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ON GENERALIZED EPI-PROJECTIVE MODULES

DERYA KESKIN TUTUNCU AND YOSUKE KURATOMI

ABSTRACT. A module M is said to be generalized N -projective (or N -
dual ojective) if, for any epimorphism g : N — X and any homo-
morphism f : M — X, there exist decompositions M = M; & M,
N = N; & N2, a homomorphism h; : M; — N; and an epimorphism
ha : No — My such that gohi = f|a, and fohs = g|n,. This relative
projectivity is very useful for the study on direct sums of lifting modules
(ct. [5], [7]). In the definition, it should be noted that we may often
consider the case when f to be an epimorphism. By this reason, in this
paper we define relative (strongly) generalized epi-projective modules
and show several results on this generalized epi-projectivity. We apply
our results to the known problem when finite direct sums M; ®- - - ® M,
of lifting modules M; (i = 1,--- ,n) is lifting.

1. PRELIMINARIES

Throughout this paper R is a ring with identity and all modules considered
are unitary right R-modules.

A submodule S of a module M is called a small submodule, if M # K+ S
for any proper submodule K of M. In this case we write S < M. Let M be
a module and let N and K be submodules of M with K C N. K is called
a co-essential submodule of N in M if N/K <« M/K and we write K C. N
in M. Let X be a submodule of M. X is called a co-closed submodule in M
if X does not have a proper co-essential submodule in M. X’ is called a co-
closure of X in M if X' is a co-closed submodule of M with X’ C. X in M.
K <g N means that K is a direct summand of N. Let M = M;® M> and let
¢ : My — Ms be a homomorphism. Put (M; R Ms) = {my1 —p(my) | my €
M;i}. Then this is a submodule of M which is called the graph with respect
to My 5 My. Note that M = My & My = (M 5 M) & M.

A module M is said to be lifting if, for any submodule X, there exists a
direct summand X™* of M such that X* C. X in M.

Let {M; | i € I} be a family of modules. The direct sum decomposition
M = @©1M; is said to be exchangeable if, for any direct summand X of M,
there exists M; C M; (i € I) such that M = X @ (®;M;). A module M
is said to have the (finite) internal exchange property if, any (finite) direct
sum decomposition M = @;M; is exchangeable.
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Let X be a submodule of a module M. A submodule Y of M is called
a supplement of X in M if M = X 4+Y and X NY < Y. Note that a
supplement Y of X in M is co-closed in M. A module M is supplemented
(B-supplemented) if, for any submodule X of M, there exists a submodule
(direct summand) Y of M such that Y is a supplement of X in M. A
module M is called amply supplemented if, X contains a supplement of Y
in M whenever M = X 4+ Y. We see that M is an amply supplemented
module if and only if M is a supplemented module and any submodule of
M has a co-closure in M (cf. [4, Lemma 1.7]).

Let M and N be modules. M is called im-small N -projective if, for any
submodule A of N, any homomorphism f : M — N/A with f(M) < N/A
can be lifted to a homomorphism g : M — N. M is called epi-N-projective
if, for any submodule A of N, every epimorphism f : M — N/A can be
lifted to a homomorphism g : M — N.

Let M be any module. Consider the following conditions:

(D2) If A < M such that M/A is isomorphic to a direct summand of M,
then A is a direct summand of M.

(D3) If My and Ms are direct summands of M with M = Mj + M, then
My N My is a direct summand of M.

Then the module M is called discrete if it is lifting and satisfies the con-
dition (D2) and it is called quasi-discrete if it is lifting and satisfies the
condition (Ds). Since (D2) implies (Ds3), every discrete module is quasi-
discrete.

In this paper, we show the following:

(1) Let M and N be lifting modules with the finite internal exchange
property. Then M is generalized N-projective if and only if M is strongly
generalized epi- N-projective and im-small N-projective.

(2) Let My,---, M, be lifting modules with the finite internal exchange
property and put M = M @ ---® M,,. Then M is lifting with the finite in-
ternal exchange property if and only if M; is generalized ®;;M;-projective
(;£M; is generalized M;-projective) for any i € {1,--- ,n} if and only if
M; is strongly generalized epi-@;;M;-projective (@;x;M; is strongly gen-
eralized epi-M;-projective) for any i € {1,--- ,n} and M} is im-small M;-
projective for any k #1 € {1,--- ,n}.

