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ARITHMETIC ELLIPTIC CURVES

IN GENERAL POSITION

Shinichi MOCHIZUKI

Abstract. We combine various well-known techniques from the theory
of heights, the theory of “noncritical Belyi maps”, and classical analytic
number theory to conclude that the “ABC Conjecture”, or, equivalently,
the so-called “Effective Mordell Conjecture”, holds for arbitrary rational
points of the projective line minus three points if and only if it holds for
rational points which are in “sufficiently general position” in the sense
that the following properties are satisfied: (a) the rational point under
consideration is bounded away from the three points at infinity at a
given finite set of primes; (b) the Galois action on the l-power torsion
points of the corresponding elliptic curve determines a surjection onto
GL2(Zl), for some prime number l which is roughly of the order of
the sum of the height of the elliptic curve and the logarithm of the
discriminant of the minimal field of definition of the elliptic curve, but
does not divide the conductor of the elliptic curve, the rational primes
that are absolutely ramified in the minimal field of definition of the
elliptic curve, or the local heights [i.e., the orders of the q-parameter at
primes of [bad] multiplicative reduction] of the elliptic curve.

Introduction

In the classical intersection theory of subvarieties, or cycles, on algebraic
varieties, various versions of the “moving lemma” allow one to replace a
given cycle by another cycle which is equivalent, from the point of view
of intersection theory, to the given cycle, but is supported on subvarieties
which are in a “more convenient” position — i.e., typically, a “more general”
position, which is free of inessential, exceptional pathologies — within the
ambient variety.

In the present paper, after reviewing, partly for the purpose of establishing
notation and terminology, the general theory of heights in §1, we proceed in
§2 to apply the theory of “noncritical Belyi maps” of [7], together with a
technique developed by Elkies [cf. [2]; [3]] — which, in fact, may be traced
back to the work of Moret-Bailly and Szpiro [cf. the discussion at the top of
[2], p. 106] — for relating Belyi maps to the ABC Conjecture, to show that
the ABC, Effective Mordell, and Vojta Conjectures for arbitrary rational
points of hyperbolic curves over number fields are equivalent to the ABC
Conjecture for rational points over a number field of the projective line
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minus three points which lie in some “compactly bounded subset” of the set
of all rational points [cf. Theorem 2.1]. Here, “compactly bounded” means
that at some finite collection S of primes of the number field that includes
the archimedean primes, the rational points lie in some given compact subset
of the set of rational points of the projective line minus three points over
the completion of the number field at the given prime [cf. Example 1.3, (ii)].
Such compactly bounded subsets of the set of rational points are of interest
since the height of a rational point that lies in such a compactly bounded
subset may be computed, up to a bounded discrepancy, by considering the
distance of the rational point from the divisor at infinity solely at the primes
that do not lie over primes of S.

Thus, in summary, we use the noncritical Belyi maps of [7] to “move
the rational points over number fields of interest away from the divisor at
infinity at the primes lying over [typically archimedean!] primes of S”.
This use of Belyi maps is interesting in that it is reminiscent of the use of
Belyi maps in the technique of “Belyi cuspidalization” [cf. [8], §2, §3; [9], §2;
[10], §3]. That is to say, in the technique of Belyi cuspidalization, “critical”
[i.e., more precisely, “not necessarily noncritical”!] Belyi maps are used to
“move rational points closer to the divisor at infinity at nonarchimedean
primes” [cf., especially, the theory of [8], §3].

Theorem 2.1 Belyi cuspidalization

uses noncritical Belyi maps uses critical Belyi maps
moves rational points of moves rational points of

interest away from interest closer to
divisor at infinity divisor at infinity

of interest primarily at of interest at
archimedean primes nonarchimedean primes
of a number field of a number field

In particular, the use of Belyi maps in Theorem 2.1 of the present paper
proceeds, so to speak, in the “opposite direction” to their use in the theory
of Belyi cuspidalization.

Finally, in §3, §4, we examine another example of the notion of being
“arithmetically in general position”, namely, the phenomenon of “full Galois
actions” — i.e., Galois actions whose images are equal to either SL2(Zl) or
GL2(Zl) — on the l-power torsion points of an elliptic curve over a number
field for some prime number l. More precisely, we combine the techniques of
[11], [4] relating isogenies and heights of elliptic curves over number fields [cf.
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§3] with some classical analytic number theory involving the prime number
theorem [cf. §4] to show [cf. Corollaries 4.3, 4.4] that if one considers elliptic
curves over number fields of bounded degree which are either “degenerating”
[i.e., admit at least one prime of potentially multiplicative reduction] or
“compactly bounded away from infinity” [cf. Theorem 2.1], then, with finitely
many possible exceptions, one obtains a “full Galois action” for some prime
number l which is roughly of the order of the sum of the height of the elliptic
curve and logarithm of the discriminant of the minimal field of definition of
the elliptic curve and, moreover, is prime to various numbers that are, in
some sense, characteristic to the elliptic curve, such as the conductor of the
elliptic curve, the rational primes that are absolutely ramified in the minimal
field of definition of the elliptic curve, and the local heights [i.e., the orders of
the q-parameter at primes of multiplicative reduction] of the elliptic curve.

1. Generalities on Heights

In the present §1, we review, partly for the purpose of establishing no-
tation and terminology, various well-known facts concerning arithmetic line
bundles and heights.

Let X be a normal scheme which is proper and flat over Spec(Z) [where

Z denotes the ring of rational integers]. Write XQ
def
= X×Z Q for the generic

fiber of X; Xarc for the compact normal complex analytic space determined
by X. Thus, the underlying topological space of Xarc may be identified with
the set of complex points X(C), equipped with the topology induced by the
topology of C. Note, moreover, that the complex conjugation automorphism
ιC of C induces a complex conjugation automorphism ιX of Xarc which is
compatible with ιC.

Definition 1.1.

(i) We shall refer to as an arithmetic line bundle L = (L, |− |L) on X any
pair consisting of a line bundle L on X and a hermitian metric | − |L on the
line bundle Larc determined by L on Xarc that is compatible [in the evident
sense] with the complex conjugation automorphism ιX . If L = (L, | − |L),
M = (M, |−|M) are arithmetic line bundles onX, then a morphism L → M
is defined to be a morphism of line bundles L → M such that locally on
Xarc, sections of L with |−|L ≤ 1 map to sections of M with |−|M ≤ 1. We
define the set Γ(L) of global sections of L = (L, | − |L) over X to be the set
of morphisms OX → L, where we write OX for the trivial line bundle OX

equipped with the trivial hermitian metric. There is an evident notion of
tensor product of arithmetic line bundles on X. The isomorphism classes of
arithmetic line bundles on X, together with the operation of tensor product,
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thus determine a group APic(X).

(ii) Let φ : Y → X be a morphism of normal, Z-proper, Z-flat schemes.
Then there is an evident notion of pull-back of arithmetic line bundles by φ.
If L is an arithmetic line bundle on X, then we shall denote its pull-back to
Y by the notation φ∗L or, when there is no fear of confusion, L|Y .

Let F be a number field [i.e., a finite extension of the rational number field
Q], whose ring of integers we denote by OF , and whose set of valuations
we denote by V(F ). Thus, V(F ) decomposes as a disjoint union V(F ) =
V(F )non

⋃

V(F )arc of nonarchimedean and archimedean valuations. If v ∈
V(F ), then we shall write Fv for the completion of F at v and |−|v : Fv → R

for the real-valued valuation map determined by v. If v ∈ V(F )non, then
we shall write ordv(−) : Fv → Z for the order defined by v and qv for the
cardinality of the residue field of Fv.

An arithmetic divisor on F is defined to be a finite formal sum
∑

v∈V(F )

cv · v

— where cv ∈ Z if v ∈ V(F )non and cv ∈ R if v ∈ V(F )arc [cf. [14], §1.1].
Here, if all of the cv are ≥ 0, then we shall say that the arithmetic divisor
is effective. Thus, the arithmetic divisors on F naturally form a group
ADiv(F ). If f ∈ F , then the assignment

f 7→ ADiv(f)
def
=

∑

v∈V(F )non

ordv(f) · v −
∑

v∈V(F )arc

[Fv : R] · log(|f |v) · v

[where log denotes the natural logarithm] determines an element ∈ ADiv(F ),
which we shall refer to as the principal arithmetic divisor associated to f .
Thus, the principal arithmetic divisors determine a subgroup APrc(F ) ⊆
ADiv(F ). Moreover, as is well-known, there is a natural isomorphism

ADiv(F )/APrc(F )
∼
→ APic(Spec(OF ))

— cf. [14], Proposition 1.1. In particular, the degree map

degF : ADiv(F )/APrc(F ) → R

defined by sending

V(F )non ∋ v 7→ log(qv); V(F )arc ∋ v 7→ 1

[cf. [14], §1.1] determines a homomorphism APic(Spec(OF )) → R, which
we shall also denote by degF . When there is no fear of confusion, we shall
also regard [by abuse of notation] degF as a map defined on ADiv(F ). Note
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that if we set degF
def
= 1

[F :Q] · degF , then for any finite extension K of F , it

follows that

degK(L|Spec(OK)) = degF (L)

for any arithmetic line bundle L on Spec(OF ). In particular, if Q is an
algebraic closure of Q, then for any

x ∈ X(Q) =
⋃

Q⊇F, [F :Q]<∞

X(F )

and any arithmetic line bundle M on X, it makes sense to define

htM(x)
def
= degF (x∗FM) ∈ R

— where xF : Spec(OF ) → X is any morphism that gives rise to x.

