ON GENERALIZED EPI-PROJECTIVE MODULES

DERYA KESKIN TÜTÜNCÜ AND YOSUKE KURATOMI

ABSTRACT. A module M is said to be generalized N-projective (or N-dual ojective) if, for any epimorphism $g:N\longrightarrow X$ and any homomorphism $f:M\longrightarrow X$, there exist decompositions $M=M_1\oplus M_2$, $N=N_1\oplus N_2$, a homomorphism $h_1:M_1\longrightarrow N_1$ and an epimorphism $h_2:N_2\longrightarrow M_2$ such that $g\circ h_1=f|_{M_1}$ and $f\circ h_2=g|_{N_2}$. This relative projectivity is very useful for the study on direct sums of lifting modules (cf. [5], [7]). In the definition, it should be noted that we may often consider the case when f to be an epimorphism. By this reason, in this paper we define relative (strongly) generalized epi-projective modules and show several results on this generalized epi-projectivity. We apply our results to the known problem when finite direct sums $M_1\oplus\cdots\oplus M_n$ of lifting modules M_i ($i=1,\cdots,n$) is lifting.

1. Preliminaries

Throughout this paper R is a ring with identity and all modules considered are unitary right R-modules.

A submodule S of a module M is called a small submodule, if $M \neq K+S$ for any proper submodule K of M. In this case we write $S \ll M$. Let M be a module and let N and K be submodules of M with $K \subseteq N$. K is called a co-essential submodule of N in M if $N/K \ll M/K$ and we write $K \subseteq_c N$ in M. Let X be a submodule of M. X is called a co-closed submodule in M if X does not have a proper co-essential submodule in M. X' is called a co-closure of X in M if X' is a co-closed submodule of M with $X' \subseteq_c X$ in M. $K <_{\oplus} N$ means that K is a direct summand of N. Let $M = M_1 \oplus M_2$ and let $\varphi : M_1 \to M_2$ be a homomorphism. Put $\langle M_1 \xrightarrow{\varphi} M_2 \rangle = \{m_1 - \varphi(m_1) \mid m_1 \in M_1\}$. Then this is a submodule of M which is called the graph with respect to $M_1 \xrightarrow{\varphi} M_2$. Note that $M = M_1 \oplus M_2 = \langle M_1 \xrightarrow{\varphi} M_2 \rangle \oplus M_2$.

A module M is said to be *lifting* if, for any submodule X, there exists a direct summand X^* of M such that $X^* \subseteq_c X$ in M.

Let $\{M_i \mid i \in I\}$ be a family of modules. The direct sum decomposition $M = \bigoplus_I M_i$ is said to be *exchangeable* if, for any direct summand X of M, there exists $\overline{M_i} \subseteq M_i$ ($i \in I$) such that $M = X \oplus (\bigoplus_I \overline{M_i})$. A module M is said to have the *(finite) internal exchange property* if, any (finite) direct sum decomposition $M = \bigoplus_I M_i$ is exchangeable.

Mathematics Subject Classification. Primary 16D10; Secondary 16D99. Key words and phrases. (strongly) generalized epi-projective module, lifting module.

Let X be a submodule of a module M. A submodule Y of M is called a supplement of X in M if M = X + Y and $X \cap Y \ll Y$. Note that a supplement Y of X in M is co-closed in M. A module M is supplemented (\oplus -supplemented) if, for any submodule X of M, there exists a submodule (direct summand) Y of M such that Y is a supplement of X in M. A module M is called amply supplemented if, X contains a supplement of Y in M whenever M = X + Y. We see that M is an amply supplemented module if and only if M is a supplemented module and any submodule of M has a co-closure in M (cf. [4, Lemma 1.7]).

Let M and N be modules. M is called im-small N-projective if, for any submodule A of N, any homomorphism $f: M \longrightarrow N/A$ with $f(M) \ll N/A$ can be lifted to a homomorphism $g: M \longrightarrow N$. M is called epi-N-projective if, for any submodule A of N, every epimorphism $f: M \longrightarrow N/A$ can be lifted to a homomorphism $g: M \longrightarrow N$.

Let M be any module. Consider the following conditions:

- (D_2) If $A \leq M$ such that M/A is isomorphic to a direct summand of M, then A is a direct summand of M.
- (D_3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is a direct summand of M.

Then the module M is called *discrete* if it is lifting and satisfies the condition (D_2) and it is called *quasi-discrete* if it is lifting and satisfies the condition (D_3) . Since (D_2) implies (D_3) , every discrete module is quasi-discrete.

In this paper, we show the following:

- (1) Let M and N be lifting modules with the finite internal exchange property. Then M is generalized N-projective if and only if M is strongly generalized epi-N-projective and im-small N-projective.
- (2) Let M_1, \dots, M_n be lifting modules with the finite internal exchange property and put $M = M_1 \oplus \dots \oplus M_n$. Then M is lifting with the finite internal exchange property if and only if M_i is generalized $\bigoplus_{j \neq i} M_j$ -projective $(\bigoplus_{j \neq i} M_j)$ is generalized M_i -projective) for any $i \in \{1, \dots, n\}$ if and only if M_i is strongly generalized epi- $\bigoplus_{j \neq i} M_j$ -projective $(\bigoplus_{j \neq i} M_j)$ is strongly generalized epi- M_i -projective) for any $i \in \{1, \dots, n\}$ and M_k is im-small M_l -projective for any $k \neq l \in \{1, \dots, n\}$.

