk. It is
obvious that |fg|• (r) is not equal to |f |• (r) × |g|• (r) for r < R, when
f (z) and g (z) are power series defined for |z| < R. On the other hand if
we take f (z) = 1 + z it can easily be seen that 1/ |f |• (r) is not equal to

|1/f |• (r) =
∑∞

k=0

∣∣∣(−1)k
∣∣∣ rk = 1/ (1 − r) for r < 1. From [16] we get the

next result.

Lemma 3.1. [16] The map ϕ : f 7→ M is an isomorphism from the algebra
of the power series defined in |z| < R into the algebra M of the corresponding
matrices.

More precisely we can state the following where we have ϕ
(
fN
)

= [ϕ (f)]N .

Lemma 3.2. Let f be defined by (3.1) and let 0 < r < R. Then

(i) a) ‖ϕ (f)‖Sr
=
∥∥∥[ϕ (f)]T

∥∥∥
S1/r

= |f |• (r).

b) ‖ϕ (−f)‖Sr
= ‖ϕ (f)‖Sr

.
(ii) a) For any integer N we have

ϕ
(
fN
)
∈ Sr and

[
ϕ
(
fN
)]T ∈ S1/r;

b)
∣∣ϕ
(
fN
)∣∣

Sr
≤ [|f |• (r)]

N
and

∣∣∣
[
ϕ
(
fN
)]T ∣∣∣

S1/r

≤ [|f |• (r)]
N

.

c) If an ≥ 0 for all n then
∣∣∣[ϕ (f)]N

∣∣∣
Sr

= |ϕ (f)|NSr
= fN (r) .

(iii) Assume that a0 6= 0 and that the series

1

f (z)
=

∞∑

k=0

a′kz
k

has R′ > 0 as its radius of convergence. Then for each 0 < r < R′ we
have

ϕ

(
1

f

)
= [ϕ (f)]−1 ∈ Sr

and

(3.2)
∥∥∥[ϕ (f)]−1

∥∥∥
Sr

≥ 1

|f |• (r)
.

Proof. (i) a) Since the series (3.1) is convergent for |z| < R we have

‖ϕ (f)‖Sr
= sup

n

(
1

rn

∞∑

m=n

|am−n| rm

)
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=

∞∑

k=0

|ak| rk = |f |• (r) < ∞ for all r < R.

Concerning the transpose of ϕ (f) we have

[
[ϕ (f)]T

]

nm
=

{
an−m for m ≤ n,
0 otherwise.

We deduce that

∥∥∥ϕ (f)T
∥∥∥

S1/r

= sup
n

(
rn

n∑

m=1

|an−m| 1

rm

)

=
∞∑

k=0

|ak| rk = |f |• (r) < ∞ for all r < R.

b) is a direct consequence of a).
(ii) a) Since Sr is a Banach algebra and ϕ (f) ∈ Sr we have ϕ

(
fN
)
∈ Sr.

Similarly [ϕ (f)]T ∈ S1/r implies
[
ϕ
(
fN
)]T ∈ S1/r for each 0 < r < R. (ii)

b) comes from (i) a) and from the fact that in the Banach algebra Sr we

have
∥∥ϕ
(
fN
)∥∥

Sr
≤
(
‖ϕ (f)‖Sr

)N
.

(ii) c) Since the ak are positive the power series fN (z) is of the form∑∞
k=0 ckz

k with ck ≥ 0 and by (i) a) we have

∥∥ϕ
(
fN
)∥∥

Sr
=
∣∣fN

∣∣• (r) = fN (r) = ‖ϕ (f)‖N
Sr

.

(iii) comes from [16] and inequality (3.2) comes from (i) a) and from the
fact that Sr is a Banach algebra, so we have

∥∥∥∥ϕ
(

1

f

)∥∥∥∥
Sr

=
∥∥∥[ϕ (f)]−1

∥∥∥
Sr

≥ 1

‖ϕ (f)‖Sr

=
1

|f |• (r)
.