Definition 1.2.

(i) We shall refer to the function

htM : X(Q) → R

as the height function associated to the arithmetic line bundle M.

(ii) Fix a subset F ⊆ X(Q). If α, β : F → R are functions, then we shall
write

α .F β (respectively, α &F β; α ≈F β)

if there exists a [“constant”] C ∈ R such that β(x)−α(x) ≤ C (respectively,
α(x) − β(x) ≤ C; |α(x) − β(x)| ≤ C) for all x ∈ F ; we shall omit the
subscript F when there is no fear of confusion. [Thus, α ≈ β if and only if
α . β and α & β.] The relation “≈” clearly defines an equivalence relation
on the set of functions F → R; we shall refer to an equivalence class relative
to this equivalence relation as a(n) [F-]BD-class [i.e., “bounded discrepancy
class”]. The BD-class of α will be denoted by [α]F , or simply [α], when there
is no fear of confusion. Finally, we observe that it makes sense to apply the
notation “&”, “.”, “≈” to BD-classes.

Example 1.3. Various Natural Subsets of the Set of Points. In the
notation of the above discussion, we consider various natural examples of
subsets “F ⊆ X(Q)” as in Definition 1.2, (ii).

(i) If d ∈ N
⋃

{∞}, then we shall denote by

X(Q)≤d ⊆ X(Q)
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the union of the subsets X(F ) ⊆ X(Q) as F ranges over the number fields
such that [F : Q] ≤ d [so X(Q)≤∞ = X(Q)];

X(Q)=d def
= X(Q)≤d\X(Q)≤d−1 ⊆ X(Q)

[cf. the discussion in Definition 1.5, (i), below of “minimal fields of defi-
nition”]. More generally, if E ⊆ X(Q) is any subset, then we shall write

E≤d def
= E

⋂

X(Q)≤d, E=d def
= E

⋂

X(Q)=d. If E ⊆ X(Q) is a subset such that
each E≤d [where d ranges over the positive integers] is finite, then we shall
say that E is Galois-finite.

(ii) Let us refer to a compact subset of a topological space which is equal
to the closure of its interior as a compact domain. Let V ⊆ V(Q) be a finite

subset that contains V(Q)arc. For each v ∈ V arc def
= V

⋂

V(Q)arc (respec-

tively, v ∈ V non def
= V

⋂

V(Q)non), let

Kv ⊆ Xarc (respectively, Kv ⊆ X(Qv))

be a nonempty ιX -stable compact domain (respectively, a nonempty
Gal(Qv/Qv)-stable subset whose intersection with each X(K) ⊆ X(Qv),
for K ⊆ Qv a finite extension of Qv, is a compact domain in X(K)) such
that Kv 6= Xarc (respectively, Kv 6= X(Qv)). Then let us write

KV ⊆ X(Q)

for the subset of points x ∈ X(F ) ⊆ X(Q), where [F : Q] < ∞, such that
for each v ∈ V arc (respectively, v ∈ V non), the set of [F : Q] points of Xarc

(respectively, X(Qv)) determined by x is contained in Kv. We shall refer to
a subset of X(Q) obtained [i.e., as a “KV ”] in this fashion as a compactly
bounded subset, to V as the support of the compactly bounded subset, and to
the “Kv” as the bounding domains of the compactly bounded subset. Note
that by applying well-known approximation results in elementary number
theory, it follows immediately [cf. the definition given above of the term
“compact domain”!] that the bounding domains of a compactly bounded
subset of X(Q), hence also the support of a compactly bounded subset of
X(Q), are completely determined by the compactly bounded subset itself.

Proposition 1.4 (Basic Properties of Heights). In the notation of the
above discussion, let L = (L, | − |L), M = (M, | − |M) be arithmetic line

bundles on X. Write LQ
def
= L|XQ

, MQ
def
= M|XQ

. Then:

(i) We have

htL⊗M(x) = htL(x) + htM(x)
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for x ∈ X(Q).

(ii) If some positive tensor power of the line bundle LQ on XQ is gen-
erated by global sections [for instance, if the line bundle LQ is ample],
then

htL & 0

[i.e., where “&” denotes “&X(Q)”].

(iii) The BD-class of htL depends only on the isomorphism class of
the line bundle LQ on XQ. In particular, it makes sense to write [htL] or
[htLQ

] for the BD-class [htL] of htL.

(iv) Let d be a positive integer, C ∈ R. Suppose further that the line bundle
LQ is ample on XQ. Then the set of points x ∈ X(Q)≤d [cf. Example 1.3,
(i)] such that htL(x) ≤ C is finite.

Proof. Assertion (i) follows immediately from the definitions. Next, we
consider assertion (ii). To verify assertion (ii), it suffices to show that if
s ∈ Γ(XQ,LQ), and we write F ⊆ X(Q) for the subset of points at which

s is nonzero, then htL &F 0. Now observe that if M is an arithmetic line
bundle that arises [by pull-back to X] from an arithmetic line bundle on
Spec(Z), then

htL⊗M ≈X(Q) htL

[cf. assertion (i)]. Moreover, for a suitable choice of M arising from an
arithmetic line bundle on Spec(Z), the section s determines a section t of
LQ ⊗MQ that extends to a section of L⊗M over X such that |t|L⊗M ≤ 1

on Xarc [where we recall that Xarc is compact!]. Thus, by replacing L by
L⊗M and s by t, we may assume that s determines a section of L over X
and that |s|L ≤ 1 on Xarc. Now the fact that htL(x) ≥ 0 for all x ∈ F is
immediate from the definitions. This completes the proof of assertion (ii).
Next, to verify assertion (iii), it suffices to apply assertions (i), (ii) to the

arithmetic line bundle L ⊗M
−1

in the situation where LQ
∼= MQ.

Finally, we consider assertion (iv). A proof of this well-known fact may,
essentially, be found in [12] [cf. [12], Theorem 2.1]. From the point of
view of the present discussion, an argument may be given as follows: First,
we observe that [some positive tensor power of] the ample line bundle LQ

yields an embedding ǫQ : XQ ⊆ PQ, where P = Pn
Z is a projective space

over Z. Next, by blowing up X in an appropriate fashion, we conclude that
there exists a normal, Z-proper, Z-flat scheme Y , together with morphisms
φ : Y → X, ψ : Y → P such that φQ is an isomorphism, and ψQ = ǫQ ◦ φQ.

Thus, to verify assertion (iv) for the pair (X,L), it suffices to verify assertion
(iv) for the pair (Y, φ∗L), which, by assertion (iii), is equivalent to assertion



8 SHINICHI MOCHIZUKI

(iv) for the pair (Y, ψ∗LP ), where we write LP for the line bundle OP (1)
equipped with the standard Fubini-Study metric. But assertion (iv) for the
pair (Y, ψ∗LP ) follows from assertion (iv) for the pair (P,LP ). Thus, we
may assume that (X,L) = (P,LP ).