Especially, in the case of n = 2, we obtain the following:

Let M_1 and M_2 be lifting modules with the finite internal exchange property and put $M = M_1 \oplus M_2$. Then M is lifting with the finite internal exchange property if and only if M_1 is generalized M_2 -projective and M_2 is

im-small M_1 -projective (M_2 is generalized M_1 -projective and M_1 is im-small M_2 -projective).

As a corollary of the result (2), we obtain

(3) Let M_1, \dots, M_n be quasi-discrete and put $M = M_1 \oplus \dots \oplus M_n$. Then M is lifting with the (finite) internal exchange property if and only if M_i is generalized M_j -projective for any $i \neq j \in \{1, \dots, n\}$ if and only if M_i is (strongly) generalized epi- M_j -projective and im-small M_j -projective for any $i \neq j \in \{1, \dots, n\}$.

We emphasize the assumption "with finite internal exchange property" is quite natural.

For undefined terminologies, the reader is referred to [2] and [8].

Lemma 1.1. Let $X' \subseteq X \subseteq M$. Then

- (1) If M = X' + Y and $X \cap Y \ll M$, then $X' \subseteq_c X$ in M.
- (2) If $X' \ll M$ and X is co-closed in M then $X' \ll X$.

Proof. By [5, Lemma 1.4] and [3, Lemma 2.5].

Lemma 1.2. (cf. [6, Lemmas 1.7 and 1.8]) Let $f: M \to N$ be an epimorphism with ker $f \ll M$. Then

- (1) If X is co-closed in M, then f(X) is co-closed in N.
- (2) If $M = X \oplus Y$, then $f(X) \cap f(Y) \ll N$.
- (3) If $S \ll N$, then $f^{-1}(S) \ll M$.

Lemma 1.3. Let M be a module and let N be a \oplus -supplemented module. Then M is im-small N-projective if and only if for any small submodule X of N and any homomorphism $f: M \to N/X$ with $Im \ f \ll N/X$, there exists a homomorphism $h: M \to N$ such that $\pi \circ h = f$, where $\pi: N \to N/X$ is the canonical epimorphism.

Proof. "Only if" part is clear.

"If" part: Let $\pi: N \to N/X$ be the canonical epimorphism and let $f: M \to N/X$ be a homomorphism with Im $f \ll N/X$. Since N is \oplus -supplemented, there exists a direct summand N^* of N such that $N = X + N^*$ and $X \cap N^* \ll N^*$. Then $\pi|_{N^*}: N^* \to N/X$ is an epimorphism with $\ker(\pi|_{N^*}) \ll N^*$. Put $N = N^* \oplus N^{**}$ and define $g: N = N^* \oplus N^{**} \to N/X \oplus N^{**}$ by $g(n^* + n^{**}) = \pi(n^*) + n^{**}$, where $n^* \in N^*$ and $n^{**} \in N^{**}$. Then g is a small epimorphism and so there exists a homomorphism $h: M \to N$ such that $g \circ h = f$. Hence $\pi \circ h = f$.

In the proof of the following proposition, we use the idea described in Y. Baba and M. Harada [1, pp. 54-56].

Proposition 1.4. (1) Let $M' <_{\oplus} M$ and $N' <_{\oplus} N$. If M is im-small N-projective then M' is im-small N'-projective.

- (2) Let M_1, \dots, M_n be modules and put $M = M_1 \oplus \dots \oplus M_n$. If M_i is im-small N-projective $(i = 1, \dots, n)$ then M is im-small N-projective.
- (3) Let N_1, \dots, N_t be \oplus -supplemented modules and put $N = N_1 \oplus \dots \oplus N_t$. If M is im-small N_i -projective $(i = 1, \dots, t)$ then M is im-small N-projective.

Proof. (1) and (2) are clear. (3): Since finite direct sums of \oplus -supplemented modules are \oplus -supplemented, it is enough to prove the case of $N = N_1 \oplus N_2$.

Let $\pi: N \to N/X$ be a canonical epimorphism and let $f: M \to N/X$ be a homomorphism with Im $f \ll N/X$. By Lemma 1.3, we can assume that $X = \ker \pi \ll N$. Let $p_i: N = N_1 \oplus N_2 \to N_i$ be the projection (i = 1, 2), let $\alpha: N/X \to N/(p_1(X) \oplus p_2(X))$ be the canonical epimorphism, $\beta: N/(p_1(X) \oplus p_2(X)) \to N_1/p_1(X) \oplus N_2/p_2(X)$ be the canonical isomorphism and put $\nu = \beta \circ \alpha$. Let $q_i: N_1/p_1(X) \oplus N_2/p_2(X) \to N_i/p_i(X)$ be the projection and let $\pi_i: N_i \to N_i/p_i(X)$ be the canonical epimorphism (i = 1, 2).