�

Remark 1. From (ii) c) we deduce that the identity

∞∑

m=n

[
[ϕ (f)]N

]

nm
rm = rnfN (r) ,

is satisfied for all integers n and for all r satisfying 0 < r < R.

We now give a direct application of this lemma to the solvability of infinite
linear systems.
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Example 1. Let a ∈ C and put

M = ϕ (eaz) =




1 a
1!

a2

2! . .

1 a
1!

a2

2! .
1 a

1! .
0 . .

.




.

Consider the infinite linear system represented by

(3.3) Mx = b,

where b ∈ sr. This system can be written as

∞∑

m=n

am−n

(m − n)!
xm = bn n = 1, 2, ...

Then I −M = ϕ (g) where

g (z) = 1 − eaz = −
∞∑

k=1

ak

k!
zk,

and by Lemma 2 (i) we have

‖I −M‖Sr
= |g|• (r) =

∞∑

k=1

|ar|k
k!

= e|a|r − 1 < 1,

so ‖I −M‖Sr
< 1 for r < (ln 2) / |a|. Since Sr is a Banach algebra M is

invertible and M−1 ∈ Sr. Then equation (3.3) is equivalent to M−1 (Mx) =
x = M−1b for all x ∈ sr, (cf. [1, 3, 4]). We conclude that for r < (ln 2) / |a|
equation (3.3) where b ∈ sr has a unique solution in sr given by

x = M−1b = ϕ
(
e−az

)
b,

that is

(3.4) xn =
∞∑

m=n

(−1)m−n am−n

(m − n)!
bm n = 1, 2, ...

4. Application to the boolean matrices B (i, j), B (0, 1, 2), B+
∞

and (B+
∞)

T

In this section we say that an infinite matrix M = (anm)n,m≥1 is boolean
if anm is either equal to 0 or 1. Let A1, A2,..., An,... be a sequence of points
in the plane. For any n, m ∈ N

∗ we define the relation AnRAm if there is
an arc going from An to Am. In this case we put anm = 1. If there is no arc
going from An to Am we then put anm = 0.
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It is well-known that the number of ways with N arcs going from An to
Am, where n, m = 1, 2,... associated with M is equal to

[
MN

]
nm

. Note
that for each integers n we have

∞∑

m=1

[
MN

]
nm

αm ≤
∥∥MN

∥∥
Sα

αn for M ∈ Sα

and similarly we have
∞∑

m=1

[
MN

]
nm

rm ≤
∥∥MN

∥∥
Sr

rn for M ∈ Sr.

4.1. The boolean matrices B (i, j). Let i, j ∈ Z with i < j and put
d = j − i. Here we define the boolean matrix B (i, j) by

[B (i, j)]nm =

{
1 for m − n = i, or m − n = j,
0 otherwise.

1. For instance for i = −2 and j = −1 we have

B (−2,−1) =
[
ϕ
(
z + z2

)]T
=

A1 A2 . Am . .
A1

A2

.
An

.

.




0
1 0 0

1 1 0
0 1 1 0
0 . . .




.

We easily see that if j ≤ 0 the matrix B (i, j) is lower triangular, especially
the matrix B (i, 0) is a triangle and so is invertible. For i ≥ 0 the matrix
B (i, j) is upper triangular.

First we deal with the matrix BN (i, j) considered as operator in sα and
we explicitly give its expression in either of the cases i < j ≤ 0, 0 ≤ i < j,
and i = −1 and j = 1. We will see that the expression of BN (i, j) in the
two previous cases is natural since this matrix is of Toeplitz. The problem
is more complicated in the case i < 0 < j as we will see in Subsection 4.1.3
where i = −1 and j = 1.

4.1.1. The matrix BN (i, j) as operator in sα. Here we consider BN (i, j) as
an operator in Sα = (sα, sα). We let

(4.1) κ′
ij (α) = sup

n≥max{1,−i+1}

(
αn+i + αn+j

αn

)
< ∞.

