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EXPONENTIAL GENERALIZED DISTRIBUTIONS

M. GORDON and L. LOURA

Abstract. In this paper we generalize the Fourier transform from the
space of tempered distributions to a bigger space called exponential
generalized distributions. For that purpose we replace the Schwartz
space S by a smaller space X0 of smooth functions such that, among
other properties, decay at infinity faster than any exponential. The
construction of X0 is such that this space of test functions is closed
for derivatives, for Fourier transform and for translations. We equip
X0 with an appropriate locally convex topology and we study it’s dual
X

′
0; we call X ′

0 the space of exponential generalized distributions. The
space X

′
0 contains all the Schwartz tempered distributions, is closed for

derivatives, and both, translations and Fourier transform, are vector and
topological automorphisms in X

′
0. As non trivial examples of elements

in X
′
0, we show that some multipole series appearing in physics are

convergent in this space.

1. Introduction

Laurent Schwartz in [18] introduced an important subspace of the space
D′ of all distributions in R

N : the space S ′ of tempered distributions. This
is the strong dual of the Schwartz space S. For the reader’s convenience
we recall the definiton of S and certain properties needed later on. The
Schwartz test function space S is the vector space of smooth functions1

defined by

(1.1) S = {ϕ ∈ C∞; ∀α, β ∈ N
N xα∂βϕ ∈ L∞} .

The topology of S is determined by the following family (indexed on the set
N of nonnegative integers) of seminorms:

(1.2) ϕ −→ sup
|α|,|β|≤m

‖ xα∂βϕ ‖L∞ ,
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where, for a bounded continuous function ψ, ‖ ψ ‖L∞ is the usual sup-norm
defined by ‖ ψ ‖L∞= supx∈RN |ψ(x)|. The space S is a locally convex sep-
arable (Hausdorff) vector space; it is metrizable, Fréchet, Montel, reflexive,
bornological (Mackey) and D is continuous and densely embedded in S.

The space S is closed for derivatives and the derivative operators ∂α are
linear continuous from S into S. The translation operator2 τa is a vector
and topological automorphism in S with inverse τ−a.

For w ∈ R\{0} we define the Fourier operator Fw by

(1.3) Fwϕ(ξ) =

∫

RN

e−iwx.ξϕ(x)dx ,

where ϕ ∈ S and x.ξ = x1ξ1 + · · ·+xNξN is the usual inner product3 in R
N .

The operator Fw is a vector and topological automorphism in S.
The space of tempered distributions S ′ is defined as the strong dual of

S. It is a locally convex separable (Hausdorff) vector space, non-metrizable,
Montel, reflexive, bornological (Mackey) and is continuous and densely em-
bedded in D′. Moreover, S is continuous and densely embedded in S ′. A
distribution T ∈ D′ is tempered iff T is of the form ∂αF where F is a
continuous function of slow growth (that is, F is bounded by a polynomial).

The operators ∂α and τa are extended to S ′ by transposition, in the usual
way:

(1.4) 〈∂αT, ϕ〉 = (−1)|α|〈T, ∂αϕ〉 ,

(1.5) 〈τaT, ϕ〉 = 〈T, τ−aϕ〉 ,
where T ∈ S ′, ϕ ∈ S and 〈. , .〉 denotes the dual product between S ′ and
S. The derivatives are linear continuous operators from S ′ into S ′. The
translation operator τa is an automorphism in S ′ with inverse τ−a.

By transposition the operator Fw can also be extended to S ′ in the stan-
dard way

(1.6) 〈FwT, ϕ〉 = 〈T,Fwϕ〉 .
The operator Fw is a vector and topological automorphisms in S ′ and we
recall (for the proofs see Schwartz [18]) some of its properties:

(Fw)−1 =

( |w|
2π

)N

F−w ;(1.7)

Fw∂
βT = (iwξ)βFwT ;(1.8)

2For a ∈ R
N and ψ continuous, the translation operator τa is defined by τaψ(x) =

ψ(x− a).
3We shall use the same notation for the usual inner product in C

N .
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∂βFwT = Fw

[

(−iwx)βT
]

;(1.9)

FwτaT = e−iwa.ξFwT ;(1.10)

Fw

(

eiwa.xT
)

= τa (FwT ) ;(1.11)

Fw1 =

(

2π

|w|

)N

δ ;(1.12)

Fw∂
βδ = (iwξ)β ;(1.13)

Fw (FwT ) =

(

2π

|w|

)N

T (−ξ) ;(1.14)

FwT = Fw0
T

(

w

w0
ξ

)

.(1.15)

In formulas (1.12) and (1.13) δ is the Dirac distribution at the point 0; in
(1.15) w0 is a non null real number. We write F for F1 and we call Fϕ the
Fourier transform of ϕ.

We need also the space Gc, where c ∈]0,+∞[, defined by

(1.16) Gc = {ϕ ∈ C∞; ∃p ∈ P ϕ(x) = p(x)e−
c
2
|x|2} ,

where P denotes the space of all polynomials in R
N and |x| =

√

x2

1
+ · · · + x2

N
.