Especially, in the case of n = 2, we obtain the following:

Let M; and M5 be lifting modules with the finite internal exchange prop-
erty and put M = M; & Ms. Then M is lifting with the finite internal
exchange property if and only if M; is generalized Ms-projective and M is
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im-small Mj-projective (M is generalized M;i-projective and M; is im-small
Ms-projective).

As a corollary of the result (2), we obtain

(3) Let My, -+, M, be quasi-discrete and put M = M; @ ---@H M,,. Then
M is lifting with the (finite) internal exchange property if and only if M;
is generalized Mj-projective for any ¢ # j € {1,--- ,n} if and only if M; is
(strongly) generalized epi-Mj-projective and im-small M;-projective for any
i#£j€{l,--- ,n}

We emphasize the assumption “with finite internal exchange property” is
quite natural.

For undefined terminologies, the reader is referred to [2] and [8].

Lemma 1.1. Let X' C X C M. Then
(1) IfM=X"+Y and X NY < M, then X' C. X in M.
(2) If X’ < M and X is co-closed in M then X' < X.

Proof. By [5, Lemma 1.4] and [3, Lemma 2.5]. O

Lemma 1.2. (¢f. [6, Lemmas 1.7 and 1.8]) Let f : M — N be an epimor-
phism with ker f < M. Then

(1) If X is co-closed in M, then f(X) is co-closed in N.

(2) IfM=Xa®Y, then f(X)Nf(Y) < N.

(3) If S < N, then f~1(S) < M.

Lemma 1.3. Let M be a module and let N be a ®-supplemented module.
Then M is im-small N -projective if and only if for any small submodule X of
N and any homomorphism f: M — N/X with Im f < N/X, there exists
a homomorphism h : M — N such that moh = f, where m : N — N/X is

the canonical epirmorphism.

Proof. ”Only if” part is clear.

"If” part : Let # : N — N/X be the canonical epimorphism and let
f: M — N/X be a homomorphism with Im f <« N/X. Since N is ®-
supplemented, there exists a direct summand N* of N such that N = X+N*
and X N N* < N*. Then 7|y« : N* — N/X is an epimorphism with
ker(w|y+) < N*. Put N = N* @ N** and define g : N = N* & N* —
N/X & N** by g(n* +n**) = w(n*) + n**, where n* € N* and n** € N**.
Then g is a small epimorphism and so there exists a homomorphism h :
M — N such that goh = f. Hence moh = f. U

In the proof of the following proposition, we use the idea described in Y.
Baba and M. Harada [1, pp. 54-56].

Proposition 1.4. (1) Let M’ <g M and N' <g N. If M is im-small
N -projective then M’ is im-small N'-projective.
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(2) Let My,--- , M, be modules and put M = My & --- B M,. If M; is
im-small N -projective (i = 1,--- ,n) then M is im-small N -projective.

(3) Let Ny,---, Ny be ®-supplemented modules and put N = N1 @ --- &
Ny. If M is im-small N;-projective (i = 1,--- ,t) then M is im-small N -
projective.

Proof. (1) and (2) are clear. (3) : Since finite direct sums of ®-supplemented
modules are ¢-supplemented, it is enough to prove the case of N = N; & Nos.

Let m: N — N/X be a canonical epimorphism and let f : M — N/X be
a homomorphism with Im f < N/X. By Lemma 1.3, we can assume that
X =kerm < N. Let p; : N = Ny & Ny — N; be the projection (i = 1,2),
let « : N/ X — N/(p1(X) @ p2(X)) be the canonical epimorphism, [ :
N/(p1(X) ®p2(X)) — Ni/p1(X)® N2 /pa(X) be the canonical isomorphism
and put v = foa. Let ¢; : Ni/pi(X)® No/p2(X) — N;/pi(X) be the
projection and let m; : N; — N;/p;(X) be the canonical epimorphism (i =
1,2).