Note that we obviously have

κ′
ij (α) = sup

n≥1

(
αn+i + αn+j

αn

)
for i ≥ 0.
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We can state the next result.

Proposition 1. Let i, j ∈ Z and N ≥ 1 be an integer. Then
(i) for 0 ≤ i < j we have BN (i, j) ∈ Sα for α satisfying condition (4.1)

and

(4.2)
∥∥BN (i, j)

∥∥
Sα

≤
(
κ′

ij (α)
)N

.

(ii) Let i < j ≤ 0. Then BN (i, j) ∈ Sα for α satisfying (4.1) and

(4.3)
∥∥BN (i, j)

∥∥
Sα

≤
[
max

{
κ′

ij (α) , sup
−j+1≤n≤−i

(
αn+j

αn

)}]N

< ∞.

(iii) Let i < 0 < j. Then BN (i, j) ∈ Sα for α satisfying (4.1) and

(4.4)
∥∥BN (i, j)

∥∥
Sα

≤
[
max

{
κ′

ij (α) , sup
1≤n≤−i

(
αn+j

αn

)}]N

< ∞.

Proof. (i) For 0 ≤ i < j we have ‖B (i, j)‖Sα
= κ′

ij (α) . By (4.1) and since

Sα is a Banach algebra we deduce BN (i, j) ∈ Sα and (4.2) holds.
(ii) We have

1

αn

∞∑

m=1

[
BN (i, j)

]
nm

αm =






αn+i + αn+j

αn

for n ≥ −i + 1,

αn+j

αn

for − j + 1 ≤ n ≤ −i,

0 for n ≤ −j.

Then

‖B (i, j)‖Sα
= max

{
κ′

ij (α) , sup
−j+1≤n≤−i

(
αn+j

αn

)}

and since in the Banach algebra Sα we have
∥∥BN (i, j)

∥∥
Sα

≤ ‖B (i, j)‖N
Sα

we

conclude that (4.3) holds.
(iii) comes from the identity

‖B (i, j)‖Sα
= max

{
κ′

ij (α) , sup
1≤n≤−i

(
αn+j

αn

)}

and reasoning as above we deduce (4.4). �

We immediately deduce the next result.

Proposition 2. Let i, j ∈ Z and let N ≥ 1 be an integer. Then
(i) a) BN (i, j) ∈ Sr for all r > 0,

∥∥BN (i, j)
∥∥

Sr

≤
(
ri + rj

)N
and

[
BN (i, j)

]
nm

≤ inf
r>0

{(
ri + rj

)N

rm−n

}
for all n, m;

b) in the case when i ≥ 0 we have
∥∥BN (i, j)

∥∥
Sr

=
(
ri + rj

)N
.
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(ii) Let ξ be a real with 0 < ξ < i. There is r0 > 0 such that for each
r < r0 we have

(4.5)

∥∥BN (i, j)
∥∥

Sr

rξN
→ 0 (N → ∞) .

Proof. (i) a) It can easily be verified that

‖B (i, j)‖Sr
= κ′

ij (α) = ri + rj

since αn = rn for all n. We conclude that
∥∥BN (i, j)

∥∥
Sr

≤ ‖B (i, j)‖N
Sr

=
(
ri + rj

)N
.

Since
[
BN (i, j)

]
nm

rm−n ≤
∥∥BN (i, j)

∥∥
Sr

≤
(
ri + rj

)N
for all r > 0

we deduce
[
BN (i, j)

]
nm

≤ inf
r>0

{(
ri + rj

)N
rn−m

}
for all n, m ≥ 1.

This concludes the proof of (i) a).
b) Again by Lemma 3.2 (ii) c) and since i ≥ 0 we have

∥∥BN (i, j)
∥∥

Sr
= ‖B (i, j)‖N

Sr
=
(
ri + rj

)N
.

