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SOME APPLICATIONS OF DIFFERENTIAL

SUBORDINATION FOR A GENERAL CLASS

OF MULTIVALENTLY ANALYTIC FUNCTIONS

INVOLVING A CONVOLUTION STRUCTURE

J. K. Prajapat and R. K. Raina

Abstract. In the present paper we investigate a class of multivalently
analytic functions which essentially involves a Hadamard product of two
multivalent functions. We apply the techniques of differential subordi-
nation and derive some useful characteristics of this function class. The
applications to generalized hypergeometric functions and various con-
sequences of the main results exhibiting also relevant connections with
some of the known (and new) results (including also an improved version
of a known result) are also pointed out.

1. Introduction and Definitions

Let Ap denote the class of functions of the form

(1.1) f(z) = zp +
∞
∑

k=p+1

akz
k (p ∈ N = {1, 2, ...}),

which are analytic and p−valent in the open unit disk U = {z : |z| < 1}.
For the functions f and g analytic in U, we say f is subordinate to g in
U, and write f ≺ g, if there exists a function w(z) analytic in U such that
|w(z)| < 1, z ∈ U, and w(0) = 0 with f(z) = g(w(z)) in U. If f is univalent
in U, then f ≺ g is equivalent to f(0) = g(0) and f(U) ⊂ g(U).

Let P(γ) denote the class of functions φ(z) of the form

(1.2) φ(z) = 1 + c1z + c2z
2 + ...

which are analytic in U and satisfy the following inequality:

ℜ(φ(z)) > γ (0 ≤ γ < 1; z ∈ U).

If f ∈ Ap is given by (1.1) and g ∈ Ap given by

(1.3) g(z) = zp +
∞
∑

k=p+1

bkz
k,
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then the Hadamard product (or convolution) f ∗ g of f and g is defined (as
usual) by

(1.4) (f ∗ g)(z) := zp +
∞
∑

k=p+1

akbkz
k.

For a given function g(z) ∈ Ap (defined by (1.3)), we introduce here a new
function class Jp(g;α,A,B) consisting of functions f(z) of the form (1.1) if
and only if

(1.5) (1 − α)
(f ∗ g)(z)

zp
+
α

p

(f ∗ g)′(z)
zp−1

≺ 1 +Az

1 +Bz

(z ∈ U; α > 0; −1 ≤ B < A ≤ 1).

For simplicity, we put Jp(g; 1, A,B) = Mp(g;A,B).
In the present paper we establish some interesting characteristics of the

function class Jp(g;α,A,B) defined in terms of a convolution structure by
invoking the subordination principle. The usefulness of considering the con-
volution structure in defining the above class lies in the fact that one can
select suitably the arbitrary coefficients bk in (1.4) to deduce various other
related classes some of which are mentioned in the concluding section. Appli-
cations involving generalized hypergeometric functions and some important
consequences of the main results, and their relevant connections with vari-
ous known and new results, are also pointed out.

We require the following lemmas to investigate the function class
Jp(g;α,A,B) (defined above).

Lemma 1 (Miller and Mocanu [5]). Let h(z) be a convex (univalent) func-
tion in U with h(0) = 1, and let the function φ(z) be of the form (1.2) be
analytic in U. If

(1.6) φ(z) +
1

γ
zφ′(z) ≺ h(z) (ℜ(γ) ≥ 0 (γ 6= 0); z ∈ U),

then

(1.7) φ(z) ≺ ψ(z) :=
γ

zγ

∫ z

0

tγ−1 h(t) dt ≺ h(z) (z ∈ U)

and ψ(z) is the best dominant.
The generalized hypergeometric function qFs is defined by (cf., e. g. [1])

(1.8) qFs(z) ≡ qFs(α1, ..., αq;β1, ..., βs; z) =
∞
∑

n=0

(α1)n ... (αq)n

(β1)n ... (βs)n
.
zn

n!

(z ∈ U; αj ∈ C (j = 1, ..., q), βj ∈ C\{0,−1,−2, ...}(j = 1, ..., s), q ≤
s+ 1; q, s ∈ N0), where (α)k is the Pochhammer symbol defined by
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(α)0 = 1; (α)k = α(α+ 1)...(α+ k − 1) (k ∈ N).

The following identities asserted by Lemma 2 below are well known [1].