Since [V; is @-supplemented, there exists a direct summand N;* of N; such
that N; = p;(X) + N and p;(X) N N < N. So we see

ker(m\N;) < Nz’* tvl NZ/pZ(X) -0 --- (Z)
As qivf(M) < N;i/pi(X) --- (ii), there exists a homomorphism h; : M —
Nz’* such that ¢ ovo f = (7‘(‘1’]\]1*) o h; and so hZ(M) - <7Ti|N;ﬁ)_1(quf(M)).
On the other hand, (i) and (i) imply (m|x+) " (v f(M)) < N; by Lemma
1.2 (3). Hence h;(M) < N;.

Put ¢ = w(h1 + he) — f and then Im ¢ < N/X --- (iii). Let m € M
and express vf(m) in N1/p1(X) @ No/p2(X) as vf(m) =n1 + 71z (77 €
Ni/p1(X), 73 € Na/p2(X)). Then 7y = qiv f(m) = mihi(m). As vr|n, = 7,
vo(m) = vr(hy + ha)(m) — vf(m) = vrhi(m) + vrho(m) — (7 + Ng) =
w1h1(m) + moha(m) — wihi(m) — moha(m) = 0. Thus (M) C kerv =
(P1(X)®p2(X))/X = (p1(X)+X)/X C (N +X)/X =n(N1) -+ (iv). By
Lemma 1.2 (1), m(N7) is co-closed in N/ X and so (iii) and (iv) imply Im ¢ <
m(N1). Since M is im-small Nj-projective, there exists a homomorphism h* :
M — Nj such that (7|n,)oh* = ¢. Put ¢ = h;+ha—h*. Then, for any m €
M, mip(m) = whi(m) 4+ wha(m) — wh*(m) = whi(m) + wha(m) — (rhi(m) +
wha(m) — f(m)) = f(m). Therefore M is im-small N-projective. O

In [6], we announced that Proposition 1.4 (3) holds for any module V;
without the assumption “@-supplemented”. However, we must correct the
result in the present form.

A module M is said to be generalized N -projective (or N-dual ojective)
if, for any epimorphism g : N — X and any homomorphism f: M — X,
there exist decompositions M = M; & My, N = N; & N2, a homomorphism
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hi : My — Nj and an epimorphism hg : No — My such that goh; = f|ar
and f o ho = g|n,. Note that any N-projective module is generalized N-
projective.

Proposition 1.5. (¢f. [5], [7]) Let M and N be modules. Then

(1) If M is generalized N -projective, then M is generalized N*-projective
for any N* <g N.

(2) If M is generalized N -projective with the finite internal exchange prop-
erty, then M™ is generalized N -projective for any M* <g M.

(8) Let N be a lifting module. If M is generalized N -projective, then M
15 1m-small N -projective.

Lemma 1.6. Let M be lifting and let Y be amply supplemented. Then for
any homomorphism f : M — Y, there exists a decomposition M = My @ Mo
such that f(My) is co-closed in'Y and f(Ms) is small in Y .

Proof. Put X = f(M). Since Y is amply supplemented, there exist a co-
closure X’ of X in Y and supplement 7" of X in Y. Then X = X'+ (X NT).
Since X is amply supplemented, there exists a co-closure S of XNT in X. As
M is lifting, there exists a decomposition M = M; @ My with My C. f~1(5)
in M. So f(M3) C. f(f~%(S)) =S in f(M) = X. As S is co-closed in X,
f(Mz) = S. Thus

X = f(M) = f(M)+ f(Mz) = f(My) + S.

As fTH(S)N My < My, SNf(My) = f(f7HS)NMy) < f(M) =X ---(%).
Now we show that f(Mj) is co-closed in Y. Let A C,. f(M;) in Y. As
SCXNTCT,Y=X+4T=(f(M1))+S5)+T=f(M1)+T=A+T and
hence X = f(M) = A+ (f(M)NT)=A+S. By (%) and Lemma 1.1(1),
A C. f(My) in X. Since f(M;) is co-closed in X, A = f(Mj). Thus f(M;)
is co-closed in Y.
On the other hand, f(M2) =S C XNT < T CY andso f(Mz) <Y. O

The following is easily shown:

Lemma 1.7. f M =A®B®C =K ®C then K =(A— C)® (B — C).