We shall write G instead of G1. The space G is important because it is a
dense subset of S. The proof is trivial because G contains all the Hermite
functions and these functions are dense in S; the proof of this last statement
is not an easy one and can be found in [22] or, for the one dimensional case,
in [6].

Incidentally we mention that the space G has been studied in [13]. In
that paper a locally convex topology is introduced in G and the dual G′ is
studied in detail. For our purposes we do not need to introduce a topology
in G because we just use the property that the set G is dense in S, and this
requires only the topology of S.

The aim of this paper is to construct an extension of the space S ′, using
the same duality method used by L. Schwartz in his distribution theory. For
that purpose, we construct a space of exponential generalized distributions
X ′

0 which is closed for derivatives, translations and Fourier transform. These
operators are linear and continuous of X ′

0 into itself. The translations and
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the Fourier transform define a vector and topological automorphism in X ′
0,

generalizing the beautiful result of Schwartz for tempered distributions.
This paper is organized as follows: In Section 2 we construct the space

De− of all C∞ functions ϕ defined on R
N , decaying exponentially at infinity

as well as their derivatives: |∂αϕ(x)| ≤ Ce−k|x|. We show that this space is
closed for derivatives, for translations and for the product by functions of
slow exponential growth. We equip it with a locally convex structure and
we study some of their topological properties.

In Section 3 we study the space of exponential distributions, that is the
dual space D′

e−
of De− . The space D′

e−
is closed for derivatives and trans-

lations. We also study the topological properties of D′
e−

and prove that the
space S ′ is a continuous and dense subspace of D′

e−
.

Since De− is not closed for the Fourier operator, in Section 4 we construct
the test function space X0 of all complex-valued functions ϕ defined on R

N

such that both ϕ and Fωϕ belong to De− . This space is closed for derivatives,
translations and Fourier transform. We also prove that any function of X0

may be extended to C
N as an entire function. We introduce a locally convex

structure in X0, we show that X0 is continuous and densely embedded in
S and we prove the continuity of the derivative, translation and Fourier
operators in X0.

In Section 5 we study the strong dual X ′
0 of X0, that we call the space

of exponential generalized distributions. The space X ′
0 is closed for the

above mentioned operators, and both translations and Fourier transform
are vector and topological automorphism in X ′

0. The space S ′ is continuous
and densely embedded in X ′

0. In Theorem 5.3 we prove that all continuous
function with exponential growth are in X ′

0. A structure theorem for the
space X ′

0 remains an open problem but we hope to solve it in a near future.
To close the section we give some examples of convergent multipole series in
X ′

0 appearing as solutions of ODE.

2. The test function space De−

We say that a continuous function ϕ defined on RN decays exponentially
at infinity iff, for each k ∈ N, there is an upper bound of the type |ϕ(x)| ≤
Ce−k|x|, where C > 0 is a real number depending on k. We denote by De−

the vector space of all C∞ functions defined on R
N , decaying exponentially

at infinity as well as their derivatives:
(2.1)

De− = {ϕ ∈ C∞; ∀α ∈ N
N ∀k ∈ N ∃C > 0 ∀x ∈ R

N |∂αϕ(x)| ≤ Ce−k|x|} .

Notice that the space Gc defined in (1.16) is included in De− .
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We say that a continuous function f defined on R
N has an exponential

growth iff there is an upper bound of the type |f(x)| ≤ Cek|x|, where C > 0
and k ∈ N. We denote by De+ the vector space of all C∞ functions f defined
on R

N , such that f and its derivatives have an exponential growth:
(2.2)

De+ = {f ∈ C∞; ∀α ∈ N
N ∃C > 0 ∃k ∈ N ∀x ∈ R

N |∂αf(x)| ≤ Cek|x|} .

If f ∈ De+ we say that f has a slow exponential growth.
It is obvious that the exponentials ez.x, with z ∈ C

N , and the polynomials
are functions of De+ and that De− is a vector subspace of De+ .

The following theorem collects some properties of the space De− .

Theorem 2.1. (i) The space De− is a dense subspace of the Schwartz space
S.
(ii) For all a ∈ R

N we have τa (De−) = De− .
(iii) For all ϕ in De− and all α ∈ N

N we have ∂αϕ in De− .
(iv) For all ϕ in De− and all f in De+ we have fϕ in De− .
(v) For all ϕ1 and ϕ2 in De− we have ϕ1ϕ2 in De− .
(vi) For all ϕ in De− and all exponential ez.x, with z ∈ C

N , we have ez.xϕ

in De− .

(vii) For all ϕ in De− and all polynomial p we have pϕ in De− .
(viii) For any ϕ in De− , we have Fwϕ in S and it can be extended to C

N as
an entire function.
(ix) For all ϕ in De− and all λ ∈ R \ {0} we have ϕ(λx) in De− .

Proof. Statement (i) follows from the fact that G is included in De− and G is
dense in S. The proofs of statements (ii) to (vii) and (ix) are straightforward.