Next, observe that since any finite set of points of a fiber of P → Spec(Z)
is contained in the complement of a hypersurface, it follows immediately
that, for any positive integer e ≤ d, the product P × . . .×P of e copies of P
[over Z] admits a [necessarily normal, Z-proper, and Z-flat] quotient Q by
the action of the symmetric group on e letters, and that some positive tensor
power of the tensor product of the pull-backs of LP by the various projections
P × . . .×P → P descends to an arithmetic line bundle LQ = (LQ, |−|LQ

) on
Q such that (LQ)Q is ample on QQ. Since each point xP ∈ P (F ) for F such
that [F : Q] = e determines [by considering the various Q-conjugates of xP ]
a point xQ ∈ Q(Q) [which, in turn, determines xP , up to a finite number of
possibilities], we thus conclude [by varying e] that it suffices to verify that
the set of points of y ∈ Q(Q) such that htLQ

(y) ≤ C is finite. Moreover,

by embedding Q via (LQ)Q into some projective space Z = Pm
Z as in the

argument of the preceding paragraph, we thus conclude that it suffices to
verify that the set of points of z ∈ Z(Q) such that htLZ

(z) ≤ C is finite,

where LZ is given by OZ(1) equipped the standard Fubini-Study metric.
Next, let us observe that [as is easily verified] there exists a unique arith-

metic line bundle LS on S
def
= Spec(Z), up to isomorphism, of degree [i.e.,

“degQ”] C; moreover, any arithmetic line bundle on S of degree ≤ C em-

beds into LS . In particular, by applying such an embedding, we conclude
that given any point z ∈ Z(Q) = Z(S) such that htLZ

(z) ≤ C, the m + 1
standard generating sections of LZ restrict, via the morphism S → Z deter-
mined by z, to sections ∈ Γ(LS). Since [as is easily verified] Γ(LS) is a finite
set, it thus follows that there is only a finite number of possibilities for the
projective coordinates of z. This completes the proof of assertion (iv). �

Remark 1.4.1. Observe that it follows immediately from the definitions,
together with Proposition 1.4, (iii), that the theory of “BD-classes of height
functions htL(−) on X(Q)” in fact depends only on the scheme XQ. In
particular, this theory may be applied to any normal, projective scheme
Y over Q [i.e., by regarding Y as the “XQ” determined by some Z-flat,
Z-projective model “X” of Y that arises from a projective embedding of Y ].

Definition 1.5.

(i) Note if x ∈ X(F ) ⊆ X(Q), where [F : Q] < ∞, then by considering
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the scheme-theoretic image of the corresponding morphism Spec(F ) → X,
one obtains a well-defined minimal field of definition Fmin ⊆ F of x. In
particular, it makes sense to say that F “is a minimal field of definition of
x” [i.e., that F = Fmin].

(ii) LetE ⊆ Z be an effective Cartier divisor contained in the regular locus
of a normal noetherian scheme Z. Then observe that the closed subscheme
Ered ⊆ Z is also an effective Cartier divisor. We shall say that E is reduced
if E = Ered.

(iii) Let x ∈ X(F ) ⊆ X(Q), where F is a minimal field of definition of x.
Then the different ideal of F determines an effective arithmetic divisor

δx ∈ ADiv(F )

which is supported in V(F )non. In particular, the assignment

X(Q) ∋ x 7→ log-diffX(x)
def
= degF (δx) ∈ R

determines a well-defined log-different function log-diffX on X(Q).

(iv) Fix an effective Cartier divisor D ⊆ X; write UX
def
= X\D. Let

x ∈ UX(F ) ⊆ UX(Q), where F is a minimal field of definition of x [regarded
as a point of X(Q)]. Then the morphism Spec(OF ) → X determined by x
[where we recall that X is proper!] allows one to pull-back the divisor D to
Spec(OF ) so as to obtain an effective divisor Dx on Spec(OF ). Note that
Dx, (Dx)red may also be regarded as arithmetic divisors ∈ ADiv(F ) that are
supported in V(F )non. We shall refer to

fDx
def
= (Dx)red ∈ ADiv(F )

as the conductor of x. Thus, the assignment

X(Q) ∋ x 7→ log-condD(x)
def
= degF (fDx ) ∈ R

determines a well-defined log-conductor function log-condD on UX(Q) ⊆
X(Q).

Remark 1.5.1. In the spirit of Remark 1.4.1, we observe that the log-different
function log-diffX on X(Q) [cf. Definition 1.5, (iii)] depends only on the
scheme XQ. On the other hand, although the log-conductor function

log-condD on UX(Q) [cf. Definition 1.5, (iv)] may depend on the pair of
Z-schemes (X,D), one verifies immediately that the BD-class of log-condD

on UX(Q) depends only on the pair of Q-schemes (XQ, DQ). Indeed, this
follows immediately from the observation that if (X ′, D′) is another pair
[i.e., consisting of an effective Cartier divisor D′ in a normal, Z-proper,
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Z-flat scheme X ′], then any isomorphism X ′
Q

∼
→ XQ that induces an iso-

morphism D′
Q

∼
→ DQ extends, for some finite set of prime numbers Σ, to

an isomorphism X ′×Z Z[Σ−1]
∼
→ X ×Z Z[Σ−1] that induces an isomorphism

D′ ×Z Z[Σ−1]
∼
→ D ×Z Z[Σ−1] — where we write Z[Σ−1]

def
= Z[{p−1}p∈Σ].

Proposition 1.6 (Conductor Bounded by the Height). Let D ⊆ X be
an effective Cartier divisor, L = (L, | − |L) an arithmetic line bundle

on X such that L = OX(D). Write U
def
= X\D, htD

def
= htL [cf. Proposition

1.4, (iii)]. Then
log-condD . htD

on U(Q).

Proof. Write s ∈ Γ(X,L) for the section determined by the tautological
inclusion OX →֒ OX(D). Then the asserted inequality log-condD . htL
follows, for the contributions at the nonarchimedean primes, from the defini-
tion of log-condD [i.e., involving “(−)red”] in Definition 1.5, (iv), and, for the
contributions at the archimedean primes, from the fact that the continuous
function |s|L on the compact topological space Xarc is bounded. �

Proposition 1.7 (Conductors and Log Differents). Let

φ : Y → Z

be a generically finite morphism of normal, Z-proper, Z-flat schemes of di-
mension two. [Thus, the induced morphism on generic fibers φQ : YQ → ZQ

is a finite [possibly] ramified covering of smooth, proper curves over
finite extensions of Q.] Let e be a positive integer;

D ⊆ Y ; E ⊆ Z

effective, Z-flat Cartier divisors such that the generic fibers DQ, EQ satisfy

the following conditions: (a) DQ, EQ are reduced; (b) DQ = φ−1
Q (EQ)red;

(c) if we write UY
def
= Y \D, UZ

def
= Z\E, then φQ restricts to a finite étale

morphism (UY )Q → (UZ)Q; (d) the ramification index of φQ at each point
of DQ divides e. Then:

(i) If we restrict functions on Z(Q), UZ(Q) to UY (Q) via φ, then

log-condE − log-condD . log-diffY − log-diffZ .
(

1 −
1

e

)

· log-condE

on UY (Q).

(ii) Suppose that the ramification index of φQ at each point of DQ is
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equal to e. Then the sheaves of differentials “ω(−)” on YQ, ZQ satisfy the
relation

deg(ωYQ
) = deg(ωYQ

(DQ)) − deg(OYQ
(DQ))(1.1)

= deg(ωZQ
(EQ)|YQ

)
{

1 −
deg(OZQ

(EQ))

e · deg(ωZQ
(EQ))

}

— where we use the notation “deg(−)” to denote the degree of a line bundle
on YQ or ZQ.

Proof. First, we consider assertion (i). We begin by observing that there
exists a finite set of prime numbers Σ such that the restriction of Y → Z to

the spectrum of Z[Σ−1]
def
= Z[{p−1}p∈Σ] is a finite tamely ramified mor-

phism of smooth, proper families of curves over finite étale coverings of
Spec(Z[Σ−1]). In particular, the “prime-to-Σ portion” of the inequality
“log-condE − log-condD = log-diffY − log-diffZ ≤ (1 − e−1) · log-condE”
[i.e., with “=” and “≤”, not “.”!] follows immediately from the elementary
theory of differents. Note that the “portion over Σ” of log-condE , log-condD

is ≈ 0 [cf. Remark 1.5.1], while [again by the elementary theory of differents]
the “portion over Σ” of log-diffY − log-diffZ is ≥ 0 [i.e., with “≥”, not “&”!].
Thus, to complete the proof of assertion (i), it suffices to show that the
“portion over Σ” of the quantity log-diffY − log-diffZ is bounded in UY (Q).
Moreover, by working locally, we reduce immediately to the following ele-
mentary claim:

Fix a prime number p and a positive integer d. Then there
exists a positive integer n such that for any finite Galois
extension L/K of finite extensions of Qp with [L : K] ≤ d,
the different ideal of L/K contains pn · OL [where we write
OL for the ring of integers of L].