Since N_i is \oplus -supplemented, there exists a direct summand N_i^* of N_i such that $N_i = p_i(X) + N_i^*$ and $p_i(X) \cap N_i^* \ll N_i^*$. So we see

$$\ker(\pi_i|_{N_i^*}) \ll N_i^* \stackrel{\pi_i|_{N_i^*}}{\to} N_i/p_i(X) \to 0 \quad \cdots \quad (i).$$

As $q_i \nu f(M) \ll N_i/p_i(X) \cdots (ii)$, there exists a homomorphism $h_i : M \to N_i^*$ such that $q_i \circ \nu \circ f = (\pi_i|_{N_i^*}) \circ h_i$ and so $h_i(M) \subseteq (\pi_i|_{N_i^*})^{-1}(q_i \nu f(M))$. On the other hand, (i) and (ii) imply $(\pi_i|_{N_i^*})^{-1}(q_i \nu f(M)) \ll N_i^*$ by Lemma 1.2 (3). Hence $h_i(M) \ll N_i$.

Put $\varphi = \pi(h_1 + h_2) - f$ and then Im $\varphi \ll N/X \cdots$ (iii). Let $m \in M$ and express $\nu f(m)$ in $N_1/p_1(X) \oplus N_2/p_2(X)$ as $\nu f(m) = \overline{n_1} + \overline{n_2}$ ($\overline{n_1} \in N_1/p_1(X)$, $\overline{n_2} \in N_2/p_2(X)$). Then $\overline{n_i} = q_i \nu f(m) = \pi_i h_i(m)$. As $\nu \pi|_{N_i} = \pi_i$, $\nu \varphi(m) = \nu \pi (h_1 + h_2)(m) - \nu f(m) = \nu \pi h_1(m) + \nu \pi h_2(m) - (\overline{n_1} + \overline{n_2}) = \pi_1 h_1(m) + \pi_2 h_2(m) - \pi_1 h_1(m) - \pi_2 h_2(m) = 0$. Thus $\varphi(M) \subseteq \ker \nu = (p_1(X) \oplus p_2(X))/X = (p_1(X) + X)/X \subseteq (N_1 + X)/X = \pi(N_1) \cdots$ (iv). By Lemma 1.2 (1), $\pi(N_1)$ is co-closed in N/X and so (iii) and (iv) imply Im $\varphi \ll \pi(N_1)$. Since M is im-small N_1 -projective, there exists a homomorphism $h^*: M \to N_1$ such that $(\pi|_{N_1}) \circ h^* = \varphi$. Put $\psi = h_1 + h_2 - h^*$. Then, for any $m \in M$, $\pi \psi(m) = \pi h_1(m) + \pi h_2(m) - \pi h^*(m) = \pi h_1(m) + \pi h_2(m) - (\pi h_1(m) + \pi h_2(m) - f(m)) = f(m)$. Therefore M is im-small N-projective. \square

In [6], we announced that Proposition 1.4 (3) holds for any module N_i without the assumption " \oplus -supplemented". However, we must correct the result in the present form.

A module M is said to be generalized N-projective (or N-dual ojective) if, for any epimorphism $g: N \longrightarrow X$ and any homomorphism $f: M \longrightarrow X$, there exist decompositions $M = M_1 \oplus M_2$, $N = N_1 \oplus N_2$, a homomorphism

 $h_1: M_1 \longrightarrow N_1$ and an epimorphism $h_2: N_2 \longrightarrow M_2$ such that $g \circ h_1 = f|_{M_1}$ and $f \circ h_2 = g|_{N_2}$. Note that any N-projective module is generalized N-projective.

Proposition 1.5. (cf. [5], [7]) Let M and N be modules. Then

- (1) If M is generalized N-projective, then M is generalized N*-projective for any $N^* <_{\oplus} N$.
- (2) If M is generalized N-projective with the finite internal exchange property, then M^* is generalized N-projective for any $M^* <_{\oplus} M$.
- (3) Let N be a lifting module. If M is generalized N-projective, then M is im-small N-projective.

Lemma 1.6. Let M be lifting and let Y be amply supplemented. Then for any homomorphism $f: M \to Y$, there exists a decomposition $M = M_1 \oplus M_2$ such that $f(M_1)$ is co-closed in Y and $f(M_2)$ is small in Y.

Proof. Put X = f(M). Since Y is amply supplemented, there exist a coclosure X' of X in Y and supplement T of X in Y. Then $X = X' + (X \cap T)$. Since X is amply supplemented, there exists a co-closure S of $X \cap T$ in X. As M is lifting, there exists a decomposition $M = M_1 \oplus M_2$ with $M_2 \subseteq_c f^{-1}(S)$ in M. So $f(M_2) \subseteq_c f(f^{-1}(S)) = S$ in f(M) = X. As S is co-closed in X, $f(M_2) = S$. Thus

$$X = f(M) = f(M_1) + f(M_2) = f(M_1) + S.$$

As $f^{-1}(S) \cap M_1 \ll M_1$, $S \cap f(M_1) = f(f^{-1}(S) \cap M_1) \ll f(M) = X \cdots (*)$. Now we show that $f(M_1)$ is co-closed in Y. Let $A \subseteq_c f(M_1)$ in Y. As $S \subseteq X \cap T \subseteq T$, $Y = X + T = (f(M_1) + S) + T = f(M_1) + T = A + T$ and hence $X = f(M) = A + (f(M) \cap T) = A + S$. By (*) and Lemma 1.1(1), $A \subseteq_c f(M_1)$ in X. Since $f(M_1)$ is co-closed in X, $A = f(M_1)$. Thus $f(M_1)$ is co-closed in Y.