2. GENERALIZED EPI-PROJECTIVE MODULES

Now we define a new concept “(strongly) generalized epi-projectivity” as
follows:

Definition A module M is said to be (strongly) generalized epi-N -projective
if, for any epimorphism g : N — X and any epimorphism f : M — X,
there exist decompositions M = M; & My, N = N1 & N2, a homomorphism
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(an epimorphism) hy : M7 — Nj and an epimorphism hy : N9 — My such
that g o hy = f|a, and f o ha = g|u,-

Clearly we see the following;:

(1) K is strongly generalized epi- L-projective < L is strongly generalized
epi- K-projective.

(2) If M is strongly generalized epi-N-projective = M is generalized epi-
N-projective.

Proposition 2.1. Let M and N be modules. If M is epi-N -projective and
N s lifting, then M 1is strongly generalized epi-N -projective.

Proof. Let f : M — X and g : N — X be epimorphisms. Since N is
lifting, there exists a decomposition N = N; & N5 such that N, is a co-
essential submodule of ker g in N. As M is epi- Ni-projective, there exists a
homomorphism h : M — N; with go h = f. Since ker(g|y, ) is small in Vy,
h is an epimorphism. Now define an epimorphism h'(= 0) : Ny — 0(M =
M & 0). Hence we see M is strongly generalized epi-N-projective. 0

Proposition 2.2. Let M be a module with the finite internal exchange prop-
erty and let M* be a direct summand of M. If M is (strongly) generalized
epi-N -projective, then M* is (strongly) generalized epi-N -projective.

Proof. By the same argument as the proof of [5, Proposition 2.2]. O

Corollary 2.3. Let N be a module with the finite internal exchange property
and let N* be a direct summand of N. If M 1is strongly generalized epi-N -
projective, then M 1is strongly generalized epi-N*-projective.

Proposition 2.4. Let M be lifting with the finite internal exchange property
and let N be quasi-discrete. If M s generalized epi-N -projective, then M s
generalized epi-N*-projective for any N* <g N.

Proof. Let N = N* @& N** and let f : M — X and ¢g* : N* — X be
epimorphisms. By Proposition 2.2, we may assume ker f < M. Define
g: N=N*® N* — X by g(n* +n**) = g"(n*), where n* € N* and n** €
N**. As N* is lifting, there exists a decomposition N* = N* @ N* such that
N* C. ker g* in N*. Then N* @ N** C. kerg in N. Since M is generalized
epi-N-projective, there exist decompositions M = M & My, N = N1 & No,
a homomorphism ¢; : M7 — N and an epimorphism s : Ny — Ms such
that go o1 = flu, and f oy =g|n,.

By Lemma 1.6, there exists a decomposition My = M{ @ M/ such that
©1(M7) is co-closed in Ny and ¢1(M7) is small in Ny. So we see f(M{) =
gp1(M{) < g(N2) € X. By Lemma 1.2(1), f(M{') is co-closed in X and so
f(M7]") = 0. Then ker f < M imply M{ = 0 and hence ¢1(M1) = ¢1(M]) is
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co-closed in Ny. Thus there exists a decomposition Ny = ¢1(M7)@®NJ. Since
N is lifting, there exists a decomposition N1 = N{@N{ with N7 C. ker 9 in
Ni. By N{' Cker g C ker(fops) = ker(g|n, ) and N4 C ker g+¢1 (M;)+ N7,
we see

N =Ny & Ny = N{ ) N{/ &) gOl(Ml) ) Né = (N{ ) (,01(M1)) + kerg < (*)

As (Ma+ker f)NM; < My, (Ni+ker g)Np1 (M) C p1((Matker f)NM;) <
©1(Mj). On the other hand, by Lemma 1.2(2), g((¢1(M7) + ker g) N Ny) C
g(N7) N g1 (M) = f(My) N f(M;) < X. Since f(Ms) is co-closed in X,
we see g((¢(M1) + ker g) N Ny) < f(Mz) by Lemma 1.1(2). As ker(g|y) =
ker(f o (p2|n7)), by Lemma 1.2(3), (¢1(M1) + kerg) N N < Nj. Since
(N1 & @1(M1)) Nker g € [(pr(M) + ker g) NN + [(N] + ker g) N1 (M)],
we see
(N{ @ p1(My)) Nkerg < N -+ (%)