To prove (viii) let ϕ in De− . We have Fwϕ ∈ S because ϕ ∈ S and the
operator Fw is a vector and topological automorphism in S. Furthermore,
for each j = 1, . . . , N and each z = (z1, . . . , zN ) in C

N , the integrals
∫

RN

e−iwx.zϕ(x)dx and

∫

RN

∂zj

(

e−iwx.zϕ (x)
)

dx

are absolutely convergent; this proves that Fwϕ can be extended to C
N as

an entire function. �

We introduce a locally convex structure in De− with the family (indexed
in N) of seminorms defined by

(2.3) νk(ϕ) = sup
|α|≤k

‖ ek|x|∂αϕ ‖L∞ .

Notice that a sequence (ϕn) in De− is bounded iff

(2.4) ∀α ∈ N
N ∀k ∈ N ∃C ≥ 0 ∀n ∈ N ∀x ∈ R

N ek|x||∂αϕn(x)| ≤ C
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and converges to zero iff

(2.5) ∀α ∈ N
N ∀k ∈ N ek|x||∂αϕn| → 0 uniformly in R

N .

The space D is clearly included in De− . The inclusion is continuous
because a filter (ϕj) converges to 0 in D iff there exists a compact subset K
of R

N such that all the ϕj have their supports in K and, for each α ∈ N
N ,

∂αϕj → 0 uniformly in R
N . This implies that, for each k ∈ N, ek|x|∂αϕj → 0

uniformly in RN , that is (ϕj) converges to 0 in De− .
The space D is dense in De− . To prove this, we fix a function ψ in D such

that 0 ≤ ψ ≤ 1, ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2 and, for each
natural n, we write ψn(x) = ψ( 1

n
x). Given a function ϕ in De− , it is easily

seen that the sequence (ψnϕ) is in D and converges to ϕ in De− .
We saw in Theorem 2.1 that De− is a dense subspace of S. From the

seminorms (1.2) and (2.3) we conclude that the injection of De− into S is
continuous. Thus, we have4:

(2.6) D →֒
d
De− →֒

d
S .

In order to prove the main theorem of this section, Theorem 2.2 below,
we need the following useful lemma.

Lemma 1. Let (ϕn) be a bounded sequence in De− and let ϕ ∈ S be such
that ϕn → ϕ in S. Then ϕ ∈ De− and ϕn → ϕ in De− .

Proof. We first prove that ϕ is in De− . On the one hand, the boundedness
of (ϕn) allow us to use (2.4). On the other hand, as ϕn → ϕ in S, we
know that, for each α ∈ N

N , (∂αϕn) converges uniformly to ∂αϕ in R
N . Fix

α ∈ N
N and k ∈ N, and let n→ +∞ in (2.4):

ek|x||∂αϕ(x)| ≤ C .

As α and k are arbitrary, this means that ϕ is in De− .
It remains to prove that ϕn → ϕ in De− . We write ψn = ϕn − ϕ and we

prove that ψn → 0 in De− . Fix α ∈ N
N and k ∈ N; from the boundedness

of (ϕn) in De− , we know that (ψn) is bounded in De− and, by (2.4), this
implies the existence of a real number C ≥ 0 such that, for all n ∈ N and
all x ∈ R

N ,

e(k+1)|x| |∂αψn(x)| ≤ C .

We may rewrite this inequality in the form

(2.7) ek|x| |∂αψn(x)| ≤ Ce−|x| .

The sequence (∂αψn) converges to zero uniformly in R
N , because it converges

to zero in S. Therefore, the sequence ek|x| |∂αψn| converges to zero uniformly

4We use →֒ for continuous injection and →֒
d

for continuous and dense injection.
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in the compact subsets of R
N . The function Ce−|x| tends to zero at infinity.

From these two facts we conclude, by (2.7), that ek|x| |∂αψn| converges to
zero uniformly in R

N . This means, by (2.5), that ψn → 0 in De− . �

Now we are ready to state the main theorem of this section:

Theorem 2.2. The space De− is: (i) Hausdorff; (ii) metrizable;
(iii) Fréchet; (iv) Montel; (v) reflexive; (vi) Mackey (bornological).

Proof. (i) De− is obviously Hausdorff because, for all ϕ ∈ De−\ {0}, there
exists a ∈ R

N such that ϕ (a) 6= 0, thus

ν0(ϕ) = ‖ϕ‖L∞ ≥ |ϕ (a)| > 0 .

(ii) De− is metrizable because the familly of seminorms (2.3) is countable.

(iii) We just have to prove that De− is complete. Let (ϕn) be a Cauchy
sequence in De− . By (2.6), (ϕn) is also a Cauchy sequence in S and, as we
know that S is complete, there exists ϕ in S such that ϕn converges to ϕ in
S. By Lemma 1, we see that ϕ belongs to De− and that ϕn converges to ϕ
in De− . This proves that De− is complete.

(iv) The space De− is barrelled because it is a Frćhet space. Thus, we just
have to prove that, if L is a bounded subset of De− , then L is relatively com-
pact in De− , or, equivalently, that every sequence (ϕn) in L has a convergent
subsequence (in the De− topology).