On the other hand, $f(M_2) = S \subseteq X \cap T \ll T \subseteq Y$ and so $f(M_2) \ll Y$. \square

The following is easily shown:

Lemma 1.7. If
$$M = A \oplus B \oplus C = K \oplus C$$
 then $K = \langle A \to C \rangle \oplus \langle B \to C \rangle$.

2. Generalized Epi-projective Modules

Now we define a new concept "(strongly) generalized epi-projectivity" as follows:

Definition A module M is said to be (strongly) generalized epi-N-projective if, for any epimorphism $g: N \longrightarrow X$ and any epimorphism $f: M \longrightarrow X$, there exist decompositions $M = M_1 \oplus M_2$, $N = N_1 \oplus N_2$, a homomorphism

(an epimorphism) $h_1: M_1 \longrightarrow N_1$ and an epimorphism $h_2: N_2 \longrightarrow M_2$ such that $g \circ h_1 = f|_{M_1}$ and $f \circ h_2 = g|_{M_2}$.

Clearly we see the following:

- (1) K is strongly generalized epi-L-projective $\Leftrightarrow L$ is strongly generalized epi-K-projective.
- (2) If M is strongly generalized epi-N-projective $\Rightarrow M$ is generalized epi-N-projective.

Proposition 2.1. Let M and N be modules. If M is epi-N-projective and N is lifting, then M is strongly generalized epi-N-projective.

Proof. Let $f: M \to X$ and $g: N \to X$ be epimorphisms. Since N is lifting, there exists a decomposition $N = N_1 \oplus N_2$ such that N_2 is a coessential submodule of ker g in N. As M is epi- N_1 -projective, there exists a homomorphism $h: M \to N_1$ with $g \circ h = f$. Since $\ker(g|_{N_1})$ is small in N_1 , h is an epimorphism. Now define an epimorphism $h'(=0): N_2 \to 0 (M = M \oplus 0)$. Hence we see M is strongly generalized epi-N-projective. \square

Proposition 2.2. Let M be a module with the finite internal exchange property and let M^* be a direct summand of M. If M is (strongly) generalized epi-N-projective, then M^* is (strongly) generalized epi-N-projective.

Proof. By the same argument as the proof of [5, Proposition 2.2]. \Box

Corollary 2.3. Let N be a module with the finite internal exchange property and let N^* be a direct summand of N. If M is strongly generalized epi-N-projective, then M is strongly generalized epi- N^* -projective.

Proposition 2.4. Let M be lifting with the finite internal exchange property and let N be quasi-discrete. If M is generalized epi-N-projective, then M is generalized epi- N^* -projective for any $N^* <_{\oplus} N$.

Proof. Let $N=N^*\oplus N^{**}$ and let $f:M\to X$ and $g^*:N^*\to X$ be epimorphisms. By Proposition 2.2, we may assume $\ker f\ll M$. Define $g:N=N^*\oplus N^{**}\to X$ by $g(n^*+n^{**})=g^*(n^*)$, where $n^*\in N^*$ and $n^{**}\in N^{**}$. As N^* is lifting, there exists a decomposition $N^*=\overline{N^*}\oplus \overline{N^*}$ such that $\overline{N^*}\subseteq_c\ker g^*$ in N^* . Then $\overline{N^*}\oplus N^{**}\subseteq_c\ker g$ in N. Since M is generalized epi-N-projective, there exist decompositions $M=M_1\oplus M_2,\ N=N_1\oplus N_2,$ a homomorphism $\varphi_1:M_1\to N_2$ and an epimorphism $\varphi_2:N_1\to M_2$ such that $g\circ\varphi_1=f|_{M_1}$ and $f\circ\varphi_2=g|_{N_1}$.

By Lemma 1.6, there exists a decomposition $M_1 = M_1' \oplus M_1''$ such that $\varphi_1(M_1')$ is co-closed in N_2 and $\varphi_1(M_1'')$ is small in N_2 . So we see $f(M_1'') = g\varphi_1(M_1'') \ll g(N_2) \subseteq X$. By Lemma 1.2(1), $f(M_1'')$ is co-closed in X and so $f(M_1'') = 0$. Then $\ker f \ll M$ imply $M_1'' = 0$ and hence $\varphi_1(M_1) = \varphi_1(M_1')$ is

co-closed in N_2 . Thus there exists a decomposition $N_2 = \varphi_1(M_1) \oplus N_2'$. Since N_1 is lifting, there exists a decomposition $N_1 = N_1' \oplus N_1''$ with $N_1'' \subseteq_c \ker \varphi_2$ in N_1 . By $N_1'' \subseteq \ker \varphi_2 \subseteq \ker(f \circ \varphi_2) = \ker(g|_{N_1})$ and $N_2' \subseteq \ker g + \varphi_1(M_1) + N_1'$, we see