Since N* @& N** C, ker g in N, by (*) and (*%), we have
N = (N @ o1(My)) + (N* & N**) and (N] @ 1 (My)) N (N* & N**) < N.
As N is quasi-discrete, we see
N =N, @ (M)®N*®N*=N*& N* @ N**,
By Lemma 1.7, N* = (N — N* & N*) & (p1 (M) — N* @& N**). Now
we put ¢1 = (p2|n7) 0 €1 : (N — ﬁ@9N**> — My and 92 = €2 0 1 :
My, — N*® (p1(My) — N*@® N**), where €; : (N] — N*@® N**) — N{ and

€2 1 o1(My1) — (p1(M7) — N*@® N**) are canonical isomorphisms. Then we
see

f o¢1 = g|<N{—>W@N**> a’nd gO ¢2 - f‘Ml
Therefore M is generalized epi-N*-projective. 0

Proposition 2.5. Let M be a lifting module with the finite internal exchange
property, let N be a lifting module and consider the following conditions:
(1) M is generalized N -projective,
(2) M is strongly generalized epi-N -projective,
(8) M is generalized epi-N -projective.
Then (1) = (2) = (3). In particular, if N is quasi-discrete then (2) <=
(3) holds.

Proof. (1) = (2) : Let f : M — X and g : N — X be epimorphisms.
By Proposition 1.5, we can assume that ker f < M and kerg < N. Since
M is generalized N-projective, there exist decompositions M = M; & Mo,
N = N; & No, a homomorphism h; : M; — N; and an epimorphism hs :
Ny — My such that go hy = f|p, and f o he = g|n,. By Lemma 1.6, there
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exists a decomposition M; = M, & ﬁl such that h1(Mj) is co-closed in Ny
and hi(M7) < Ni. So we see

FOL) = ghi (M) < X.

By Lemma 1.2(1), f(Mj) is co-closed in X and so f(M7) = 0. As M; C
ker f < M, My = 0. Since hi(M;) = hi(Mj) is co-closed in Ni and N;
is lifting, there exists a decomposition Ny = hj(M;) & T. Since f is an
epimorphism, for any ¢ € T, there exists m; € M; (i = 1,2) with g(¢t) =
f(mi+mo) = f(m1)+ f(mz). As he is an epimorphism, there exists ny € No
with ho(ng) = me. So we see

g(t) = f(m1) + f(ma) = gh1(m1) + fha(n2) = ghi(m1) + g(n2).

Thus T C kerg + hl(Ml) + Ny and so N = hl(Ml) @ T @& Ny = kerg +
(h1 (M) ® N2) = hi(M;1) @ Ny. Thus hy is an epimorphism. Therefore M
is strongly generalized epi-N-projective.

(2) = (3) is clear.

Now we assume that NV is quasi-discrete.

3)=(2): Let f: M - X and g : N — X be epimorphisms. By
Propositions 2.2 and 2.4, we can assume that ker f < M and kerg < N. As
M is generalized epi- N-projective, there exist decompositions M = M;& Mo,
N = Nj & N2, a homomorphism hy : M; — N;j and an epimorphism ho :
Ny — My such that go hy = f|p, and f o he = g|n,. By Lemma 1.6, there
exists decomposition M; = M{ @ M{ such that hi(Mj7) is co-closed in N;
and hy(M7') is small in N;. By the same argument as the proof of (1) = (2),
we get My = M{| and N = hy(M;) & No. Thus hy is an epimorphism. OJ

Proposition 2.6. Let M and N be lifting modules with the finite internal
exchange property. Then M 1is strongly generalized epi-N -projective if and
only if M is generalized epi-N*-projective for any direct summand N* of N.

Proof. By the same argument as in the proof of Proposition 2.5. U

Proposition 2.7. Let M and N be lifting modules with the finite internal
exchange property. Then M is generalized N -projective if and only if M is
strongly generalized epi-N -projective and im-small N -projective.