The set L is bounded in De− and, by (2.6), L is also bounded in S. But
S is a Montel space, so there exists ϕ in S and a subsequence (ϕmn) of the
sequence (ϕn) such that ϕmn → ϕ in S. By Lemma 1 we see that ϕ is in
De− and ϕmn → ϕ in De− . This proves that De− is a Montel space.

(v) The space De− is reflexive because it is a Montel space.

(vi) The space De− is a Mackey (or bornological) space because all metrizable
locally convex spaces are bornological. �

Remark 1. Using the seminorms (2.3) it is obvious that the derivative op-
erators ∂α and the translation operators τa are linear continuous from De−

into De− . Moreover, as τa is bijective, with inverse τ−a, we see that the
translations are vector and topological automorphisms in De− .

3. Exponential distributions

The dual D′
e−

of De− is called the space of exponential distributions. We
consider in D′

e−
the strong dual topology. From (2.6) we have the inclusions

S ′ →֒ D′
e− →֒ D′ .
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Obviously D′
e−

is dense in D′ because D is included in D′
e−

and it is well
known that D is dense in D′.

The space De− is continuously embedded in S and, as we know that S is
continuously embedded in S ′, we see that De− is continuously embedded in
D′

e−
. Next, we prove that De− is dense in D′

e−
. It is sufficient to prove that

every continuous linear form f on D′
e−

that is null on De− is identically null.
Taking such a form f , we have f ∈ (D′

e−
)′ and, as De− is reflexive, f ∈ De− ;

this implies that

〈f, f〉 =

∫

RN

|f(x)|2dx = 0

and this shows that f is the null form.
Collecting all the previous results, we have the following chain of contin-

uous and dense embeddings:

(3.1) D →֒
d
De− →֒

d
S →֒

d
S ′ →֒

d
D′

e− →֒
d
D′ .

Theorem 3.1. The space D′
e−

is: (i) Hausdorff; (ii) complete; (iii) Montel;
(iv) reflexive.

Proof. (i) The strong dual topology (as well as the weak dual topology) is
always separated.

(ii) The space D′
e−

is complete because it is the dual of a separated Mackey
space.

(iii) The dual of a Montel space is always a Montel space.
(iv) All Montel spaces are reflexive. �

Similarly to what has been done in the tempered distributions, the op-
erators ∂α and τa can be extended to D′

e−
by transposition, using formulas

(1.4) and (1.5), where now T ∈ D′
e−

, ϕ ∈ De− and 〈. , .〉 denotes the dual
product between D′

e−
and De− . These operators are obviously linear and

continuous from D′
e−

into D′
e−

. The translation operator is a vector and
topological automorphism in D′

e−
with inverse τ−a. All these operators are

the restriction to D′
e−

of the corresponding operators defined on D′ and are
extensions of the operators on S ′.

Like the case of tempered distributions, there is a structure result for the
space D′

e−
. A distribution T in D′ belongs to D′

e−
if and only if

(3.2) T = ∂αF ,

where α ∈ N
N and F is a continuous function of exponential growth. The

sufficient condition is trivial; the proof of the necessary condition is based
on the structure of the bounded distributions and may be done exactly in
the same way as for the case of tempered distributions (see [18], page 240).
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4. The test function space X0

We call X0 the space of all complex-valued functions ϕ defined on R
N

such that both ϕ and Fϕ belong to De− :

(4.1) X0 = {ϕ ∈ De− ; Fϕ ∈ De−} .

It is clearly a vector subspace of De− and we have the following results:

Theorem 4.1. (i) The space X0 is a dense subspace of the Schwartz space
S.
(ii) Every function ϕ in X0 can be extended to C

N as an entire function.
(iii) For all a ∈ R

N we have τa(X0) = X0.
(iv) For all ϕ in X0 and all α ∈ N

N we have ∂αϕ in X0.
(v) F(X0) = X0.
(vi) For all ϕ1 and ϕ2 in X0 we have ϕ1ϕ2 in X0.
(vii) For all ϕ in X0 and all polynomial p we have pϕ in X0.
(viii) For all ϕ in X0 and all b ∈ RN we have eib.xϕ in X0.
(ix) For all ψ in Gc and all b ∈ R

N we have eb.xψ in X0.
(x) For all ϕ in X0 and all w ∈ R \ {0} we have Fwϕ in X0.

Proof. (i) X0 is a subspace of the Schwartz space S because X0 ⊂ De− and
De− ⊂ S. To prove the density, let c > 0 and ϕ in Gc. Then ϕ ∈ De− because
Gc is included in De− . It is easy to verify that Fϕ ∈ G 1

2c
, thus Fϕ ∈ De− ;

this means that Gc is included in X0. As the set G is dense in S and G ⊂ X0

this implies that X0 is dense in S.
(ii) Let us fix ϕ in X0. It is clear that Fϕ belongs to De− and using

Theorem 2.1 we may conclude that both F−1 (Fϕ) and 1
(2π)N F−1 (Fϕ) = ϕ

can be extended to C
N as entire functions.