 $N = N_1 \oplus N_2 = N_1' \oplus N_1'' \oplus \varphi_1(M_1) \oplus N_2' = (N_1' \oplus \varphi_1(M_1)) + \ker g \cdots (*).$ As $(M_2 + \ker f) \cap M_1 \ll M_1$, $(N_1' + \ker g) \cap \varphi_1(M_1) \subseteq \varphi_1((M_2 + \ker f) \cap M_1) \ll \varphi_1(M_1)$. On the other hand, by Lemma 1.2(2), $g((\varphi_1(M_1) + \ker g) \cap N_1') \subseteq g(N_1') \cap g\varphi_1(M_1) = f(M_1) \cap f(M_2) \ll X$. Since $f(M_2)$ is co-closed in X, we see $g((\varphi(M_1) + \ker g) \cap N_1') \ll f(M_2)$ by Lemma 1.1(2). As $\ker(g|_{N_1'}) = \ker(f \circ (\varphi_2|_{N_1'}))$, by Lemma 1.2(3), $(\varphi_1(M_1) + \ker g) \cap N_1' \ll N_1'$. Since $(N_1' \oplus \varphi_1(M_1)) \cap \ker g \subseteq [(\varphi_1(M_1) + \ker g) \cap N_1'] + [(N_1' + \ker g) \cap \varphi_1(M_1)]$, we see

$$(N_1' \oplus \varphi_1(M_1)) \cap \ker g \ll N \cdots (**)$$

Since $\overline{\overline{N^*}} \oplus N^{**} \subseteq_c \ker g$ in N, by (*) and (**), we have

 $N = (N'_1 \oplus \varphi_1(M_1)) + (\overline{\overline{N^*}} \oplus N^{**})$ and $(N'_1 \oplus \varphi_1(M_1)) \cap (\overline{\overline{N^*}} \oplus N^{**}) \ll N$. As N is quasi-discrete, we see

$$N = N_1' \oplus \varphi_1(M_1) \oplus \overline{\overline{N^*}} \oplus N^{**} = \overline{N^*} \oplus \overline{\overline{N^*}} \oplus N^{**}$$

By Lemma 1.7, $\overline{N^*} = \langle N_1' \to \overline{\overline{N^*}} \oplus N^{**} \rangle \oplus \langle \varphi_1(M_1) \to \overline{\overline{N^*}} \oplus N^{**} \rangle$. Now we put $\psi_1 = (\varphi_2|_{N_1'}) \circ \epsilon_1 : \langle N_1' \to \overline{\overline{N^*}} \oplus N^{**} \rangle \to M_2$ and $\psi_2 = \epsilon_2 \circ \varphi_1 : M_1 \to \overline{\overline{N^*}} \oplus \langle \varphi_1(M_1) \to \overline{\overline{N^*}} \oplus N^{**} \rangle$, where $\epsilon_1 : \langle N_1' \to \overline{\overline{N^*}} \oplus N^{**} \rangle \to N_1'$ and $\epsilon_2 : \varphi_1(M_1) \to \langle \varphi_1(M_1) \to \overline{\overline{N^*}} \oplus N^{**} \rangle$ are canonical isomorphisms. Then we see

$$f \circ \psi_1 = g|_{\langle N_1' \to \overline{N^*} \oplus N^{**} \rangle}$$
 and $g \circ \psi_2 = f|_{M_1}$.

Therefore M is generalized epi- N^* -projective.

Proposition 2.5. Let M be a lifting module with the finite internal exchange property, let N be a lifting module and consider the following conditions:

- (1) M is generalized N-projective,
- (2) M is strongly generalized epi-N-projective,
- (3) M is generalized epi-N-projective.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. In particular, if N is quasi-discrete then $(2) \iff (3)$ holds.

Proof. (1) \Rightarrow (2): Let $f: M \to X$ and $g: N \to X$ be epimorphisms. By Proposition 1.5, we can assume that $\ker f \ll M$ and $\ker g \ll N$. Since M is generalized N-projective, there exist decompositions $M = M_1 \oplus M_2$, $N = N_1 \oplus N_2$, a homomorphism $h_1: M_1 \to N_1$ and an epimorphism $h_2: N_2 \to M_2$ such that $g \circ h_1 = f|_{M_1}$ and $f \circ h_2 = g|_{N_2}$. By Lemma 1.6, there

exists a decomposition $M_1 = \overline{M_1} \oplus \overline{\overline{M_1}}$ such that $h_1(\overline{M_1})$ is co-closed in N_1 and $h_1(\overline{\overline{M_1}}) \ll N_1$. So we see

$$f(\overline{\overline{M_1}}) = gh_1(\overline{\overline{M_1}}) \ll X.$$

By Lemma 1.2(1), $f(\overline{M_1})$ is co-closed in X and so $f(\overline{M_1}) = 0$. As $\overline{M_1} \subseteq \ker f \ll M$, $\overline{M_1} = 0$. Since $h_1(M_1) = h_1(\overline{M_1})$ is co-closed in N_1 and N_1 is lifting, there exists a decomposition $N_1 = h_1(M_1) \oplus T$. Since f is an epimorphism, for any $t \in T$, there exists $m_i \in M_i$ (i = 1, 2) with $g(t) = f(m_1+m_2) = f(m_1)+f(m_2)$. As h_2 is an epimorphism, there exists $n_2 \in N_2$ with $h_2(n_2) = m_2$. So we see

$$g(t) = f(m_1) + f(m_2) = gh_1(m_1) + fh_2(n_2) = gh_1(m_1) + g(n_2).$$

Thus $T \subseteq \ker g + h_1(M_1) + N_2$ and so $N = h_1(M_1) \oplus T \oplus N_2 = \ker g + (h_1(M_1) \oplus N_2) = h_1(M_1) \oplus N_2$. Thus h_1 is an epimorphism. Therefore M is strongly generalized epi-N-projective.