This concludes the proof of b).
(ii) Since ri−ξ + rj−ξ → 0 as r → 0, we deduce there is r0 > 0 such that

ri−ξ + rj−ξ < 1 for all r < r0 and (4.5) holds. �

Remark 2. In the case (ii) of Proposition 2 we easily see that for each n
we successively obtain

n+Nj∑

m=n+Ni

[
BN (i, j)

]
nm

rm−n = rξNo (1) (N → ∞)

and [
BN (i, j)

]
nm

= rξN+n−mo (1) (N → ∞)

for m ∈ [n + Ni, n + Nj] and for r small enough.

4.1.2. Number of ways with N arcs starting from An to Am associated with
BN (i, j) in the cases i < j ≤ 0, or 0 ≤ i < j. To obtain the number of
ways with N arcs we use the well known formula

Ck
N = N (N − 1) ... (N − k + 1) /k!

for 0 ≤ k ≤ N, which gives the number of combinations of N things k at a
time. We have the next result.
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Proposition 3. The number of ways with N arcs starting from An to Am

associated with BN (i, j) is given by the next formulas.
(i) Let 0 ≤ i < j.

(4.6)

[
BN (i, j)

]
nm

=

{
C

m−n−Ni
d

N for m − n − Ni = 0, d, 2d..., Nd,
0 otherwise.

(ii) Let i < j ≤ 0. Then we have
(4.7)

[
BN (i, j)

]
nm

=

{
C

n−m+Nj
d

N for n − m + Nj = 0, d, 2d..., Nd,
0 otherwise.

Proof. (i) To obtain the matrix BN (i, j) we calculate

BN (i, j) = ϕ
[(

zi + zj
)N]

= ϕ

[
ziN

(
1 + zd

)N
]

= ϕ

(
N∑

k=0

Ck
NziN+dk

)
.

Then if m − n = iN + dk, k = 0, 1, .., N we have
[
BN (i, j)

]
nm

= Ck
N . This

shows (4.6).
(ii) For i and j integers with i < j ≤ 0 we have

(4.8) B (i, j) = [B (−j,−i)]T .

For 0 ≤ −j < −i and from (i) we obtain
[(

BN (−j,−i)
)]

nm

=

{
Ck

N for m = n − Nj + (−i + j) k, k = 0, 1, ..., N,
0 otherwise.

Then
[
BN (i, j)

]
nm

=
[(

BN (−j,−i)
)T ]

nm

=

{
Ck

N for n = m − Nj + dk, k = 0, 1, ..., N,
0 otherwise,

with d = j − i. We deduce (4.7). �

We immediately obtain the next corollary.

Corollary 1. (i) For j > 0 we have
(4.9)
[
BN (0, j)

]
nm

=

{
Ck

N for m = n + jk, k = 0, 1, ..., N,
0 otherwise.
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(ii) For i < 0 we have
(4.10)
[
BN (i, 0)

]
nm

=

{
Ck

N for n = m − ik, k = 0, 1, ..., N,
0 otherwise.

4.1.3. The infinite boolean matrix B (−1, 1) .. To compute BN (i, j) in the
case when i < 0 < j the previous formulas cannot be applied. We will see
that BN (i, j) is not a Toeplitz matrix since the entries

[
BN (i, j)

]
nm

are not
of the form am−n.

Here we consider the case when i = −1 and j = 1, that is the infinite
boolean matrix

B (−1, 1) =

A1 A2 . Am .
A1

A2

.
An

.

.




0 1
1 0 1 0

. . .
0 1 0 1

. . .




.

We easily see that there is no way from An to Am, in the cases n = m, or
|n − m| ≥ 2, where n, m = 1, 2,.... and there is a unique way starting from
An to Am for n = m − 1, m ≥ 2, or n = m + 1 with m = 1, 2, 3,....