To verify this claim, we reason as follows: By separating the extension
L[ζ]/K, where ζ is a primitive p-th root of unity, into a composite of wildly
ramified and tamely ramified extensions [and observing that if we restrict to
tamely ramified L/K, then it suffices to take n = 1], we reduce immediately
to the case of wildly ramified L/K such that K contains a primitive p-th root
of unity ζ. Moreover, since Gal(L/K) is a [necessarily solvable!] p-group of
order ≤ d, it suffices to consider the case where [L : K] = p. Since ζ ∈ K,
it follows immediately from elementary Kummer theory that L = K(λ) for

some λ ∈ L such that κ
def
= λp ∈ K. Moreover, by multiplying κ by an

element of (K×)p, we may assume that κ is a unit multiple of πa
K , where

πK is a uniformizer of K and a is a nonnegative integer < p. In particular,
it follows that κ ∈ OK , but κ /∈ pp · OK , hence that OL ⊇ λ · OL ⊇ p · OL.



12 SHINICHI MOCHIZUKI

On the other hand, since in this case, we have an inclusion of OK-algebras
OK [X]/(Xp−κ) →֒ OL, one computes easily that the different ideal of L/K

contains p · λp−1 · OL ⊇ p1+(p−1) · OL = pp · OL. This completes the proof
of the claim, and hence of assertion (i). Assertion (ii) follows immediately
from the Riemann-Hurwitz formula for ramified coverings of smooth, proper
curves. �

2. Bounds on Heights

In the present §2, we discuss our first main result [cf. Theorem 2.1],
to the effect that the so-called Effective Mordell or ABC Conjectures are
equivalent to the ABC Conjecture for rational points [over number fields of
bounded degree] contained in a fixed compactly bounded subset of the set of
all rational points [cf. Example 1.3, (ii)]. The technique used in Corollary
2.1 goes back to work of Elkies [cf. [2]; [3]] and Moret-Bailly and Szpiro
[cf. the discussion at the top of [2], p. 106], except that instead of using
“arbitrary” Belyi maps, we use noncritical Belyi maps, as discussed in [7].

Theorem 2.1 (Compactly Bounded Subsets and the ABC Conjec-
ture). Let Σ be a finite set of prime numbers. Then in the terminology of
§1 [cf., especially, Definitions 1.2, 1.5; Example 1.3; Remarks 1.4.1, 1.5.1],
the following two statements are equivalent:

(i) (Effective Mordell/ABC/Vojta Conjecture) Let X be a smooth,
proper, geometrically connected curve over a number field; D ⊆ X a reduced

divisor; UX
def
= X\D; d a positive integer; ǫ ∈ R>0 a positive real number.

Write ωX for the canonical sheaf on X. Suppose that UX is a hyperbolic
curve — i.e., that the degree of the line bundle ωX(D) is positive. Then
the inequality of BD-classes of functions

htωX(D) . (1 + ǫ)(log-diffX + log-condD)

holds on UX(Q)≤d.

(ii) (ABC Conjecture for Σ-Supported Compactly Bounded Sub-

sets) Let P
def
= P1

Q be the projective line over Q; C ⊆ P the divisor

consisting of the three points “0”, “1”, and “∞”; UP
def
= P\C; d a posi-

tive integer; ǫ ∈ R>0 a positive real number; KV ⊆ UP (Q) a compactly
bounded subset [i.e., regarded as a subset of P (Q) — cf. Example 1.3,
(ii)] whose support contains Σ. Write ωP for the canonical sheaf on P .
Then the inequality of BD-classes of functions

htωP (C) . (1 + ǫ)(log-diffP + log-condC)
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holds on KV
⋂

UP (Q)≤d.

Proof. The fact that (i) =⇒ (ii) is immediate from the definitions. Thus,
it suffices to verify that (ii) =⇒ (i). Let X, D, UX , d, ǫ be as in (i). Now
it follows immediately from the well-known structure of étale fundamental
groups of hyperbolic curves over algebraically closed fields of characteristic
zero that for any positive integer e, there exists a connected finite étale
Galois covering UY → UX , such that if we write Y for the normalization of

X in UY and E
def
= (D ×X Y )red ⊆ Y , then Y is a hyperbolic curve, and,

moreover, Y → X is ramified at each point of E with ramification index
equal to e. Here, we think of e as a fixed number that will be chosen below.

Write d′
def
= d · deg(Y/X). Then I claim that to complete the proof of the

implication “(ii) =⇒ (i)”, it suffices to verify the inequality

htωY
. (1 + ǫ′) · log-diffY

on UY (Q)≤d′ for arbitrary ǫ′ ∈ R>0. Indeed, suppose that this inequality
is satisfied for some ǫ′ ∈ R>0 such that (1 + ǫ′)2 ≤ 1 + ǫ. Then by choos-
ing appropriate normal, Z-proper, Z-flat models for Y , X, we may apply
Proposition 1.7, (i), to conclude that log-diffY . log-diffX + log-condD on

UY (Q)≤d′ ; moreover, by Proposition 1.7, (ii), it follows that by choosing e
to be sufficiently large, we may assume that deg(ωX(D)|Y ) = deg(ωY (E)) ≤
(1 + ǫ′) · deg(ωY ). But, by Proposition 1.4, (i), (ii), (iii), this implies that

htωX(D) . (1 + ǫ′) · htωY
on UY (Q)≤d′ . Thus, we conclude that

htωX(D) . (1 + ǫ′) · htωY
. (1 + ǫ′)2 · log-diffY

. (1 + ǫ′)2(log-diffX + log-condD)

. (1 + ǫ)(log-diffX + log-condD)

on UY (Q)≤d′ . Since every point of UX(Q)≤d clearly lifts to a point of

UY (Q)≤d′ , this completes the verification of the claim.
Thus, in summary, to complete the proof of Theorem 2.1, it suffices to

verify that (ii) implies (i) for data X, D, UX , d, ǫ as in (i) such that D = ∅.
To this end, let us suppose that the inequality

htωX
. (1 + ǫ) · log-diffX

is false on X(Q)=d. Let V ⊆ V(Q) be a finite subset that contains V(Q)arc

and [the subset of V (Q)non determined by] Σ. Then it follows immediately
from the compactness of the set of rational points of X over any finite exten-
sion of Qv for v ∈ V that there exists a subset Ξ ⊆ X(Q)=d, together with
a(n) [unordered] d-tuple of points Ξv of X(Qv) for each v ∈ V , such that
the inequality htωX

. (1 + ǫ) · log-diffX is false on Ξ, and, moreover, the
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[unordered] d-tuples of Q-conjugates of points ∈ Ξ converge, as [unordered]
d-tuples of points of X(Qv), to Ξv. Moreover, by the main result of [7] [cf.
[7], Theorem 2.5], there exists a “noncritical Belyi map”

φ : X → P

which is unramified over UP , and, moreover, “noncritical” at the points
of each Ξv [i.e., maps the points of each Ξv into UP (Qv)]. In particular,
[after possibly eliminating finitely many elements from Ξ] it follows that
there exists a compactly bounded subset KV ⊆ UP (Q) [i.e., whose bounding
domains are the unions of Galois-conjugates of images via φ of sufficiently
small compact neighborhoods of the points of Ξv in X(Qv), for v ∈ V ] such
that φ(Ξ) ⊆ KV .

Now set E
def
= φ−1(C)red ⊆ X [so φ∗ωP (C) ∼= ωX(E)]. Let ǫ′ ∈ R>0 be

such that the inequality

1 + ǫ′ ≤ (1 + ǫ) ·
(

1 − ǫ′ · deg(E)/deg(ωX)
)

is satisfied. Then by (ii), it follows that htωP (C) . (1 + ǫ′)(log-diffP +
log-condC) on φ(Ξ). On the other hand, by choosing appropriate normal,
Z-proper, Z-flat models for P , X, we may apply Proposition 1.7, (i) [where
we take “e” to be 1], to conclude that log-diffP + log-condC . log-diffX +
log-condE on Ξ. Also, we recall from Proposition 1.6 that log-condE .

htE
def
= htOX(E) on Ξ. Thus, by Proposition 1.4, (i), (iii), we compute to find

that

htωX
≈ htωX(E) − htE ≈ htωP (C) − htE

. (1 + ǫ′)(log-diffP + log-condC) − htE

. (1 + ǫ′)(log-diffX + log-condE) − htE

. (1 + ǫ′)(log-diffX + htE) − htE ≈ (1 + ǫ′) · log-diffX + ǫ′ · htE

≈ (1 + ǫ′) · log-diffX + ǫ′ · (deg(E)/deg(ωX)) · htωX

on Ξ, i.e., that htωX
. (1 + ǫ) · log-diffX on Ξ — in contradiction to our

hypothesis on Ξ. This completes the proof of Theorem 2.1. �

3. Full Special Linear Galois Actions on Torsion Points

In the present §3, we give various conditions on a prime l that ensure
that the image of the Galois representation on the l-power torsion points
of an elliptic curve over a number field is “rather large” [cf. Theorem 3.8].
In particular, we show that if one considers elliptic curves over number
fields of bounded degree that have at least one [nonarchimedean] prime of
potentially [bad] multiplicative reduction, then, if one excludes finitely many
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exceptional elliptic curves, it holds that for any prime number l of the order
of the height of the elliptic curve, the image of the associated Galois rep-
resentation in GL2(Zl) contains SL2(Zl). Here, the condition of having at
least one prime of potentially multiplicative reduction holds automatically,
with finitely many exceptions, if one restricts oneself to elliptic curves arising
from points of the moduli stack of elliptic curves that are contained in some
compactly bounded subset of the set of all points. In particular, for such a
prime number l, the elliptic curve will not have any rational torsion points
of order l. Thus, this result may be regarded as a sort of “poor man’s uni-
form boundedness conjecture” — now Merel’s theorem [cf. [6]] – although,
in fact, it is not strictly implied by Merel’s theorem. Alternatively, it may
be regarded as an effective version of a theorem of Serre [cf. [11], Chapter
IV, Theorem 3.2]. The proof is similar to that of Faltings’ proof of the Tate
Conjecture [cf. [4]], only technically much simpler. That is to say, the main
technique is essentially the standard one, going back to Tate, for proving
“Tate conjecture-type results”.