 $(2) \Rightarrow (3)$ is clear.

Now we assume that N is quasi-discrete.

(3) \Rightarrow (2) : Let $f: M \to X$ and $g: N \to X$ be epimorphisms. By Propositions 2.2 and 2.4, we can assume that $\ker f \ll M$ and $\ker g \ll N$. As M is generalized epi-N-projective, there exist decompositions $M = M_1 \oplus M_2$, $N = N_1 \oplus N_2$, a homomorphism $h_1: M_1 \to N_1$ and an epimorphism $h_2: N_2 \to M_2$ such that $g \circ h_1 = f|_{M_1}$ and $f \circ h_2 = g|_{N_2}$. By Lemma 1.6, there exists decomposition $M_1 = M_1' \oplus M_1''$ such that $h_1(M_1')$ is co-closed in N_1 and $h_1(M_1'')$ is small in N_1 . By the same argument as the proof of $(1) \Rightarrow (2)$, we get $M_1 = M_1'$ and $N = h_1(M_1) \oplus N_2$. Thus h_1 is an epimorphism. \square

Proposition 2.6. Let M and N be lifting modules with the finite internal exchange property. Then M is strongly generalized epi-N-projective if and only if M is generalized epi-N*-projective for any direct summand N* of N.

Proof. By the same argument as in the proof of Proposition 2.5. \Box

Proposition 2.7. Let M and N be lifting modules with the finite internal exchange property. Then M is generalized N-projective if and only if M is strongly generalized epi-N-projective and im-small N-projective.

Proof. "Only if" part is clear by Proposition 2.5 and Proposition 1.5(3).

"If" part: Let $g: N \to X$ be an epimorphism and let $f: M \to X$ be a homomorphism. By Proposition 2.2 and Corollary 2.3, we can assume that $\ker f \ll M$ and $\ker g \ll N$. By Lemma 1.6, there exists a decomposition $M = M_1 \oplus M_2$ such that $f(M_1)$ is co-closed in X and $f(M_2)$ is small in X. Since N is lifting and $f(M_1)$ is co-closed in X, there exists a decomposition

 $N = N_1 \oplus N_2$ with $g(N_1) = f(M_1)$. Since M_1 is strongly generalized epi- N_1 -projective, there exist decompositions $M_1 = M_1' \oplus M_1''$, $N_1 = N_1' \oplus N_1''$ and epimorphisms $\varphi_1: M_1' \to N_1'', \ \varphi_2: N_1' \to M_1''$ such that $g \circ \varphi_1 = f|_{M_1'}$ and $f \circ \varphi_2 = g|_{N_1'}$. On the other hand, as M_2 is im-small N-projective, there exists a homomorphism $\rho: M_2 \to N$ with $g \circ \rho = f|_{M_2}$. Let $p_{N_1'}:$ $N = N_1' \oplus N_1'' \oplus N_2 \rightarrow N_1'$ be the projection and put $\alpha = \varphi_2 \circ p_{N_1'} \circ \rho$, $\rho^* = (1 - p_{N_1'}) \circ \rho \circ \varepsilon$, where $\varepsilon : \langle M_2 \xrightarrow{\alpha} M_1'' \rangle \to M_2$ is the canonical isomorphism. For any $m_2 - \alpha(m_2) \in \langle M_2 \xrightarrow{\alpha} M_1'' \rangle$, $\rho(m_2)$ is expressed in $N = N_1' \oplus N_1'' \oplus N_2$ as $\rho(m_2) = n_1' + n_1'' + n_2$. Then $f(m_2 - \alpha(m_2)) = n_1' + n_2'' \oplus n_1'' \oplus n_2'' \oplus n_2''$ $g\rho(m_2) - f\varphi_2 p_{N_1'}\rho(m_2) = g(n_1' + n_1'' + n_2) - f\varphi_2(n_1') = g(n_1' + n_1'' + n_2) - g(n_1') = g(n_1' + n_1'' + n_2) - g(n_1' + n_1'' + n_2'' + n_2'$ $g(n_1'' + n_2) = g(1 - p_{N_1'})\rho(m_2) = g\rho^*(m_2 - \alpha(m_2)).$ Put $\varphi = \varphi_1 + \rho^*$ and $\psi = \varphi_2$. Then we see

$$g\circ \varphi=f|_{M_1'\oplus \langle M_2\overset{lpha}{ o} M_1''
angle}$$
 and $f\circ \psi=g|_{N_1'}$

Thus M is generalized N-projective.