(iii) Let a ∈ R
N and ϕ ∈ X0. As the space De− is closed for translations

(see Theorem 2.1), then τaϕ is in De− . It remains to show that F (τaϕ) ∈
De− . From (1.10) we have F (τaϕ) = e−ia.ξFϕ. We know that Fϕ is in De− ,
because ϕ is in X0, and, by (vi) in Theorem 2.1, we see that F (τaϕ) ∈ De− .

(iv) Since the derivative operators ∂α are linear continuous from De− into
De− , then for all ϕ in X0 and all α ∈ N

N we have ∂αϕ ∈ De− . From (1.8)
we have F (∂αϕ) = (iξ)αFϕ. As (iξ)α is a polynomial and Fϕ is in De− ,
then (vii) in Theorem 2.1 shows that F (∂αϕ) is in De− and consequently
∂αϕ ∈ X0.

(v) If ϕ ∈ X0, then by definition of X0 (4.1), Fϕ belongs to De− . From

(1.14) we have F (Fϕ) = (2π)N ϕ (−ξ) . Since ϕ (−ξ) ∈ De− , then F (Fϕ)
also belongs to De− . Thus F(ϕ) ∈ X0, that is F(X0) = X0.

(vi) Since the space De− is closed for the product (cf. Theorem 2.1 (v)),
then for all ϕ1 and ϕ2 in X0, we obtain ϕ1ϕ2 ∈ De− . Now we need to prove
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that the Fourier transform of ϕ1ϕ2 is in De− . From Theorem 2.1 (viii),
F (ϕ1ϕ2) can be extended to C

N as an entire function, so F (ϕ1ϕ2) ∈ C∞.
Fix α ∈ N

N and k ∈ N. Using the classic properties of the convolution we
have

ek|ξ|∂α [F (ϕ1ϕ2)] =

(

1

2π

)N

ek|ξ|Fϕ1 ∗ ek|ξ|∂αFϕ2 .

On the other hand, ek|ξ|Fϕ1 and ek|ξ|∂αFϕ2 are in De− (cf. Theorem 2.1).
Therefore ek|ξ|Fϕ1, e

k|ξ|∂αFϕ2 ∈ L2 because De− is continuously embedded
in S and we know that S is continuously embedded in Lq, for all q ≥ 1
(see [18]). Thus, we can deduce, from the general theory of the convolution

product, that ek|ξ|Fϕ1 ∗ ek|ξ|∂αFϕ2 exists for a.a. ξ in C
N , is a continuous

function and

lim
|ξ|→+∞

ek|ξ|∂α [F (ϕ1ϕ2)] =

(

1

2π

)N

lim
|ξ|→+∞

(

ek|ξ|Fϕ1 ∗ ek|ξ|∂αFϕ2

)

= 0

which is equivalent to say that F (ϕ1ϕ2) belongs to De− .
(vii) From Theorem 2.1 we can say that pϕ belongs to De− , for all ϕ in

X0 and all polynomial p. It is easy to show that F (pϕ) ∈ De− , because for
p =

∑

j∈NN , |j|≤n cjx
j we have

F (pϕ) =
∑

j∈NN , |j|≤n

cj i
|j|∂j (Fϕ) .

(viii) Let ϕ ∈ X0 and b ∈ R
N . From (iii) and (v) above we have τb (Fϕ) ∈

X0. But τb (Fϕ) = F
(

eib.xϕ
)

(cf. (1.11)). Using again (v) we can say that

F
(

F
(

eib.xϕ
))

belongs to X0 and by (1.14) finally we obtain eib.xϕ ∈ X0.

(ix) Let ψ ∈ Gc and b ∈ R
N . Then ψ = pe−

c
2
|x|2 , where p ∈ P. We know

that e−
c
2
|x|2 ∈ X0, thus τ b

c

(

e−
c
2
|x|2
)

∈ X0, by (iii). Since X0 is closed for the

product of polynomials (see (vii) before), we have pe−
c
2 |x− b

c |2 ∈ X0. As the
set X0 is a vector space, then

e
b2

2c pe−
c
2 |x− b

c |2 = eb.xψ ∈ X0 .

(x) It results from (1.15) and (ix) of Theorem 2.1. �

Now we introduce in X0 the following family of seminorms:

(4.2)

µk(ϕ) = νk(ϕ) + νk(Fϕ)

= sup
|α|≤k

‖ ek|x|∂αϕ ‖L∞ + sup
|α|≤k

‖ ek|ξ|∂αFϕ ‖L∞ .

With the family of seminorms (µk) X0 is a locally convex space.
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From the seminorms (2.3) and (4.2) we get a continuous injection of X0

into De− . Having in mind (2.6) we have the following chain of continuous
injections:

(4.3) X0 →֒ De− →֒ S.
Moreover, since X0 is a dense subspace of S, cf. Theorem 4.1, then

(4.4) X0 →֒
d
S .

Before we state the main theorem (Theorem 4.2 below) for the test func-
tion space X0 we need the following lemma:

Lemma 2. Let (ϕn) be a bounded sequence in X0 and let ϕ ∈ De− be such
that ϕn → ϕ in De− . Then ϕ ∈ X0 and ϕn → ϕ in X0.