Proof. “Only if” part is clear by Proposition 2.5 and Proposition 1.5(3).
“If” part: Let g : N — X be an epimorphism and let f : M — X be a
homomorphism. By Proposition 2.2 and Corollary 2.3, we can assume that
ker f < M and kerg < N. By Lemma 1.6, there exists a decomposition
M = M; & Ms such that f(Mj) is co-closed in X and f(Ms) is small in X.
Since N is lifting and f(M) is co-closed in X, there exists a decomposition
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N = N; & Ny with g(Ny) = f(M1). Since M; is strongly generalized epi-
Ni-projective, there exist decompositions My = M{ @ My, Ny = N{ & NY
and epimorphisms ¢1 : M] — Ny, @2 : N{ — M{ such that go o1 = f|py
and f oy = g|N{. On the other hand, as My is im-small N-projective,
there exists a homomorphism p : My — N with go p = f|a,. Let N
N = Ni & Ny @ N2 — Nj be the projection and put o = 2 o pys o p,

*

p* = (1 —pn;)opoe, where € : (M % M}y — My is the canonical
isomorphism. For any ms — a(ms) € (My = MY), p(ms) is expressed
in N = N{ ® Ny @ Ny as p(mz2) = n} +n{ + n2. Then f(ma — a(mse)) =
gp(ma)—foapni p(ma) = g(nf+nf+n2)—fea(n}) = g(ny+nf+na)—g(n}) =
g(nf +n2) = g(1 — pyr)p(m2) = gp*(ma2 — a(mz)).

Put o = 1 + p* and Y = @9. Then we see

goy = f|M{€B(M23>M{’) and f SRS g|N{
Thus M is generalized N-projective. 0

Lemma 2.8. (¢f. [5, Theorem 3.7]) Let M, --- , M, be lifting modules with
the finite internal exchange property and put M = My & ---& M,,. Then the
following are equivalent:

(1) M s lifting with the finite internal exchange property,

(2) M is lifting and the decomposition M = My ®- - -® M, is exchangeable,

(3) M; and ®;2iM; are mutually relative generalized projective.

Now, we are in a position to obtain the following results which are gen-
eralizations of [5, Theorem 3.7].

Theorem 2.9. Let My and M be lifting modules with the finite internal
exchange property and put M = M;® Ms. Then the following are equivalent:
(1) M s lifting with the finite internal exchange property,
(2) M s lifting and the decomposition M = My & My is exchangeable,
(8) M is generalized Ma-projective and My is im-small My -projective,
(4) Ms is generalized My -projective and My is im-small My-projective,
(5) M; is strongly generalized epi-M;j-projective and im-small M-
projective (i # 7).

Proof. By Proposition 2.7 and Lemma 2.8. (]

Theorem 2.10. Let My, --- , M, be lifting modules with the finite internal
exchange property and put M = My & --- & M,. Then the following are
equivalent:

(1) M s lifting with the finite internal exchange property,

(2) M is lifting and the decomposition M = My @- - -® M, is exchangeable,
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(3) M; is generalized @;jx;M;-projective (@®jxiM; is generalized M;-
projective ) for any i € {1,--- ,n},

(4) M; is strongly generalized epi-®;-;Mj-projective (Bj1;M; is strongly
generalized epi-M;-projective) for any i € {1,--- ,n} and My is im-small
M;i-projective for any k #1 € {1,--- ,n},

(5) M; is strongly generalized epi-®;;Mj-projective (D1 M; is gener-
alized strongly epi-M;-projective) for any i € {1,--- ,n} and My & M is
lifting with the finite internal exchange property (or this decomposition is
exchangeable) for any k #1 € {1,--- ,n}.

Proof. By induction, Propositions 1.4 and 1.5 and Theorem 2.9. 0

Corollary 2.11. Let A be a semisimple module and let B be a lifting module
with the finite internal exchange property. If A is im-small B-projective then
M = A® B is lifting with the finite internal exchange property.

Proposition 2.12. (¢f. [6]) Let N be a quasi-discrete module, let M =
M @ ---® M, be lifting with the finite internal exchange property. If M; is
strongly generalized epi-N -projective, then M 1is strongly generalized epi-N -
projective.