Lemma 2.8. (cf. [5, Theorem 3.7]) Let M_1, \dots, M_n be lifting modules with the finite internal exchange property and put $M = M_1 \oplus \cdots \oplus M_n$. Then the following are equivalent:

- (1) M is lifting with the finite internal exchange property,
- (2) M is lifting and the decomposition $M = M_1 \oplus \cdots \oplus M_n$ is exchangeable,
- (3) M_i and $\bigoplus_{j\neq i} M_j$ are mutually relative generalized projective.

Now, we are in a position to obtain the following results which are generalizations of [5, Theorem 3.7].

Theorem 2.9. Let M_1 and M_2 be lifting modules with the finite internal exchange property and put $M = M_1 \oplus M_2$. Then the following are equivalent:

- (1) M is lifting with the finite internal exchange property,
- (2) M is lifting and the decomposition $M = M_1 \oplus M_2$ is exchangeable,
- (3) M_1 is generalized M_2 -projective and M_2 is im-small M_1 -projective,
- (4) M_2 is generalized M_1 -projective and M_1 is im-small M_2 -projective,
- (5) M_i is strongly generalized epi- M_i -projective and im-small M_i projective $(i \neq j)$.

Proof. By Proposition 2.7 and Lemma 2.8.

Theorem 2.10. Let M_1, \dots, M_n be lifting modules with the finite internal exchange property and put $M = M_1 \oplus \cdots \oplus M_n$. Then the following are equivalent:

- (1) M is lifting with the finite internal exchange property,
- (2) M is lifting and the decomposition $M = M_1 \oplus \cdots \oplus M_n$ is exchangeable,

- (3) M_i is generalized $\bigoplus_{j\neq i} M_j$ -projective $(\bigoplus_{j\neq i} M_j$ is generalized M_i -projective) for any $i \in \{1, \dots, n\}$,
- (4) M_i is strongly generalized epi- $\bigoplus_{j\neq i} M_j$ -projective ($\bigoplus_{j\neq i} M_j$ is strongly generalized epi- M_i -projective) for any $i \in \{1, \dots, n\}$ and M_k is im-small M_l -projective for any $k \neq l \in \{1, \dots, n\}$,
- (5) M_i is strongly generalized epi- $\bigoplus_{j\neq i} M_j$ -projective $(\bigoplus_{j\neq i} M_j$ is generalized strongly epi- M_i -projective) for any $i \in \{1, \dots, n\}$ and $M_k \oplus M_l$ is lifting with the finite internal exchange property (or this decomposition is exchangeable) for any $k \neq l \in \{1, \dots, n\}$.

Proof. By induction, Propositions 1.4 and 1.5 and Theorem 2.9. \Box

Corollary 2.11. Let A be a semisimple module and let B be a lifting module with the finite internal exchange property. If A is im-small B-projective then $M = A \oplus B$ is lifting with the finite internal exchange property.

Proposition 2.12. (cf. [6]) Let N be a quasi-discrete module, let $M = M_1 \oplus \cdots \oplus M_n$ be lifting with the finite internal exchange property. If M_i is strongly generalized epi-N-projective, then M is strongly generalized epi-N-projective.

Proof. It is enough to prove the case of $M=M_1\oplus M_2$. Assume that $f:M\to X$ and $g:N\to X$ are epimorphisms. By Proposition 2.2 and Corollary 2.3, we can assume that $\ker f\ll M$ and $\ker g\ll N$. By Lemma 1.2(1), $f(M_1)$ and $f(M_2)$ are co-closed in X and $f(M_1)\cap f(M_2)\ll X$. Since N is lifting, there exists a decomposition $N=N_i\oplus N_i^*$ such that $N_i\subseteq_c g^{-1}f(M_i)$ in N (i=1,2). By $g(N_i)\subseteq_c f(M_i)$ in X, $g(N_i)=f(M_i)$ and so $g(N)=X=f(M)=f(M_1)+f(M_2)=g(N_1)+g(N_2)$. As $\ker g\ll N$, $N=N_1+N_2$. By Lemma 1.2(3), $g^{-1}(f(M_1)\cap f(M_2))\ll N$. So we get $N_1\cap N_2\subseteq g^{-1}(f(M_1))\cap g^{-1}(f(M_2))=g^{-1}(f(M_1)\cap f(M_2))\ll N$. Since N is quasi-discrete, $N=N_1\oplus N_2$. By Corollary 2.3, M_i is strongly generalized epi- N_i -projective (i=1,2). Hence there exist decompositions $M_i=M_i'\oplus M_i''$, $N_i=N_i'\oplus N_i''$ and epimorphisms $\alpha_i:M_i'\to N_i'$, $\beta_i:N_i''\to M_i''$ such that $f\circ\beta_i=g|_{N_i''}$ and $g\circ\alpha_i=f|_{M_i'}$. Now define the epimorphisms $\varphi:M_1'\oplus M_2'\to N_1'\oplus N_2'$ and $\psi:N_1''\oplus N_2''\to M_1''\oplus M_2''$ by $\varphi(m_1'+m_2')=\alpha_1(m_1')+\alpha_2(m_2')$, $\psi(n_1''+n_2'')=\beta_1(n_1'')+\beta_2(n_2'')$. Then for any $m_1'+m_2'\in M_1'\oplus M_2'$, $f(m_1'+m_2')=f(m_1')+f(m_2')=g\circ\alpha_1(m_1')+g\circ\alpha_2(m_2')=g(\alpha_1(m_1')+\alpha_2(m_2'))=g\circ\varphi(m_1''+m_2')$. Similarly, we see $g|_{N_1''\oplus N_1''}=f\circ\psi$. \square

By the proposition above, we obtain the following:

Corollary 2.13. Let M be a quasi-discrete module and let $N = N_1 \oplus \cdots \oplus N_t$ be lifting with the finite internal exchange property. If M is strongly generalized epi- N_i -projective, then M is strongly generalized epi-N-projective.