Proof. First we prove that ϕ is in X0. We have to show that Fϕ belongs
to De− . The hypothesis of boundedness of the sequence (ϕn) implies, in
particular, that
(4.5)

∀α ∈ N
N ∀k ∈ N ∃C ≥ 0 ∀n ∈ N ∀ξ ∈ R

N ek|ξ||∂αFϕn(ξ)| ≤ C .

Using the dominated convergence theorem and the hypothesis ϕn → ϕ in
De− , we may deduce that the sequence (∂αFϕn) converges uniformly in R

N

to ∂αFϕ. Fix α ∈ N
N and k ∈ N and let n→ +∞ in (4.5); then

ek|ξ||∂αFϕ(ξ)| ≤ C .

As α and k are arbitrary, this implies that Fϕ is in De− .
It remains to prove that ϕn → ϕ in X0. We write ψn = ϕn −ϕ and prove

that ψn → 0 in X0. Fix α ∈ N
N and k ∈ N; from the boundedness of (ϕn)

in X0, we know that (ψn) is bounded in X0 and, by (4.5), this implies the
existence of a real number C ≥ 0 such that, for all n ∈ N and all ξ ∈ R

N ,

(4.6) ek|ξ| |∂αFψn (ξ)| ≤ Ce−|ξ| .

As we know that ∂αFϕn→∂αFϕ uniformly in R
N , we see that

∂αFψn→0 uniformly in R
N .

Therefore, the sequence ek|ξ| |∂αFψn| converges to zero uniformly in the
compact subsets of R

N . The function Ce−|ξ| tends to zero at infinity. From
these two facts we conclude, by (4.6), that ek|ξ| |∂αFψn| converges to zero
uniformly in R

N . On the other hand, we know that ϕn → ϕ in De− , that is
ψn → 0 in De− ; this implies

ek|x| |∂αψn|→0 uniformly in R
N .

This prove that ψn → 0 in X0. �
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Theorem 4.2. The space X0 is: (i) Hausdorff; (ii) metrizable; (iii) Fréchet;
(iv) Montel; (v) reflexive; (vi) bornological (Mackey).

Proof. (i) Let ϕ in X0 such that ϕ 6= 0. From Theorem 2.2 (i) we see that
ν0(ϕ) 6= 0. Then µ0 (ϕ) = ν0 (ϕ) + ν0 (Fϕ) 6= 0 and this implies that X0 is
a Hausdorff space.

(ii) X0 is metrizable because the familly of seminorms (4.2) is countable.
(iii) We just have to prove that X0 is complete. Let (ϕn) be a Cauchy

sequence in X0. By (4.3), (ϕn) is also a Cauchy sequence in De− and,
applying Theorem 2.2 (iii), we may conclude that there exists ϕ in De− such
that ϕn converges to ϕ in De− . Since (ϕn) is a bounded sequence in X0,
then ϕ belongs to X0 and ϕn converges to ϕ in X0 (cf. Lemma 2).

(iv) The space X0 is barrelled because it is a Fréchet space. Therefore,
we just have to prove that, if L is a bounded subset of X0, then L is rela-
tively compact in X0, or equivalently, that every sequence (ϕn) in L has a
convergent subsequence (in the X0 topology).

The set L is bounded in X0 and, by (4.3), L is also bounded in De− . From
Theorem 2.2, De− is a metrizable and a Montel space, so there exists ϕ in
De− and a subsequence (ϕmn) of the sequence (ϕn) such that ϕmn → ϕ in
De− . By Lemma 2 we see that ϕ is in X0 and ϕmn → ϕ in X0. This proves
that X0 is a Montel space.

(v) X0 is a reflexive space because it is a Montel space.
(vi) The space X0 is a Mackey (or bornological) space because all metriz-

able locally convex spaces are bornological. �

From Theorem 4.1 we can conclude that the derivative operator ∂α, the
translation operator τa and the operator ϕ→ pϕ with p ∈ P are linear from
X0 into X0. We know that the injection of X0 into De− is continuous (see
(4.3)), then using the seminorms (4.2) and the fact that these operators are
continuous from De− into De− , it is easy to prove the continuity of these
operators in X0. Moreover, as τa is bijective, with inverse τ−a, we see that the
translations are vector and topological automorphisms in X0. These results
are summarized in the following corollary:

Corollary 4.3. (i) For each a ∈ R
N , the translation operator τa is a vector

and topological automorphism in X0 with inverse τ−a.
(ii) For each α ∈ N

N the derivative operator ∂α is linear continuous from
X0 into X0.
(iii) For each polynomial p, the operator ϕ → pϕ is linear continuous from
X0 into X0.

Theorem 4.4. The Fourier operator Fw is a vector and topological auto-

morphism in X0 with inverse
(

|w|
2π

)N

F−w .
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Proof. Consider first w = 1. As the operator F is the restriction to X0 of the
operator defined in S (see (1.3)), then Theorem 4.1 allows easily to conclude
the linearity of this operator from X0 into X0. To prove the continuity it is
enough to use the seminorms (4.2). It is simple to show the bijectivity and

we see that the inverse operator is
(

1
2π

)N F−1. As X0 is a Fréchet space (cf.
Theorem 4.2 (iii)), then it follows from the open application theorem that
F is an open application, therefore F−1 is also continuous.