The previous formulas cannot be applied here since B (−1, 1) is not trian-
gular. From Proposition 1 and from [1, Lemma 1, pp. 166, 167] the matrix
BN (−1, 1) is defined as follows.

Lemma 4.1. Let N ≥ 1 be an integer. Then
(i) a) BN (−1, 1) ∈ Sr for all r > 0,

b) BN (−1, 1) ∈ Sα with κ′
2,1 (α) < ∞ and

∥∥BN (−1, 1)
∥∥

Sα
≤
(

max

{
κ′

2,1 (α) ,
α2

α1

})N

.

(ii) a)
[
BN (−1, 1)

]
nm

= 0 in each of the next cases, N is even and
|m − n| is odd, N is odd and |m − n| is even, or |m − n| ≥ N + 1 for all n,
m ≥ 1;

b) for n ≥ N − k + 1, with k = 0,1,..., N we have
[
BN (−1, 1)

]
n,n−N+2k

= Ck
N ,

c) if N is odd and n ≤ N , or N is even, n ≤ N − 1 and k ≥ 2n−N ,
then

[
BN (−1, 1)

]
n,n−k

= C
N+k

2
N − C

N−2n+k
2

N .



190 B. DE MALAFOSSE AND A. YASSINE

As a direct consequence of Lemma 4.1 we immediately obtain the next
reformulation of the previous result which gives the number

[
BN (−1, 1)

]
nm

of ways with N arcs associated with the matrix B (−1, 1).

Theorem 4.2. The number
[
BN (−1, 1)

]
nm

of ways with N arcs associated
with the matrix B (−1, 1) is given by the next formulas.

(i)
[
BN (−1, 1)

]
nm

= 0 for |m − n| ≥ N + 1 with n, m ≥ 1.
(ii) Let N be even.
a) If |m − n| is odd then

[
BN (−1, 1)

]
nm

= 0;
b) if |m − n| is even we have

[
BN (−1, 1)

]
nm

=





C

N−n+m
2

N for N − n + 2 ≤ m ≤ n + N + 1;

C
N+n−m

2
N − C

N−n−m
2

N for n + m ≤ N.

(iii) Let N be odd. Then

a) If |m − n| is even then
[
B(N) (−1, 1)

]
nm

= 0;
b) if |m − n| is odd we have
[
BN (−1, 1)

]
nm

=





C

N−n+m
2

N for N − n − 2 ≤ m ≤ n + N ;

C
N+n−m

2
N − C

N−n−m
2

N for n + m ≤ N.

For example we have

B5 (−1, 1) =

A1 A2 A3 A4 A5 A6 A7 A8 A9 . .

A1

A2

A3

A4

A5

A6

A7

.

.

.

.




0 5 0 4 0 1
5 0 9 0 5 0 1 0

0 9 0 10 0 5 0 1
4 0 10 0 10 0 5 0 1
0 5 0 10 0 10 0 5 0 1
1 0 5 0 10 0 10 0 5 0 .

1 0 5 0 10 0 10 0 5 .
0 . . . . . . . .

. . . . . . .
. . . . . .

. . . . .




.

An application.

The number of ways with 5 arcs going from A7 to A4 is equal to
[
B5 (−1, 1)

]
7,4

= C1
5 = 5.
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The number of ways with 5 arcs going from A3 to A2 is equal to
[
B5 (−1, 1)

]
3,2

= C3
5 − 1 = 9.

The number of ways with 20 arcs going from A11 to A9 is given by
[
B20 (−1, 1)

]
11,9

= C11
20 − 1.

Remark 3. We can extend the definition of ϕ
(
zk
)

to the case when k ∈ Z

and define ϕ
(
zk
)

as the matrix whose nonzero entries are equal to 1 and
are on the diagonal m − n = k. We then have

(
zi + zj

)N
= C0

NziN + C1
NziN+d + ... + Ck

NziN+kd + ... + CN
N zjN .