We begin by reviewing various well-known facts concerning the structure
of SL2(Fl), SL2(Zl), for l a prime number ≥ 5.

Lemma 3.1 (The Structure of SL2). Let l ≥ 5 be a prime number.
Then:

(i) Let G ⊆ SL2(Fl) be the subgroup generated by the matrices α
def
=

(1 1
0 1

)

,

β
def
=

(

1 0
1 1

)

. Then G = SL2(Fl).

(ii) The finite group SL2(Fl) has no nontrivial abelian quotients.

(iii) Let H ⊆ GL2(Fl) be a subgroup that contains the matrix α
def
=

(

1 1
0 1

)

,
as well as at least one matrix that is not upper triangular. Then SL2(Fl) ⊆
H.

(iv) Let J ⊆ GL2(Zl) be a closed subgroup whose image HJ in GL2(Fl)

contains the matrix α
def
=

(1 1
0 1

)

, as well as a matrix which is not upper
triangular. Then SL2(Zl) ⊆ J .

Proof. First, we consider assertion (i). Note that if µ, λ ∈ Fl, then βµ · αλ

[where we observe that this expression makes sense since both αl and βl are

equal to the identity matrix] takes the vector v
def
=

(

0
1

)

to
(

λ
µ·λ+1

)

. Thus, if

we let γ
def
=

(0 1
1 0

)

, then for any λ ∈ F×
l , there exists a gλ ∈ G such that

λ · γ · v =
(

λ
0

)

= gλ · v. In particular, we have λ · g1 · v = λ · γ · v = gλ · v, so

λ ·v ∈ G ·v. Thus, in summary, we have proven that (Fl×Fl)−{
(0
0

)

} ⊆ G ·v.
Now let us prove that an arbitrary element δ ∈ SL2(Fl) is contained in G.
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By the conclusion of the above argument, we may assume that δ ·v = v. But
this implies that δ is a lower triangular matrix all of whose diagonal entries
are equal to 1. Thus, δ is a power of β, hence contained in G, as desired.
This completes the proof of assertion (i).

Next, we consider assertion (ii). Let λ ∈ F×
l be such that λ2 6= 1. [Note

that such a λ exists since l ≥ 5.] Let ǫ
def
=

(

λ 0
0 λ−1

)

. Then ǫ · α · ǫ−1 · α−1 =

αλ2−1. Thus, α (and, similarly, β) is contained in the commutator subgroup
of SL2(Fl), so assertion (ii) follows from assertion (i). This completes the
proof of assertion (ii).

Next, we consider assertion (iii). Note that α generates an l-Sylow sub-
group S of GL2(Fl), and that the number of l-Sylow subgroups of GL2(Fl)
is precisely l + 1. Since the normalizer of S in GL2(Fl) is the set of upper
triangular matrices, and we have assumed that H contains at least one non-
upper triangular matrix, it follows that the number nH of l-Sylow subgroups
of H is ≥ 2. On the other hand, by the general theory of Sylow subgroups,
it follows that nH is congruent to 1 modulo l. Since 2 ≤ nH ≤ l + 1, we
thus obtain that nH = l + 1. In particular, in the notation of assertion (i),
we conclude that α, β ∈ H. Thus, by assertion (i), we have SL2(Fl) ⊆ H,
as desired. This completes the proof of assertion (iii).

Finally, we consider assertion (iv). By assertion (iii), we have that SL2(Fl)
⊆ HJ . Let J ′ ⊆ SL2(Zl) be the closure of the commutator subgroup of J .
Thus, by assertion (ii), J ′ surjects onto SL2(Fl). Now by [11], Chapter
IV, §3.4, Lemma 3, this implies that SL2(Zl) = J ′ ⊆ J , as desired. This
completes the proof of assertion (iv). �

Next, we consider the local theory at nonarchimedean primes. Let K be
a finite extension of Qp [where p is a prime number] with residue field k,
maximal ideal mK ⊆ OK , and valuation map vK : K× → Z [which we

normalize so that vK is surjective]; K an algebraic closure of K; GK
def
=

Gal(K/K); E → Spec(OK) a one-dimensional semi-abelian scheme over
OK such that the generic fiber EK of E is proper, while the special fiber Ek

of E is isomorphic to (Gm)k, the multiplicative group over k.
Let l be a prime number [possibly equal to p]; write

Ml(E)
def
= Hom(Z/l · Z, E(K))

for the “mod l” Tate module of EK . Thus, Ml(E) is [noncanonically!] iso-
morphic as an Fl-module to Fl × Fl, and, moreover, is equipped with a
continuous action by GK [induced by the natural action of GK on K]. Also,
it is well-known [cf., e.g., [5], Chapter III, Corollary 7.3] that Ml(E) fits into
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a natural exact sequence of GK-modules

0 → Fl(1) →Ml(E) → Fl → 0

— where the “(1)” is a Tate twist, and “Fl” is equipped with the trivial Ga-
lois action. Moreover, the extension class associated to this exact sequence
is precisely that obtained by extracting an l-th root of the Tate parameter
qE ∈ mK . The Tate parameter is an element of mK that is naturally associ-
ated to E and has the property that the subscheme OK/(qE) is equal to the
pull-back via the classifying morphism Spec(OK) → Mell — where we write
Mell for the moduli stack of one-dimensional semi-abelian varieties over Z

— of the divisor at infinity ∞M ⊆ Mell. Thus, the above exact sequence
splits if and only if qE has an l-th root in K. Note that in order for this to
happen, it is necessary that vK(qE) be divisible by l. In particular, we have
the following well-known result.

Lemma 3.2 (Local Rank One Subgroups of l-Torsion).

(i) Let
N ⊆Ml(E)

be a one-dimensional Fl-subspace which is stabilized by GK . Then either
vK(qE) ∈ l · Z, or N is equal to the submodule Fl(1) ⊆ Ml(E) of the above
exact sequence.

(ii) The submodule Fl(1) ⊆ Ml(E) of the above exact sequence defines
a finite, flat subgroup scheme µl ⊆ E over OK , whose quotient we denote

by E′ def
= E/µl. [Thus, E′ → Spec(OK) is a one-dimensional semi-abelian

scheme over OK whose generic fiber is proper, and whose special fiber is
isomorphic to (Gm)k.] The Tate parameter qE′ of E′ satisfies the relation
qE′ = ql

E; in particular, we have

deg∞(E′) = l · deg∞(E)

— where we write deg∞(E)
def
= log(#(OK/(qE))) ∈ R.

Definition 3.3. We shall refer to the positive integer vK(qE) ∈ Z>0 as the
local height of E [or EK ].

Remark 3.3.1. Note that even if EK only has potentially multiplicative re-
duction, one may define the local height of EK as the element ∈ Q computed
by dividing the local height of EK×KL for some finite extension L of K over
which EK has multiplicative reduction by the ramification index of L/K [so
one verifies immediately that this definition is independent of the choice of
L].
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Next, let F ⊆ Q be a number field, E → Spec(OF ) a one-dimensional
semi-abelian variety whose generic fiber EF is proper. Also, for simplicity,
we assume that F is totally imaginary. Thus, EF is an elliptic curve over F .
Let us write ωE for the finite, flat OF -module of rank one consisting of the
invariant differentials on E. If v ∈ V(F )arc, then we get a natural metric on

(ωE)v
def
= (ωE) ⊗F Fv by integration: if α ∈ (ωE)v, then

|α|2
def
=

∫

Ev

α ∧ α

— where Ev
def
= E ×F Fv, and α is the complex conjugate of α. Thus, by

equipping ωE with this metric at the archimedean places of F , we obtain an
arithmetic line bundle ωE on Spec(OF ). Let us write

htFalt(E)
def
= degF (ωE) ∈ R

for the so-called Faltings height of the elliptic curve E.
Next, let us observe that E → Spec(OF ) defines a classifying morphism

φ : Spec(OF ) → Mell

— where we write Mell for the moduli stack of one-dimensional semi-abelian
varieties over Z. As is well-known, this stack has a “divisor at infinity”
∞M ⊆ Mell, whose complement Mell ⊆ Mell is the moduli stack of elliptic
curves over Z. Set

deg∞(E)
def
= degF (∞E) ∈ R

— where we write ∞E
def
= φ−1(∞M) ⊆ Spec(OF ).