The case w 6= 1 is a direct consequence of the formula (1.15) and (ix) in
Theorem 2.1. �

5. Exponential generalized distributions

We call the dual X ′
0 of X0 the space of exponential generalized distribu-

tions. We consider in X ′
0 the strong dual topology.

From (4.4) we have the inclusion

S ′ →֒ X ′
0 .

The space X0 is continuously embedded in S and, as we know that S is
continuously embedded in S ′, then X0 is also continuously embedded in X ′

0.
Next, we prove that X0 is dense in X ′

0. It is sufficient to prove that every
continuous linear form f on X ′

0 that is null on X0 is identically null. Taking
such a form f , we have f ∈ (X ′

0)
′ and, as X0 is reflexive, f ∈ X0; this implies

that

〈f, f〉 =

∫

RN

|f(x)|2dx = 0

and this shows that f is the null form.
Collecting all the previous results, we have the following chain of contin-

uous and dense embeddings:

(5.1) X0 →֒
d
S →֒

d
S ′ →֒

d
X ′

0 .

Theorem 5.1. The space X ′
0 is: (i) Hausdorff; (ii) complete; (iii) Montel;

(iv) reflexive.

Proof. (i) The strong dual topology (as well as the weak dual topology) is
always separated.

(ii) The space X ′
0 is complete because it is the dual of a separated Mackey

space.
(iii) The dual of a Montel space is always a Montel space.
(iv) All Montel spaces are reflexive. �

Similarly to what has been done in D′
e−

(see (1.4) and (1.5)) we get, by
transposition, the derivative operator ∂α and the translation operator τa in
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X ′
0, which extend these operators defined in X0. They are linear and contin-

uous from X ′
0 into X ′

0. We can still see that τa is a vector and topological
automorphism in X ′

0, with inverse operator τ−a.

Theorem 5.2. The kernel of the operator ∂α in X ′
0 is the same as its kernel

in D′.

Proof. It is sufficient to prove that, in dimension 1 (N = 1), if ∂T = 0, then
T is constant.

First, it is easy to show the following equality:

(5.2) ∂ (X0) =

{

ψ ∈ X0 ;

∫ +∞

−∞
ψ (x) dx = 0

}

.

This shows that ∂ (X0) is a hyperplane of X0.

Write

ϕ0 =
1√
2π

e−
x2

2 .

The function ϕ0 belongs to X0 and

(5.3)

∫ +∞

−∞
ϕ0 (x) dx = 1 ,

thus X0 is the direct sum of ∂ (X0) and span{ϕ0}:
(5.4) X0 = ∂ (X0) ⊕ span {ϕ0} .

If ∂T = 0 then, for all ϕ in X0, 〈∂T, ϕ〉 = −〈T, ∂ϕ〉 = 0. This means that

∀ψ ∈ ∂ (X0) 〈T, ψ〉 = 0 .

Using (5.4) we have 〈T, ϕ〉 = 〈T, ψ〉 + λ 〈T, ϕ0〉 = λ 〈T, ϕ0〉 , where λ ∈ C,
and

∫ +∞

−∞
ϕ (x) dx =

∫ +∞

−∞
ψ (x) dx+ λ

∫ +∞

−∞
ϕ0 (x) dx = λ

In the second equality we have used (5.2) and (5.3). Therefore, 〈T, ϕ〉 =
〈c, ϕ〉, with c = 〈T, ϕ0〉 ∈ C, which implies that T is constant. �

As the Fourier transform Fw is a vector and topological automorphism
in X0, it can be extended this to X ′

0, by transposition, in the same way as
for S ′ (see (1.6)). Moreover, the operator Fw is a vector and topological
automorphism in X ′

0 and the properties of Fw in X0 are still valid in X ′
0, i.e.,

the properties (1.7) to (1.15).
We are now able to identify some elements of the space X ′

0:

Theorem 5.3. If f is a continuous function defined on R
N with exponential

growth, then f ∈ X ′
0 .
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Proof. Call Ce+ the set of all continuous functions defined on R
N with ex-

ponential growth and define

T : Ce+ −→ X ′
0

f 7−→ Tf = T (f)

by

∀ϕ ∈ X0 〈Tf , ϕ〉 =

∫

RN

f (x)ϕ (x) dx .

The existence of
∫

RN f (x)ϕ (x) dx and the linearity of Tf are straightfor-
ward. To prove that Tf is in X ′

0 we only have to show the continuity of
Tf .

Let (ϕn) be a sequence in X0, such that ϕn → 0 in X0. Using the domi-
nated convergence theorem and the hypothesis ϕn → 0 in X0, we see that
〈Tf , ϕn〉 converges to 0 in C; this shows that Tf belongs to X ′

0.