Putting χ = max (|i| , |j|) we can do the following conjecture, for each n, m
satisfying m − n = iN + kd k = 0, 1, ..., N and n + m > χN we have

[
ϕ
((

zi + zj
)N)]

nm
=
[
BN (i, j)

]
nm

= Ck
N .

For instance we obtain
[
B5 (−1, 1)

]
7,6

=
[
B5 (−1, 1)

]
7,8

= C3
5 = 10.

Indeed we have m−n = 1 = −5+3.2 and n+m = 13 > 5. In the same way we
easily see that

[
B100 (−1, 1)

]
300,260

= C30
100, since m−n = −40 = −100 + 2k

with k = 30.

4.1.4. Case of the tridiagonal boolean matrix B (0, 1, 2) .. We can explicitly
calculate the number of ways with N arcs from An to Am associated with
the matrix B (0, 1, 2) defined by

B (0, 1, 2) =

A1 A2 . Am .
A1

A2

.
An

.

.




1 1 1 0

1 1 1
. .

0 1 1 1
. .

.




.

State the next result.

Proposition 4. (i) The number of ways with N arcs from An to Am

associated with the matrix B (0, 1, 2) is given by the next formula where
z0 =

(
−1 − i

√
3
)
/2 and i =

√
−1,

[
BN (0, 1, 2)

]
nm

=

{
(−1)k∑

i+j=k,
0≤i,j≤N

Ci
NCj

Nzj−i
0 for m = n + k, k = 0, 1, ..., 2N,

0 otherwise.
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(ii) We have
∥∥BN (0, 1, 2)

∥∥
Sr

=
(
1 + r + r2

)N

and
[
BN (0, 1, 2)

]
nm

≤ inf
r>0

{
rn−m

(
1 + r + r2

)N}
for n + 2N ≥ m ≥ n.

Proof. (i) We have B (0, 1, 2) = ϕ
(
1 + z + z2

)
, and since 1 + z + z2 =

(z − z0) (z − z0) we deduce that

(
1 + z + z2

)N
=

N∑

j=0

N∑

i=0

Ci
NCj

Nz−i
0 z−j

0 (−z)i+j

=
2N∑

k=0


(−1)k

∑

i+j=k,
0≤i,j≤N

Ci
NCj

Nzj−i
0


 zk.

This concludes the proof of (i).
(ii) is a direct consequence of Lemma 2. �

4.2. Case of the matrices B+
∞ and (B+

∞)
T

.. In this part we consider
infinite matrices which have infinitely many diagonals with nonzero entries.
So we consider the matrix B+

∞ which is denoted by ΣT in the literature and
we explicitly calculate B+N

∞ . Then we deal with its transpose.

4.2.1. The matrix B+
∞.. Define the infinite matrix B+

∞ by

B+
∞ =




1 1 1 1 . .
1 1 1 . .

1 1 . .
1 . .

. .
0 .




.

We have

(4.11) B+
∞ = ϕ

(
∞∑

k=0

zk

)
= ϕ

(
1

1 − z

)
for |z| < 1.

Put

Ĉ+
1 =

{
α ∈ U+

⋂
cs : rn (α) = O (1) (n → ∞)

}
,

where rn (α) =

(
∞∑

m=n
αm

)
/αn, (cf. [9]). We can state the following result.
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Proposition 5. Let N ≥ 1 be an integer.

(i) a) (B+
∞)

N ∈ Sα for α ∈ Ĉ+
1 ,

and

(4.12)
∥∥∥
(
B+

∞

)N∥∥∥
Sα

≤
(

sup
n

rn (α)

)N

.

b) (B+
∞)

N ∈ Sr for r < 1
and

(4.13)
∥∥∥
(
B+

∞

)N∥∥∥
Sr

=
∥∥B+

∞

∥∥N

Sr
=

1

(1 − r)N
.

.
(ii) The number

[
(B+

∞)
N
]

nm
of ways with N arcs going from An to Am

is given by

(4.14)
[(

B+
∞

)N]

nm
=

{
Cm−n

N+m−n−1 for m ≥ n,
0 for m < n.