Corollary 2.14. Let N be a quasi-discrete module and let $M = M_1 \oplus \cdots \oplus M_n$ be lifting with the finite internal exchange property. If M_i is generalized epi-N-projective, then $M = M_1 \oplus \cdots \oplus M_n$ is generalized epi-N-projective.

Proof. By Propositions 2.5 and 2.12.

Corollary 2.15. Let M and $N = N_1 \oplus \cdots \oplus N_t$ be quasi-discrete. If M is generalized epi- N_i -projective, then M is strongly generalized epi-N-projective.

Proof. By Proposition 2.5 and Corollary 2.13.

Theorem 2.16. Let M_1, \dots, M_n be quasi-discrete and put $M = M_1 \oplus \dots \oplus M_n$. Then the following are equivalent:

- (1) M is lifting with the (finite) internal exchange property,
- (2) M is lifting and the decomposition $M = M_1 \oplus \cdots \oplus M_n$ is exchangeable,
- (3) M_i is generalized M_j -projective for any $i \neq j \in \{1, \dots, n\}$,
- (4) $M_i \oplus M_j$ is lifting with the finite internal exchange property for any $i \neq j \in \{1, \dots, n\}$,
- (5) M_i is strongly generalized epi- M_j -projective and im-small M_j -projective for any $i \neq j \in \{1, \dots, n\}$,
- (6) M_i is generalized epi- M_j -projective and im-small M_j -projective for any $i \neq j \in \{1, \dots, n\}$.

Proof. $(1)\Leftrightarrow(2)\Rightarrow(3)\Leftrightarrow(4)$ follows by Lemma 2.8 and Theorem 2.10.

- $(3)\Leftrightarrow(5)\Leftrightarrow(6)$: By Propositions 2.5 and 2.7.
- $(5)\Rightarrow(1)$: Let M_i be strongly generalized epi- M_j -projective and im-small M_j -projective $(i \neq j)$. Then $\bigoplus_{i\neq j} M_i$ is im-small M_j -projective by Proposition 1.4. By Propositions 2.7 and 2.12 and Theorem 2.10, $M=M_1\oplus\cdots\oplus M_n$ is lifting with the (finite) internal exchange property.

Corollary 2.17. Let H_1, \dots, H_n be hollow modules and put $M = H_1 \oplus \dots \oplus H_n$. Then the following are equivalent:

- (1) M is lifting with the (finite) internal exchange property,
- (2) M is lifting and the decomposition $M = H_1 \oplus \cdots \oplus H_n$ is exchangeable,
- (3) H_i is generalized H_j -projective for any $i \neq j \in \{1, \dots, n\}$,
- (4) $H_i \oplus H_j$ is lifting with the finite internal exchange property for any $i \neq j \in \{1, \dots, n\}$,
- (5) H_i is strongly generalized epi- H_j -projective and im-small H_j -projective for any $i \neq j \in \{1, \dots, n\}$,
- (6) H_i is generalized epi- H_j -projective and im-small H_j -projective for any $i \neq j \in \{1, \dots, n\}$.

Finally we raise the following question: Does there exist an example of a lifting module which does not satisfy the finite internal exchange property?

References

- [1] Y. Baba and M. Harada, On almost M-projectives and almost M-injectives, *Tsukuba J. Math.* **14** (1990), 53–69.
- [2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting Modules, Supplements and Projectivity in Module Theory* (Frontiers in Math. Boston: Birkhäuser, 2006.)
- [3] L. Ganesan and N. Vanaja, Modules for which every submodule has a unique coclosure, *Comm. Algebra* **30** (2002), 2355–2377.
- [4] D. Keskin, On lifting modules, Comm. Algebra 28 (2000), 3427–3440.
- [5] Y. Kuratomi, On direct sums of lifting modules and internal exchange property, *Comm. Algebra* **33** (2005), 1795–1804.
- [6] Y. Kuratomi, Generalized projectivity of quasi-discrete modules, *International Electronic Journal of Algebra* **3** (2008), 125–134.
- [7] S. H. Mohamed and B. J. Müller, Co-ojective modules, J. Egyptian Math. Soc. 12 (2004), 83–96.
- [8] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, Reading, 1991).

DERYA KESKIN TÜTÜNCÜ
DEPARTMENT OF MATHEMATICS
HACETTEPE UNIVERSITY
06800 BEYTEPE, ANKARA, TURKEY
e-mail address: keskin@hacettepe.edu.tr

Yosuke Kuratomi Kitakyushu National College of Technology Shii, Kokuraminami, Kitakyushu, Fukuoka, 802-0985 Japan e-mail address: kuratomi@kct.ac.jp

(Received March 15, 2009)