Lemma 2. For real or complex numbers a, b and c (c 6= 0,−1,−2, ...) :

(1.9)

∫ 1

0

tb−1 (1 − t)c−b−1 (1 − zt)−a dt =
Γ(b) Γ(c− b)

Γ(c)
2F1 (a, b; c; z)

(ℜ(c) > ℜ(b) > 0),

(1.10) 2F1 (a, b; c; z) = (1 − z)−a
2F1

(

a, c− b; c;
z

z − 1

)

,

(1.11) (b+ 1) 2F1 (1, b; b+ 1; z) = (b+ 1) + b z 2F1 (1, b+ 1; b+ 2; z),

(1.12) 2F1

(

a, b;
a+ b+ 1

2
;
1

2

)

=

√
π Γ((a+ b+ 1)/2)

Γ((a+ 1)/2) Γ((b+ 1)/2)
,

(1.13) 2F1

(

1, 1; 3;
az

az + 1

)

=
2(1 + az)

az

(

1 − ln(1 + az)

az

)

.

2. Main Results and Applications

Our first main result is given by Theorem 1 below.

Theorem 1. If f(z) ∈ Jp(g;α,A,B), then

(2.1) ℜ
(

(

(f ∗ g)(z)
zp

)
1

m

)

> X 1

m (m ∈ N; z ∈ U),

where

(2.2) X =

{

A
B

+
(

1 − A
B

)

(1 −B)−1
2F1

(

1, 1; p
α

+ 1; B
B−1

)

(B 6= 0);

1 − p
α+p

A, (B = 0).

The result is best possible.
Proof. Let f(z) ∈ Jp(g;α,A,B), and assume that

(2.3)
(f ∗ g)(z)

zp
= q(z).

It is clear that q(z) is of the form (1.2) and is analytic in U with q(0) = 1.
Differenting (2.3) with respect to z, we get

(1 − α)
(f ∗ g)(z)

zp
+
α

p

(f ∗ g)′(z)
zp−1

= q(z) +
α

p
z q′(z)

≺ 1 +Az

1 +Bz
(z ∈ U).
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Now, by using Lemma 1 for γ = p
α

and the identities (1.9) to (1.11) of
Lemma 2, we deduce that

(f ∗ g)(z)
zp

≺ X (z)(2.4)

= p
α
z−

p

α

∫ z

0
t

p

α
−1 1+At

1+Bt
dt

=

{

A
B

+
(

1 − A
B

)

(1 +Bz)−1

2 F1

(

1, 1; p
α

+ 1; Bz
Bz+1

)

, (B 6= 0);

1 + p

α+p
Az, (B = 0).

In view of −1 ≤ B < A ≤ 1 and α > 0, it follows from (2.4) that

ℜ
(

(f ∗ g)(z)
zp

)

=
p

α

∫ 1

0

u
p

α
−1ℜ

(

1 +A u w(z)

1 +B u w(z)

)

du

(2.5) >
p

α

∫ 1

0

u
p

α
−1 1 −A u

1 −B u
du = X (−1) = X ,

and applying the elementary identity, viz.

ℜ[w
1

m ] ≥ [ℜ(w)]
1

m (ℜ(w) > 0;m ≥ 1),

the result (2.1) follows directly from (2.5).
The sharpness of the result (2.1) can be established by considering the

function X (z) defined by (2.4). It is sufficient to show that

(2.6) inf
|z|<1

{ℜ(X (z))} = X ,

where X is given by (2.2). We observe from (2.4) that for |z| ≤ r (0 <
r < 1) :

ℜ
(

(f ∗ g)(z)
zp

)

≥ p

α

∫ 1

0

u
p

α
−1 ℜ

(

1 +Aur

1 +Bur

)

du → X as r → 1−,

which establishes (2.6) and this completes the proof of Theorem 1.
If we set p = m = 1 and α = 1/2 in Theorem 1 and apply (1.13) of

Lemma 2, we get the following result.

Corollary 1. If f(z) ∈ A (A := A1) and

(2.7)
1

2

(

(f ∗ g)(z)
z

+ (f ∗ g)′(z)
)

≺ 1 +Az

1 +Bz
(z ∈ U),

then

(2.8) ℜ
(

(f ∗ g)(z)
z

)

>

{

A
B
− 2

B2

(

1 − A
B

)

(ln(1 −B) +B) (B 6= 0);
1 − 2

3
A (B = 0).

The result is sharp.
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On the other hand, when A = 1−2 β (0 ≤ β < 1), B = −1 and g(z) =
z/(1 − z)2, then Corollary 1 leads to a known result given in [6].

Next, if we set A = 1 − 2β (0 ≤ β < 1), B = −1, p = m = 1 and
α = 2 in Theorem 1 and using (1.12) of Lemma 2, we get Corollary 2 below.