Proof. (i) a) It is immediate that B+
∞ ∈ Sα means that α ∈ Ĉ+

1 . Since Sα

is a Banach algebra we conclude that (B+
∞)

N ∈ Sα. Inequality (4.12) is a
direct consequence of the identity ‖B+

∞‖Sα
= supn rn (α) . We can show (i)

b) and (ii) together. By (4.11) and Lemma 4.1 (ii) we successively have

(B+
∞)

N ∈ Sr for r < 1 and

(4.15)
(
B+

∞

)N
= ϕ

[(
1

1 − z

)N
]

= ϕ

(
∞∑

m=0

Cm
N+m−1z

m

)
,

which gives (4.14). Then by Lemma 3.2 (ii) c) we conclude that

∥∥∥
(
B+

∞

)N∥∥∥
Sr

=
∞∑

m=0

Cm
N+m−1r

m

=
1

(1 − r)N
=
∥∥B+

∞

∥∥N

Sr

which shows equalities given in (4.13). (ii) comes from identity (4.15). �

Remark 4. Note that we have

[(
B+

∞

)N]

nm
= Cm−n

N+m−n−1 ≤ inf
r<1

{
rn−m 1

(1 − r)N

}
for m ≥ n.

For the next result define the set

Ĉ1 =
{
α ∈ U+ : sn (α) = O (1) (n → ∞)

}
,



194 B. DE MALAFOSSE AND A. YASSINE

where sn (α) =

(
n∑

m=1
αm

)
/αn, (cf. [6, 9]). We deduce from the preceding

the following corollary where we put B∞ = (B+
∞)

T
.

Corollary 2. Let N ≥ 1 be an integer.

(i) a) BN
∞ ∈ Sα for α ∈ Ĉ1,

b) BN
∞ ∈ Sr for r > 1

and

(4.16)
∥∥BN

∞

∥∥
Sr

=

(
r

r − 1

)N

.

.
(ii) The number

[
BN

∞

]
nm

of ways with N arcs going from An to Am is
given by

(4.17)
[
BN

∞

]
nm

=

{
Cn−m

N+n−m−1 for m ≤ n,
0 for m > n.

Proof. (i) a) The condition B∞ ∈ Sα means that supn sn (α) < ∞, that is

α ∈ Ĉ1. Since Sα is a Banach algebra we deduce that BN
∞ ∈ Sα.

b) By Lemma 3.2 and Proposition 5 for each r with 0 < 1/r < 1 we have

‖B∞‖Sr
=
∥∥∥
(
B+

∞

)T∥∥∥
S1/r

=
1

1 − 1
r

=
r

r − 1
.

From (4.13) we easily deduce that

∥∥BN
∞

∥∥
Sr

=

∥∥∥∥
((

B+
∞

)T)N
∥∥∥∥

S1/r

=

(
r

r − 1

)N

.

(ii) is a direct consequence of Proposition 5 (ii). �

In the next section we will use the matrix BN (i, 0) to study another
problem on matrix transformations.

5. Matrix transformations between c
(
BN (i, 0)

)
and c where

N ≥ 1 is an integer

In this part we focus on matrix transformations between c
(
BN (i, 0)

)
and

c. This means that we give necessary and sufficient conditions for an infinite
matrix to satisfy the property

BN (i, 0)xn =
N∑

k=0

Ck
Nxn+ik → l implies Mn (x) → l′ (n → ∞)
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for some scalars l, l′ and for all sequences x. We need to know the in-

verse of BN (i, 0). So from (4.8) we have BN (i, 0) =
[
BN (0,−i)

]T
=[

ϕ
(
1 + z−i

)N]T
. From Lemma 3.2 (iii) we have

[
BN (i, 0)

]−1
=

[
ϕ

(
1

1 + z−i

)N
]T

.