Proof. 1t is enough to prove the case of M = M; & M,. Assume that
f:M — X and g : N — X are epimorphisms. By Proposition 2.2 and
Corollary 2.3, we can assume that ker f < M and kerg < N. By Lemma
1.2(1), f(My) and f(Ms) are co-closed in X and f(M;) N f(M;) < X.
Since N is lifting, there exists a decomposition N = N; & N; such that
N; Ce g~ f(M;) in N (i = 1,2). By g(N;) Ce f(M;) in X, g(N;) = f(M;)
and o g(N) = X = F(M) = f(My)+F(Ma) = g(N1)+g(Na). Askerg < N,
N = N; + No. By Lemma 1.2(3), g~ '(f(M1) N f(M2)) < N. So we
get Ni N No C g~ '(f(M1) Ng~'(f(M2)) = g~ ' (f(M1) N f(M2)) < N.
Since N is quasi-discrete, N = Nj & Ny. By Corollary 2.3, M; is strongly
generalized epi-N;-projective (i = 1,2). Hence there exist decompositions
M, = M/ ® M/, N; = N/ & N/ and epimorphisms «; : M/ — N/, 3 :
N!" — M/ such that fo 3 = glN{' and go o = f|M£‘ Now define the
epimorphisms ¢ : M{ @ M}, — N{ @& N} and ¢ : Ny & N — M{ @& MY by
o(my+mb) = a1 (m])+az(m)), Y(n]+nfy) = Bi1(n])+F2(nf). Then for any
i+l € M{GMj, F(mi+mb) = F(mi)+ f(mb) = goas (m])+goas(m) =
g(ar(mi)+aa(my)) = gop(m)+mj). Similarly, we see g|yrgny = foyp. O

By the proposition above, we obtain the following:

Corollary 2.13. Let M be a quasi-discrete module and let N = N1®- - - BNy
be lifting with the finite internal exchange property. If M 1is strongly gener-
alized epi-N;-projective, then M is strongly generalized epi-N -projective.
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Corollary 2.14. Let N be a quasi-discrete module and let M = M, & --- @
M, be lifting with the finite internal exchange property. If M; is generalized
epi-N -projective, then M = My @& --- & M, is generalized epi-N -projective.

Proof. By Propositions 2.5 and 2.12. 0

Corollary 2.15. Let M and N = Ny @ --- ® N; be quasi-discrete. If
M s generalized epi-N;-projective, then M is strongly generalized epi-N -
projective.

Proof. By Proposition 2.5 and Corollary 2.13. O

Theorem 2.16. Let My, --- , M, be quasi-discrete and put M = My @®--- P
M,,. Then the following are equivalent:
(1) M is lifting with the (finite) internal exchange property,
18 Lifting an e aecomposition = M1D---DM,, 15 exchangeable,
2) M is lifti d the d ition M = M M, i h bl
(3) M; is generalized M;-projective for any i # j € {1,--- ,n},
4) M; & M; s lifting with the finite internal exchange property for any
J
7’#] € {17 7n}7
5) M; 1is strongly generalized epi-M;-projective and itm-small M-
9y 9 J J
projective for any i # j € {1,--- ,n},
6) M; is generalized epi-M;-projective and tm-small M;-projective for
J J
anyz;«é] S {17 7n}'

Proof. (1)&(2)=(3)<(4) follows by Lemma 2.8 and Theorem 2.10.
(3)<(5)<(6) : By Propositions 2.5 and 2.7.

(5)=(1) : Let M; be strongly generalized epi-M;-projective and im-small
Mj-projective (i # j). Then @®;.;M; is im-small Mj-projective by Proposi-
tion 1.4. By Propositions 2.7 and 2.12 and Theorem 2.10, M = M;&®---& M,
is lifting with the (finite) internal exchange property. O

Corollary 2.17. Let Hy,---,H, be hollow modules and put M = H; &
-+ @® H,. Then the following are equivalent:

(1) M s lifting with the (finite) internal exchange property,

(2) M is lifting and the decomposition M = H,&- - -@® H,, is exchangeable,

(3) H; is generalized Hj;-projective for any i # j € {1,--- ,n},

(4) H; @ Hj is lifting with the finite internal exchange property for any
Z#J € {17"’ 7”}7

(5) H; is strongly generalized epi-H;-projective and im-small H;-projective
for any i # j € {1,--- ,n},

(6) H; is generalized epi-H ;-projective and im-small H;-projective for any

i#je{l,--,n}.

Finally we raise the following question: Does there exist an example of a
lifting module which does not satisfy the finite internal exchange property?
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