Corollary 2. If f(z) ∈ A satisfies the inequality

(2.9) ℜ
(

−(f ∗ g)(z)
z

+ 2(f ∗ g)′(z)
)

> β (0 ≤ β < 1; z ∈ U),

then

(2.10) ℜ
(

(f ∗ g)(z)
z

)

> β + (1 − β)
(π

2
− 1
)

(z ∈ U).

The result is sharp.

Remark 1. (i). We observe from Corollary 1 that if

1

2

(

(f ∗ g)(z)
z

+ (f ∗ g)′(z)
)

≺ 1 +A1z

1 +Bz
(B 6= 0; z ∈ U),

where A1 is given by

A1 =
2B (B + ln(1 −B))

[2(B + ln(1 −B)) +B2]
,

then

ℜ
(

(f ∗ g)(z)
z

)

> 0 (z ∈ U).

In particular, if B = −1, we observe that

ℜ
(

(f ∗ g)(z)
z

+ (f ∗ g)′(z)
)

> 2

(

4 ln2 − 3

4 ln2 − 2

)

= −0.5886,

which implies that

ℜ
(

(f ∗ g)(z)
z

)

> 0 (z ∈ U).

(ii) From Corollary 2, we note that, if f(z) ∈ A satisfies the following
inequality:

ℜ
(

−(f ∗ g)(z)
z

+ 2(f ∗ g)′(z)
)

>
2 − π

4 − π
(z ∈ U),

then

ℜ
(

(f ∗ g)(z)
z

)

> 0 (z ∈ U).

The result is sharp.
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We consider now an application of the function class Mp(g;A,B) involv-
ing the generalized hypergeometric function defined by (1.8). This result is
contained in the following:

Theorem 2. Let the function δ(z) defined by

(2.11) δ(z) = zp
r+1Fs+1 (α1, ..., αr, 1 + λ−1;β1, ..., βs, λ

−1; z)

(r ≤ s+ 1; λ > 0; z ∈ U)

be in the class Mp(g;A,B). Then the function

(2.12) θ(z) = zp
rFs (α1, ..., αr;β1, ..., βs; z)

satisfies the condition

ℜ
(

(θ ∗ g)′(z)
p zp−1

)

(2.13)

> ν :=

{

A
B

+
(

1 − A
B

)

(1 −B)−1
2F1

(

1, 1; 1 + λ−1; B
B−1

)

(B 6= 0)

1 − A
λ+1

(B = 0).

The result is best possible.
Proof. From (1.4) and (2.11), we get

(δ ∗ g)′(z)
p zp−1

= 1 +
∞
∑

k=p+1

[1 + λ(k − p)] bk
(α1)k−p ... (αr)k−p k

(β1)k−p ... (βs)k−p p

zk−p

(k − p)!

(2.14) = w(z) + λ z w′(z),

where

w(z) = 1 +
∞
∑

k=p+1

bk
(α1)k−p ... (αr)k−p k

(β1)k−p ... (βs)k−p p

zk−p

(k − p)!

=
(θ ∗ g)′(z)
p zp−1

(z ∈ U).

By hypothesis δ(z) ∈ Mp(g;A,B), the assertion (2.13) now follows from
(2.14) by following the same procedure as adopted in the proof of Theorem
1.

Making use of a certain integral operator (defined below) in Theorem 1,
we establish the following result.

Theorem 3. Let f(z) ∈ Ap and

(2.15) Fµ,p(f)(z) =
µ+ p

zµ

∫ z

0

tµ−1f(t) dt (µ > −p; z ∈ U).
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If
(2.16)

(1 − α)
(Fµ,p (f) ∗ g)(z)

zp
+ α

(f ∗ g)(z)
zp

≺ 1 +Az

1 +Bz
(α > 0; z ∈ U),

then

(2.17) ℜ
(

(

(Fµ,p (f) ∗ g)(z)
zp

)
1

m

)

> τ
1

m (m ∈ N; z ∈ U),

where
(2.18)

τ =

{

A
B

+
(

1 − A
B

)

(1 −B)−1
2F1

(

1, 1; p+µ
α

+ 1; B
B−1

)

(B 6= 0)

1 − p+µ
p+µ+α

A (B = 0).

The result is sharp.
Proof. It follows from (2.15) that

(2.19) z (Fµ,p (f) ∗ g)′(z) = (µ+ p) (f ∗ g)(z) − µ (Fµ,p (f) ∗ g)(z).
Let

(Fµ,p (f) ∗ g)(z)
zp

= h(z),

then h(z) is of the form (1.2). The remaining part of the proof is similar to
that of Theorem 1, hence we omit the details.