To prove that T is injective, we have to show that KerT = {0}. Suppose
now that Tf = 0; then, for all α ∈ N

N ,

(5.5) mα

(

f e−|x|2
)

= 0 ,

where mα

(

f e−|x|2
)

are the moments of order α of the function f e−|x|2 .

It is easy to see that

∂α
[

F
(

f e−|x|2
)]

(0) = (−i)|α|mα

(

f e−|x|2
)

.

Therefore, by (5.5), we have

∂α
[

F
(

f e−|x|2
)]

(0) = 0 .

All the derivatives of F
(

f e−|x|2
)

are null at the point 0. Since F
(

f e−|x|2
)

can be extended to C
N as an entire function (see Theorem 2.1) and the

Fourier transform is injective, we can conclude that f ≡ 0. This proves the
injectivity of T . �

Corollary 5.4. Let f be an entire function with exponential growth in C
N

and let (pn) be the corresponding sequence of Mac-Laurin polynomials in X ′
0.

Then pn → f in X ′
0.

Corollary 5.5. Let α ∈ N
N such that |α| 6= 0. If the sequence

(

|α|
√

α! |bα|
)

is bounded, then the multipole series
∑

α∈NN bα∂
αδ is convergent in X ′

0.

Notice that although e−|x|2 may be identify with an element of X ′
0 (see

Theorem 5.3), the corresponding sequence of Mac-Laurin polynomials do not



174 M. GORDON AND L. LOURA

converges to e−|x|2 in X ′
0. This fact is not in contradiction with Corollary

5.4 because e−|x|2 do not have an exponential growth in C
N .

Next we give some examples of exponential generalized distributions which
can be represented by convergent multipole series. Applications to ODE in
X ′

0 are given.

Example 5.6. It is clear that ex has exponential growth in C. Then ex ∈ X ′
0

(cf. Theorem 5.3) and, from Corollary 5.4,
n
∑

j=0

xj

j!
−→ ex in X ′

0 .

As the Fourier transform F is a vector and topological automorphism in X ′
0,

we have

F (ex) =
∞
∑

j=0

2πij

j!
δ(j) .

The previous multipole series is convergent in X ′
0 and its sum is the Fourier

transform of the exponential function.

Example 5.7. Let a ∈ R. The function eiax is in X ′
0 because it is bounded.

Therefore the corresponding sequence of Mac-Laurin polynomials converges
in X ′

0:
n
∑

j=0

(ai)j

j!
xj −→ eiax.

Applying Fourier we obtain

(5.6) F
(

eiax
)

= 2π
∞
∑

j=0

(−a)j

j!
δ(j) .

On the other hand, and having in mind the properties of the Fourier trans-
form in X ′

0, we have

F
(

eiax
)

= τa (F1) = 2πδa .

Then, from (5.6), we obtain

(5.7) δa =

∞
∑

j=0

(−a)j

j!
δ(j) .

We have just proved that the distribution δa has the representation (5.7)
as a convergent multipole series in X ′

0. More generally, for n in N, we have

(5.8) δ(n)
a =

∞
∑

j=0

(−a)j

j!
δ(j+n) =

∞
∑

j=n

(−a)j−n

(j − n)!
δ(j) .
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Example 5.8. Let us consider the following ODE:

(5.9) x2T ′ + T = 0 .

Let us suppose that T has the form T =
∑∞

j=0 bjδ
(j). From (5.9) we have

∞
∑

j=0

(bj+1(j + 2)(j + 1) + bj)δ
(j) = 0

and we conclude that, for all j in N,

bj = b0
(−1)j

(j + 1)!j!
,

with b0 ∈ C. Therefore, the solution of (5.9) is

(5.10) T = b0

∞
∑

j=0

(−1)j

(j + 1)!j!
δ(j) .

Now we show that the multipole series (5.10) is convergent in X ′
0. Note that

the sequence
(

j

√

j!

∣

∣

∣

∣

b0
(−1)j

(j + 1)!j!

∣

∣

∣

∣

)

j∈N1

is bounded, because it is convergent. From Corollary 5.5 we can finally
deduce the desired result.

In the previous examples we showed that some elements of X ′
0 have a

representation as a multipole series. Next we show that not all the elements
of X ′

0 have such representation.
For example ex belongs to X ′

0 but does not have a representation as a
multipole series. In fact, ex is the solution of the following differential equa-
tion:

(5.11) T ′ − T = 0 .

If T =
∑∞

j=0 bjδ
(j) is a solution of (5.11), then

∞
∑

j=1

(bj−1 − bj)δ
(j) − b0δ = 0 .

Thus, for all j in N, we have bj = 0 and consequently T = 0.
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[15] OLIVEIRA, J. S. Sobre certos espaços de ultradistribuições e uma noção generalizada

de produto multiplicativo, (CMAF - Textos e notas 29, Lisboa, 1983).
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[18] SCHWARTZ, L. Théorie des Distributions (Paris, Hermann, 1966).
[19] SILVA, J. S. Les fonctions analytiques comme ultradistributions dans le calcul

opérationnel, Math. Annalen, 136 (1958), 58-96.
[20] SILVA, J. S. Les séries de multipôles des physiciens et la théorie des ultradistributions,
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