Although the algebraic stack Mell is not a scheme, it is nevertheless nor-
mal, Z-proper, and Z-flat. Thus, one verifies immediately that the theory of
§1 extends immediately to the case of Mell; in particular, one may consider
functions on subsets of Mell(Q), BD-classes of such functions, and height
functions on Mell(Q) associated to arithmetic line bundles on Mell. Write

ht∞

for the BD-class of height functions determined by the line bundle
OMell

(∞M). Also, we observe that if we write [E] ∈ Mell(Q) for the iso-

morphism class determined by E, then we may regard [E] 7→ htFalt([E])
def
=

htFalt(E), [E] 7→ deg∞([E])
def
= deg∞(E) as functions on Mell(Q). Now we

have the following well-known result.

Proposition 3.4 (Faltings Heights and the Divisor at Infinity). For
any ǫ ∈ R>0, we have

deg∞ . ht∞ . 12(1 + ǫ) · htFalt . (1 + ǫ) · ht∞
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on Mell(Q). In particular, if C ∈ R, then the set of points [E] ∈ Mell(Q)≤d

such that htFalt([E]) ≤ C is finite.

Proof. The first “.” follows immediately from the definitions [cf. the proof
of Proposition 1.6]. The remaining “.’s” follows from [13], Proposition 2.1
[cf. also the discussion in the proof of [5], Chapter V, Proposition 4.5, of the
logarithmic singularities at infinity of the metric defined on “ωE”, as one
allows “E” to vary in Mell(Q); the proof of [12], Proposition 8.2]. Finally,
the finiteness assertion follows immediately from the inequalities already
shown, together with Proposition 1.4, (iv). �

Lemma 3.5 (Global Rank One Subgroups of l-Torsion). Let ǫ ∈ R>0;
l a prime number; HF ⊆ EF a subgroup scheme such that HF ×F Q is
isomorphic to the constant group scheme determined by Z/l · Z. We shall

call such a subgroup scheme HF l-cyclic. Write (EH)F
def
= EF /HF . [Thus,

(EH)F is isogenous to EF , hence has semi-stable reduction at all the
finite primes of F and extends to a one-dimensional semi-abelian scheme
EH → Spec(OF ).] Suppose further that l is prime to the local heights of
E at all of its primes of [bad] multiplicative reduction [a condition that is
satisfied, for instance, if l is > these local heights]. Then we have

1

12(1 + ǫ)
l · deg∞(E) ≤ htFalt(E) + 2 log(l) + C

for some constant C ∈ R which [may depend on ǫ but] is independent of
E, F , HF , and l.

Proof. Note that the assumption on l implies, by Lemma 3.2, (i), that at all
the primes of multiplicative reduction, HF corresponds to the subspace Fl(1)
of Lemma 3.2, (i). Thus, at primes of multiplicative reduction, EH may be
identified with the elliptic curve “E′” of Lemma 3.2, (ii). In particular, it
follows that deg∞(EH) = l · deg∞(E). On the other hand, the degree l cov-
ering morphism EF → (EH)F extends [cf., e.g., [5], Chapter I, Proposition
2.7] to a morphism E → EH . Thus, we have a natural inclusion ωEH

⊆ ωE

whose cokernel is annihilated by l. Moreover, since integrating a (1, 1)-form
over Ev differs from integrating over (EH)v by a factor of l, we conclude

that htFalt(EH) = deg(ωEH
) ≤ deg(ωE) + 2 · log(l) = htFalt(E) + 2 · log(l).

Thus, Lemma 3.5 follows from Proposition 3.4. �

Before continuing, we observe the following result.
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Lemma 3.6 (An Elementary Estimate). Let ǫ ∈ R>0. Then there exists
a constant C0 ∈ R>0 such that for all x, y ∈ R such that y ≥ 1 and
x ≥ C0y

1+ǫ, it holds that x ≥ y · log(x).

Proof. This follows immediately from the well-known elementary fact that
x1/(1+ǫ) · log(x)/x = log(x) · x−ǫ/(1+ǫ) → 0 as x→ ∞. �

Lemma 3.7 (Finite Exceptional Sets). Let KV ⊆ Mell(Q) be a com-
pactly bounded subset, ǫ ∈ R>0. Then there exists a constant C ∈ R>0

and a Galois-finite [cf. Example 1.3, (i)] subset Exc ⊆ Mell(Q) that satisfy
the following property: Let EL be an elliptic curve over a number field L

with semi-stable reduction at all the finite primes of L; d
def
= [L : Q];

[EL] ∈ Mell(Q) the point determined by EL; l a prime number. Consider
the following two conditions on the above data:

(a) l ≥ 100d · (htFalt([EL]) + C · dǫ), and EL has at least one prime of
[bad] multiplicative reduction;

(b) [EL] ∈ KV , and l is prime to the local heights of EL at all of its
primes of multiplicative reduction.

Then if (a) is satisfied, then l is > the local heights of EL at all the primes
of multiplicative reduction. If (b) is satisfied, and [EL] 6∈ Exc, then EL has at
least one prime of multiplicative reduction. If either (a) or (b) is satisfied,
and, moreover, EL admits an l-cyclic subgroup scheme HL ⊆ EL, then
[EL] ∈ Exc.

Proof. First, observe that if v is any local height of EL, then d ·deg∞([EL]) ≥
v · log(2). Next, let us observe that by Proposition 3.4, for an appropriate

choice of C, we may assume that htFalt([EL]) + C · dǫ ≥ htFalt([EL]) + C ≥
1
14 · deg∞([EL]) [i.e., where we take “12(1 + ǫ)” to be 14]. Thus, condition
(a) implies that

l ≥
100d

14
· deg∞([EL]) ≥

(100 · log(2)

14

)

· v > v

— i.e., that l is > the local heights of EL at all the primes of multiplicative
reduction. On the other hand, if condition (b) is satisfied, and, moreover EL

has no primes of multiplicative reduction [so deg∞([EL]) = 0], then the fact
that [EL] ∈ KV implies that ht∞([EL]) is bounded [independently of L, EL,
l], so, by Proposition 1.4, (iv), [EL] belongs to some [fixed] finite exceptional
set Excd [which we think of as Exc

⋂

Mell(Q)≤d], as desired.
For the remainder of the present proof, let us assume that either (a) or

(b) is satisfied [so l is prime to the local heights of EL], and that EL admits
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an l-cyclic subgroup scheme HL ⊆ EL. Thus, by Lemma 3.5, we conclude
that

l

14
· deg∞([EL]) ≤ htFalt([EL]) + 2 · log(l) + C ′ (†)

for some constant C ′ ∈ R [i.e., “C”] as in Lemma 3.5.
Now suppose that condition (a) is satisfied. Let C0 be as in Lemma 3.6.