5.1. Characterization of
(
c
(
BN (i, 0)

)
, c
)
. First recall the Silverman

-Toeplitz condition for the class (c, c), [18, Th. 1.3.6, p. 6].

Lemma 5.1. M = (anm)n,m≥1 ∈ (c, c) if and only if

i) supn≥1

∑∞
m=1 |anm| < ∞,

ii) limn→∞
∑∞

m=1 anm = l for some l ∈ C

iii) limn→∞ anm = lm for some lm ∈ C and for all m ≥ 1.

As a direct consequence of a Theorem due to Malkowsky and Rakočević
[15] it can easily be deduced the following lemma where D(asn)n

for given s

is the diagonal matrix with
[
D(asn)n

]

nn
= asn for all n and

B∞D(asn)n
=




as1

as1 as2 0

. . .
as1 as2 . asn

. . . . .




.

We have

Lemma 5.2. Let T be a triangle. We have

M ∈ (c (T ) , c)

if and only if the series intervening in the product MT−1 are convergent
and

MT−1 ∈ (c, c)

and

B∞D(asn)n
T−1 ∈ (c, c) for all s = 1, 2, ....

In the following we will use the notation [N, k] for each k ≥ 0

[N, k] = Ck
N+k−1

=
(N + k − 1) (N + k − 2) ... (N + k − 1 − k + 1)

k!

=
N (N + 1) ... (N + k − 1)

k!
,
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and consider the conditions

(5.1) sup
n

(
∞∑

m=1

∣∣∣∣∣

∞∑

k=0

(−1)k an,m−ik [N, k]

∣∣∣∣∣

)
< ∞,

(5.2) lim
n→∞

∞∑

m=1

(
∞∑

k=0

(−1)k an,m−ik [N, k]

)
= l for some scalar l,

(5.3) lim
n→∞

n∑

k=0

(−1)k an,m−ik [N, k] = lm for m = 1, 2, ...

(5.4) sup
n




n∑

m=1

∣∣∣∣∣∣∣

E(−n−m
i )∑

k=0

(−1)k as,m−ik [N, k]

∣∣∣∣∣∣∣


 < ∞ for all s,

(5.5) lim
n→∞

n∑

m=1




E(−n−m
i )∑

k=0

(−1)k as,m−ik [N, k]


 = l

for some scalar l and for all s,

(5.6) lim
n→∞

E(−n−m
i )∑

k=0

(−1)k as,m−ik [N, k] = lm

for some scalar lm, m = 1, 2, .... and for all s.

We have

Theorem 5.3. M ∈
(
c
(
BN (i, 0)

)
, c
)

if and only if (5.1), (5.2), (5.3),
(5.4), (5.5) and (5.6) hold.

Proof. The matrix
(
BN (i, 0)

)−1
= B−N (i, 0) can be explicitly calculated

since
(
1 + z−i

)−N

= 1 − Nz−i +
N (N + 1)

2!
z−2i − ... + (−1)k N (N + 1) ... (N + k − 1)

k!
z−ki + ...

= 1 +

∞∑

k=1

(−1)k [N, k] z−ik for |z| < 1.

We immediately get
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[(
B−N (i, 0)

)T ]

nm
= ϕ

(
1

(1 + z−i)N

)T

=

{
(−1)k [N, k] for n − m = −ik, k = 0, 1, ...
0 otherwise.

Then

MB−N (i, 0) =

(
∞∑

k=0

an,m−ik (−1)k [N, k]

)

n,m≥1

,

and MB−N (i, 0) ∈ (c, c) is equivalent to (5.1), (5.2) and (5.3). Then we
easily obtain for each s

B∞D(asn)n
B−N (i, 0) =




E(−n−m
i )∑

k=0

(−1)k−m as,m−ik [N, k]




n,m≥1

.

So B∞D(asn)n
B−N (i, 0) ∈ (c, c) if and only if (5.4), (5.5) and (5.6) hold. �
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