Putting m = α = 1 in Theorem 3 and noting that

(Fµ,p(f) ∗ g)(z) =
µ+ p

zµ

∫ z

0

tµ−1(f ∗ g)(t) dt (f ∈ Ap; z ∈ U),

we get the following:

Corollary 3. If f(z) ∈ Ap such that

(2.20)
(f ∗ g)(z)

zp
≺ 1 +Az

1 +Bz
(z ∈ U),

then

(2.21) ℜ
(

µ+ p

zµ+p

∫ z

0

tµ−1(f ∗ g)(t) dt
)

> ξ (z ∈ U),

where
(2.22)

ξ =

{

A
B

+
(

1 − A
B

)

(1 −B)−1
2F1

(

1, 1; p+ µ+ 1; B
B−1

)

(B 6= 0);

1 − p+µ
p+µ+1

A (B = 0).

The result is best possible.
A special case of Corollary 3, when A = 1−2β (0 ≤ β < 1), B = −1, p =

1 and g(z) = z/(1 − z), would immediately yield the following result.
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Corollary 4. If f(z) ∈ A and

(2.23) ℜ
(

f(z)

z

)

> β (0 ≤ β < 1; z ∈ U),

then

(2.24) ℜ
(

µ+ 1

zµ+1

∫ z

0

tµ−1f(t)dt

)

> ξ∗,

where

ξ∗ = β + (1 − β)

(

2F1

(

1, 1;µ+ 2;
1

2

)

− 1

)

.

Remark 2 (i). In [6], it is proved that if f(z) ∈ A and

ℜ
(

f(z)

z

)

> β (0 ≤ β < 1; z ∈ U),

then

(2.25) ℜ
(

µ+ 1

zµ+1

∫ z

0

tµ−1f(t)dt

)

> β +
1 − β

3 + 2µ
(µ > −1; z ∈ U).

For µ = 1, (2.25) gives

ℜ
(

2

z2

∫ z

0

f(t)dt

)

>
4β + 1

5
,

and for this value of µ(= 1) Corollary 4 in view of (1.13) shows that if
f(z) ∈ A satisfies

ℜ
(

f(z)

z

)

> β (0 ≤ β < 1; z ∈ U),

then

ℜ
(

2

z2

∫ z

0

f(t)dt

)

> (4 ln2 − 2)β − 4 ln2 + 3. (z ∈ U).

Evidently,this shows that the above deduced result from Corollary 4 is an
improvement of the result (2.25) given in [6].
(ii). For p = µ = 1, we also note that Corollary 3 in view of (1.13) yields
an assertion which we express as follows:

If

(2.26)
(f ∗ g)(z)

z
≺ 1 +A2z

1 +Bz
(z ∈ U; f ∈ A; −1 ≤ B < A2 ≤ 1; B 6= 0),

where A2 is given by

A2 =
2B[B + ln(1 −B)]

2[B + ln(1 −B)] +B2
,
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then

(2.27) ℜ
(

1

z2

∫ z

0

(f ∗ g)(t) dt
)

> 0 (z ∈ U).

Further, on choosing B = −1 in (2.26) and (2.27), and using the principle
of subordination, we arrive at the following assertion:

If

ℜ
(

(f ∗ g)(z)
z

)

>
4 ln2 − 3

4 ln2 − 2
= −0.2943 (z ∈ U; f ∈ A),

then

ℜ
(

1

z2

∫ z

0

(f ∗ g)(t) dt
)

> 0 (z ∈ U).

For f ∈ Ap, we define a linear operator

Snf(z) : Ap → Ap (n ∈ N0 = N ∪ {0}; z ∈ U)

as follows:

S0f(z) = f(z)

S1f(z) = Sf(z) =
1

p+ 1
[f(z) + zf ′(z)],

S2f(z) =
1

p+ 1
[Sf(z) + z(Sf)′(z)],

...

(2.28) Sn+1f(z) =
1

p+ 1
[Snf(z) + z(Snf)′(z)] (z ∈ U).

The explicit form of Sn is given by

(2.29) Snf(z) = zp +
∞
∑

k=p+1

(

k + 1

p+ 1

)n

akz
k.

We now prove the following result (Theorem 4 below) involving the
linear operator Snf.

Theorem 4. Let f(z) ∈ Ap, then f(z) ∈ Jp(g;α,A,B) if and only if
F1,p(f) ∈ Jp(Sg;α,A,B).

Proof. Let f(z) ∈ Ap, then (2.15) readily gives

Fµ,p (f)(z) = zp +
∞
∑

k=p+1

(

p+ µ

k + µ

)

akz
k.