Then let us observe that if we choose C sufficiently large [cf. Proposition
3.4] that the inequality of condition (a) implies that l ≥ C0(

56d
log(2))

1+ǫ, then

by Lemma 3.6 [where we take “x” to be l, and “y” to be 56d
log(2) ], we conclude

that l ≥ 56d·log(l)
log(2) , hence that

l

14
· deg∞([EL]) ≤ htFalt([EL]) +

l · log(2)

28d
+ C ′ (‡)

[i.e., by substituting into (†)]. Now since EL has at least one prime of
bad reduction, it follows that log(2) ≤ d · deg∞([EL]). Thus, substituting

into (‡), we obtain that l·log(2)
28d ≤ htFalt([EL]) + C ′. On the other hand,

log(2)
28 ≥ 2

100 , and, by assumption, l ≥ 100d · htFalt([EL]), so, by substituting,

we obtain that 2 htFalt([EL]) ≤ htFalt([EL])+C ′, i.e., that htFalt([EL]) ≤ C ′.
But this implies, by Proposition 3.4, that [EL] belongs to some [fixed] finite
exceptional set Excd [which we think of as Exc

⋂

Mell(Q)≤d], as desired.
Now suppose that condition (b) is satisfied. Recall that by definition,

ht∞([EL]) may be computed as the sum of deg∞([EL]) and an archimedean
term which, in the present situation, is bounded, since [EL] ∈ KV . In par-
ticular, by modifying C ′ — in a fashion that depends on KV ! — and apply-
ing Proposition 3.4, we may assume that deg∞([EL]) ≥ ht∞([EL]) − C ′ ≥
7 ·htFalt([EL])− 2C ′. Thus, by substituting into (†) [and perhaps modifying
C ′ again], we obtain that

l

2
· htFalt([EL]) ≤

l

14
· deg∞([EL]) + l · C ′ ≤ htFalt([EL]) + 3l · C ′

— i.e., [since we may assume that C was chosen so that l ≥ 5] that l ·
htFalt([EL]) ≤ 2(l− 2)htFalt([EL]) ≤ 12l ·C ′, so htFalt([EL]) ≤ 12 ·C ′. Thus,
again we conclude by Proposition 3.4 that [EL] belongs to some [fixed] finite
exceptional set Excd [which we think of as Exc

⋂

Mell(Q)≤d], as desired. �

Theorem 3.8 (Full Special Linear Galois Actions). Let Q be an al-
gebraic closure of Q, KV ⊆ Mell(Q) a compactly bounded subset [cf.
Example 1.3, (ii)], ǫ ∈ R>0. Then there exist a constant C ∈ R>0 and a
Galois-finite [cf. Example 1.3, (i)] subset Exc ⊆ Mell(Q) that satisfy the
following property:
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Let EL be an elliptic curve over a number field L ⊆ Q such that the iso-

morphism class [EL] ∈ Mell(Q) of EL does not belong to Exc; d
def
= [L : Q];

l a prime number such that [at least] one of the following two conditions
is satisfied:

(a) l ≥ 23040 · 100d · (htFalt([EL]) + C · dǫ), and EL has at least one
prime of potentially multiplicative reduction;

(b) [EL] ∈ KV , and l is prime to the local heights of EL at all of its
primes of potentially multiplicative reduction [cf. Remark 3.3.1], as
well as to the number 2 · 3 · 5 = 30.

Then the image of the Galois representation Gal(Q/L) → GL2(Zl) associ-
ated to EL contains SL2(Zl).

Proof. First, let us observe that for an EL as in the statement of Theo-

rem 3.8, there exists a Galois extension L′ of L of degree that divides d0
def
=

(32−1)(32−3)(52−1)(52−5) = 23040 [i.e., the order of GL2(F3)×GL2(F5)],
so as to render the 3- and 5-torsion points of EL rational over L′ [which has
the effect of eliminating automorphisms of elliptic curves in all character-

istics], we may assume that EL′

def
= EL ×L L

′ has semi-stable reduction at
all of the finite primes of L. [Here, we note that passing to such a Galois
extension of L only affects the prime decomposition of the local heights via
the primes that divide d0, of which there are only finitely many, namely, 2,
3, and 5.] Next, let us observe that for a suitable choice of C ∈ R>0 and
Exc ⊆ Mell(Q), if EL and l satisfy condition (a) (respectively, (b)) of the
statement of Theorem 3.8, then EL′ and l satisfy condition (a) (respectively,
(b)) of Lemma 3.7 [perhaps for a different “C”]. Thus, [cf. the portion of
Lemma 3.7 that asserts that “l is > the local heights”] for EL, l as in the
statement of Theorem 3.8, the local height of EL′ at a finite prime of L′ of
multiplicative reduction is not divisible by l. Note, moreover, that at least
one such finite prime exists [cf. the content of condition (a); Lemma 3.7 in
the case of condition (b)]. Thus, it follows from the discussion of the local
theory preceding Lemma 3.2 that the image of Galois in GL2(Fl) contains

the element “α” of Lemma 3.1, (iv), i.e.,
(

1 1
0 1

)

. On the other hand, by the
portion of Lemma 3.7 concerning l-cyclic subgroup schemes, it follows that
the image of Galois in GL2(Fl) contains at least one matrix which is not
upper triangular. Thus, we conclude from Lemma 3.1, (iv), that the image
of Galois in GL2(Zl) contains SL2(Zl), as desired. �
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4. Primes of Prescribed Size

In the present §4, we combine the full Galois action result given in Theo-
rem 3.8 with some classical analytic number theory to give versions of The-
orem 3.8 [cf. Corollaries 4.3, 4.4] that assert the existence of bounded prime
numbers l satisfying various properties, such as the property of being dis-
tinct from various prime numbers that are, in some sense, “characteristic”
to the elliptic curve under consideration.

We begin by reviewing the following result in classical analytic number
theory.

Lemma 4.1 (The Existence of Primes of Prescribed Size). Write
R′

>0 ⊆ R>0 for the complement in R>0 of the set of prime numbers;

θ(x)
def
=

∑

p<x

log(p)

— where the sum is over prime numbers p < x — for x ∈ R′
>0. Let M be

a positive integer; ǫ, xǫ, Cǫ ∈ R>0 such that 0 < ǫ < 1
4 , ǫ · xǫ > Cǫ, and,

moreover, we have:

(i) 5
4 · x+ Cǫ > θ(x), for all x ∈ R′

>0; θ(x) > (1 − ǫ)x, for all x ∈ R′
>0

such that x ≥ xǫ;
(ii) M · log(x) ≤ ǫ · x, for all x ∈ R>0 such that x ≥ xǫ.

Also, let us write

xA
def
=

∑

p∈A

log(p)

for any finite set of prime numbers A. Then for any nonnegative h ∈ R

and any finite set of prime numbers A such that xA > xǫ, there exist M
distinct prime numbers p1, . . . , pM such that pj 6∈ A, and h ≤ pj ≤
(1 + 6ǫ) · xA + 8h, for j = 1, . . . ,M .

Proof. Indeed, write δ
def
= 6ǫ, yA

def
= (1 + δ) · xA + 8h, and suppose that

the conclusion of Lemma 4.1 is false. Then it follows that there exists
an offending finite set of primes A such that xA > xǫ, and, moreover, all
prime numbers p such that h ≤ p ≤ yA belong — with M − 1 possible
exceptions — to A. But then it follows from the definitions that xA ≥
−(M−1) · log(yA)−θ((1+δ)h)+θ(yA) ≥ −M · log(yA)−θ((1+δ)h)+θ(yA).
Thus, we compute:

xA ≥ −M · log(yA) − θ((1 + δ)h) + θ(yA)

≥ −ǫ · yA − 5(1 + δ)h/4 − Cǫ + (1 − ǫ) · yA
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= (1 − 2ǫ) · yA − 5(1 + δ)h/4 − Cǫ

= (1 + δ − 2ǫ− 2δ · ǫ) · xA + 8(1 − 2ǫ)h− 5(1 + δ)h/4 − Cǫ

≥ (1 + δ/2 − 2ǫ) · xA + 4h− 5(1 + δ)h/4 − Cǫ

≥ xA + (ǫ · xA − Cǫ) + (4h− 5(1 + δ)h/4)

— a contradiction, since ǫ · xA > ǫ · xǫ > Cǫ, 5(1 + δ)/4 < 4. Note that
here we may assume without loss of generality that yA, (1 + δ)h ∈ R′

>0, for
instance by replacing δ, h by real numbers slightly greater than the given δ,
h — which does not affect the above argument in any substantive way. �

Remark 4.1.1. The issue of finding ǫ, xǫ, Cǫ which satisfy condition (ii) of
Lemma 4.1 is entirely elementary. On the other hand, with regard to con-
dition (i), the fact that θ(x)/x→ 1 as x → ∞ is a well-known consequence
of the prime number theorem of classical analytic number theory — cf., e.g.,
[1], p. 76.

Lemma 4.2 (Some Elementary Estimates). Let n be a positive integer;
p1, . . . , pn prime numbers; h1, . . . , hn positive integers. Then we have

∑n
j=1 log(pj) ≤ h

∑n
j=1 log(hj) ≤

∑n
j=1 log(hj + 1) ≤ 3h/2

— where h
def
=

∑n
j=1 hj · log(pj).

Proof. Indeed, the first and second inequalities are immediate; the third
inequality follows from the easily verified fact that log(H + 1) ≤ (3H/2) ·
log(2) for any positive integer H. �

Corollary 4.3 (Full Galois Actions for Degenerating Elliptic Curves).
Let Q an algebraic closure of Q; ǫ ∈ R>0. Then there exists a constant
C ∈ R>0 and a Galois-finite [cf. Example 1.3, (i)] subset Exc ⊆ Mell(Q)
which satisfy the following property:

Let EL be an elliptic curve over a number field L ⊆ Q, where L is a
minimal field of definition of the point [EL] ∈ Mell(Q), and [EL] 6∈ Exc;
S a finite set of prime numbers. Suppose that EL has at least one

prime of potentially multiplicative reduction. Write d
def
= [L : Q];

xS
def
=

∑

p∈S log(p). Then there exist prime numbers l◦, l• 6∈ S which sat-
isfy the following conditions:
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(a) l◦, l• are prime to the primes of potentially multiplicative re-
duction, as well as to the local heights, of EL. Moreover, l• is
prime to the primes of Q that ramify in L, as well as to the ram-
ification indices of primes of Q in L.

(b) The image of the Galois representation Gal(Q/L) → GL2(Zl◦)
associated to EL contains SL2(Zl◦). The Galois representation
Gal(Q/L) → GL2(Zl•) associated to EL is surjective.

(c) The inequalities

l◦ ≤ 23040 · 900d · htFalt([EL]) + 2xS + C · d1+ǫ

l• ≤ 23040 · 900d · htFalt([EL]) + 6d · log-diffMell
([EL])) + 2xS + C · d1+ǫ

hold.

Proof. First, let us observe that if EL is as in the statement of Corollary
4.3, and l is any prime number that is unramified in L, then the image of
the Galois representation Gal(Q/L) → GL2(Zl) associated to EL contains
SL2(Zl) if and only if the Galois representation Gal(Q/L) → GL2(Zl) is
surjective. [Indeed, this follows immediately from the well-known fact that
the field extension Q(ζl∞)/Q obtained by adjoining the l-th power roots of
unity to Q is totally ramified over the prime l, hence linearly disjoint from
the extension L/Q.] Thus, by applying Theorem 3.8 — relative to condition
(a) of Theorem 3.8 — we conclude that to complete the proof of Corollary
4.3, it suffices to show the existence of prime numbers l◦, l• that satisfy the
conditions (a), (c), and, moreover, are ≥ 23040 ·100d · (htFalt([EL])+C ′ ·dǫ),
where C ′ ∈ R>0 is a constant [i.e., the “C” of Theorem 3.8].

Now let us write S◦ for the union of S, the primes of Q that lie under
primes of potentially multiplicative reduction of EL, and the primes that
appear in the prime decomposition of the local heights of EL; write S• for
the union of S◦, the primes of Q that ramify in L, and the primes that
divide the ramification indices of primes of Q in L. Thus, [in the notation
of Lemma 4.1] we conclude from Lemma 4.2 and Proposition 3.4 that

xS◦
≤ xS + (1 + 3/2) · 23040d · deg∞([EL])

≤ xS + 3 · 12 · 23040d · htFalt([EL]) + d · C ′′

— where we take the “1 + ǫ” of Proposition 3.4 to be 6/5; C ′′ arises from
the constant implicit in the inequalities of BD-classes in Proposition 3.4; the
“h” of Lemma 4.2 corresponds to 23040d · deg∞([EL]) [cf. the meaning of
“d0 = 23040” in the proof of Theorem 3.8]. In a similar vein, since [as is
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easily verified, by considering the trace of an extension of number fields] the
primes appearing in the arithmetic divisor that gives rise to “log-diffMell

” [cf.

Definition 1.5, (iii)] appear with multiplicity ≥ one less than the ramification

indices of L/Q, we conclude that xS•
≤ xS +3 ·12 ·23040d ·htFalt([EL])+3d ·

log-diffMell
([EL])) + d ·C ′′. Now we apply Lemma 4.1 by taking “M” to be

1, “1+6ǫ” to be 2, “h” to be 23040 ·100d · (htFalt([EL])+C ′ ·dǫ), and “A” to
be S◦ or S• [and applying the estimate 2 · 3 · 12+8 · 100 ≤ 100+800 = 900];
here, we observe that by enlarging S [and possibly increasing the “C” of
condition (c)], we may always assume that xǫ ≤ xS (≤ xS◦

≤ xS◦
). Thus,

the existence of l◦, l• as desired follows immediately from Lemma 4.1 [cf.
also Remark 4.1.1]. �

Corollary 4.4 (Full Galois Actions for Compactly Bounded Sub-
sets). Let Q an algebraic closure of Q; KV ⊆ Mell(Q) a compactly
bounded subset [cf. Example 1.3, (ii)]. Then there exists a constant
C ∈ R>0 and a Galois-finite [cf. Example 1.3, (i)] subset Exc ⊆ Mell(Q)
which satisfy the following property:

Let EL be an elliptic curve over a number field L ⊆ Q, where L is
a minimal field of definition of the point [EL] ∈ Mell(Q), [EL] ∈ KV ,

and [EL] 6∈ Exc; S a finite set of prime numbers. Write d
def
= [L : Q];

xS
def
=

∑

p∈S log(p). Then there exist prime numbers l◦, l• 6∈ S which satisfy
the following conditions:

(a) l◦, l• are prime to the primes of potentially multiplicative re-
duction, as well as to the local heights, of EL. Moreover, l• is
prime to the primes of Q that ramify in L, as well as to the ram-
ification indices of primes of Q in L.

(b) The image of the Galois representation Gal(Q/L) → GL2(Zl◦)
associated to EL contains SL2(Zl◦). The Galois representation
Gal(Q/L) → GL2(Zl•) associated to EL is surjective.

(c) The inequalities

l◦ ≤ 23040 · 100d · htFalt([EL]) + 2xS + C · d

l• ≤ 23040 · 100d · htFalt([EL]) + 6d · log-diffMell
([EL])) + 2xS + C · d

hold.
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Proof. The proof is entirely similar to [but slightly easier than] the proof of
Corollary 4.3, except that instead of applying condition (a) of Theorem 3.8,
we apply condition (b) of Theorem 3.8. Also, when applying Lemma 4.1,
we take “h” to be 0. �

Remark 4.4.1. Typically, in computations of arithmetic degrees, such as
heights [i.e., “htFalt(−)”, etc.], the terms that appear in a sum that com-
putes the arithmetic degree are not terms that are “polynomial in l”, but
rather terms that are linear in log(l). Thus, in the context of Corollaries
4.3, 4.4, if l is equal to l◦ or l•, then log(l) is of the order of

log(htFalt(−)) + (1 + ǫ) log(d)
or

log(htFalt(−)) + log(log-diffMell
(−)) + (1 + ǫ) log(d)

— hence asymptotically bounded by

ǫ · (htFalt(−) + d)
or

ǫ · (htFalt(−) + log-diffMell
(−) + d)

— for ǫ > 0.

Remark 4.4.2. Let UP ⊆ P be as in Theorem 2.1, (ii). Thus, by regarding
UP as the “λ-line” [i.e., regarding the standard coordinate on P as the “λ” in
the Legendre form “y2 = x(x−1)(x−λ)” of the Weierstrass equation defining
an elliptic curve], one obtains a natural finite étale [classifying] morphism
UP → Mell×Z Q. Then one verifies immediately that [relative to the elliptic
curves obtained from points ∈ UP (Q) via this classifying morphism] one
obtains a result entirely similar to Corollary 4.4 by replacing “Mell ⊆ Mell”
by UP ⊆ P . In particular, in the context of Theorem 2.1, (ii), one may
always assume the existence of prime numbers l◦, l• as in [this UP ⊆ P
version of] Corollary 4.4.
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73 (1983), pp. 349-366.
[5] G. Faltings and C.-L. Chai, Degenerations of Abelian Varieties, Springer (1990).
[6] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres,

Invent. Math. 124 (1996), pp. 437-449.
[7] S. Mochizuki, Noncritical Belyi Maps, Math. J. Okayama Univ. 46 (2004), pp. 105-113.



28 SHINICHI MOCHIZUKI

[8] S. Mochizuki, Galois Sections in Absolute Anabelian Geometry, Nagoya Math. J. 179

(2005), pp. 17-45.
[9] S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic curves, J.

Math. Kyoto Univ. 47 (2007), pp. 451-539.
[10] S. Mochizuki, Topics in Absolute Anabelian Geometry II: Decomposition Groups,

RIMS Preprint 1625 (March 2008).
[11] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, Benjamin (1968).
[12] J.H. Silverman, The Theory of Height Functions in Arithmetic Geometry, ed. by G.

Cornell and J.H. Silverman, Springer (1986).
[13] J.H. Silverman, Heights and Elliptic Curves in Arithmetic Geometry, ed. by G. Cornell

and J.H. Silverman, Springer (1986).
[14] L. Szpiro, Degrés, intersections, hauteurs in Astérisque 127 (1985), pp. 11-28.
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