For µ = 1, we obtain the relationship that

(2.30) (F1,p(f) ∗ Sg)(z) = (f ∗ g)(z),
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and the assertion of Theorem 4 follows by appealing to the definition of the
class Jp(g;α,A,B).

The following result makes use of the generalized hypergeometric function
(1.8) and Theorem 4.

Theorem 5. Let

(2.31) Θ(z) = m+1Fm (p+ 1, ..., p+ 1, 1; p+ 2, ..., p+ 2; z)

(m ∈ N; z ∈ U)

then f(z) ∈ Jp(g;α,A,B) if and only if (zp Θ ∗ f)(z) ∈ Jp(Smg;α,A,B).
Proof. Let f(z) ∈ Ap be given by (1.1), then (2.15) in terms of the

Gaussian hypergeometric function gives

F1,p(f) = zp +
∞
∑

k=p+1

(

p+ 1

k + 1

)

ak z
k

= zp

(

1 +

∞
∑

k=1

(p+ 1)k (1)k

(p+ 2)k

zk

k!

)

∗ f(z)

= {zp
2F1(p+ 1, 1; p+ 2; z)} ∗ f(z).

In view of Theorem 4, we infer that {zp
2F1(p+1, 1; p+2; z)}∗f(z) belongs to

the class Jp(Sg;α,A,B). Applying Theorem 4 m times, we get the desired
assertion of Theorem 5.

3. Some Observations and Concluding Remarks

(i). If the sequence bk in (1.3) and the value of parameter α in (1.5)
are, respectively, chosen as follows:

bk =
Γ(k + 1) Γ(p+ 1 − λ)

Γ(p+ 1) Γ(k + 1 − λ)
and α =

δp

p− λ

(−∞ < λ < p+ 1; δ ≥ 0; p ∈ N)
and in the process making use of the identity [8, p.112, Eq. (1.10)] in (1.5),
then Theorems 1 and 2 correspond, respectively to the results given recently
by Patel and Mishra [8, p. 115, Theorems 1.8 and 1.9].

(ii). Next, if we set the coefficient bk in (1.3) and the value of parameter
α in (1.5), respectively, as follows:

g(z) =
(λ+ p)k−p

(k − p)!
and α =

δp

λ+ p
(λ > −p; δ > 0; p ∈ N),

and in the process apply identity [2, p. 124, Eq.(4)] in (1.5), then the results
of Theorem 1 and Theorem 2, reduces to the recently establish result due
to Dinggong and Liu [2, p. 124, Theorem 1; p. 126, Theorem 2].
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(iii). Also, if we choose the coefficients bk in (1.3) and the value of the
parameter α in (1.5), respectively, as follows:

bk =

(

p+ 1

k + 1

)σ

and α =
λ

(p+ 1)
(σ > 0; λ ≥ 0; p ∈ N),

and apply the following identity [7, p. 3, Eq. (1.17)] in (1.5), then the
results contained in Theorem 1 yields the recently established results due to
Ozkan [7].
(iv). Lastly, if we set the coefficients bk in (1.3) and the value of parameter
α in (1.5), respectively, as follows:

bk =
(α1)k−p ... (αq)k−p

(β1)k−p ... (βs)k−p (k − p)!
and α =

pλ

αi

(αj > 0(j = 1, ..., q), βj > 0(j = 1, ..., s), q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}),
and also in the process making use of the identity [4, p. 2, Eq. (1.7)] in
(1.5), then Corollary 1 correspond to the results given recently by Liu [4, p.
3, Theorem 2.4].

We conclude this paper by remarking that in view of the function class
defined by the subordination relation (1.5) and expressed in terms of the
convolution (1.4) involving arbitrary coefficients, the main results would
lead to additional new results. In fact, by appropriately selecting the
arbitrary sequences, the results presented in this paper would find further
applications for the classes which incorparate generalized forms of linear
operators [3](defined by means of the Hadamard product of the function
(1.1) with the generalized Wright’s generalized hypergeometric function
[9]). The generalized form of linear operator of Dziok and Raina [3] contains
such well known operators as the Dziok-Srivastava linear operator, Hohlov
linear operator, Saitoh generalized linear operator, Carlson-Shaffer linear
operator, Ruscheweyh derivative operator (as well as its generalized ver-
sions), Bernardi-Libera-Livingston operator, and Srivastava-Owa fractional
derivative operator. Also, Theorems 2 and 5 would eventually lead further
to new results for the classes of functions defined analogously by associating
in the process the Wright’s generalized hypergeometric function. These con-
siderations can fruitfully be worked out and we skip the details in this regard.
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