Math. J. Okayama Univ. 51 (2009), 71-81

LINKAGE AND DUALITY OF MODULES

KENJI NISHIDA

ABSTRACT. Martsinkovsky and Strooker [13] recently introduced mod-
ule theoretic linkage using syzygy and transpose. This generalization
brings possibility of much application of linkage, especially, to homo-
logical theory of modules. In the present paper, we connect linkage of
modules to certain duality of modules. We deal with Gorenstein di-
mension, Cohen-Macaulay modules over a Gorenstein local ring using
linkage and generalize the results to non-commutative algebras.

1. INTRODUCTION

The theory of linkage, devised by Peskine and Szpiro[16], is recently
generalized to module theoretic version by Martsinkovsky and Strooker in
[13]. They generalize the theory for wide class of rings, including non-
commutative semiperfect Noetherian rings. The use of composition of two
sort of functors, syzygy and transpose, enables them to extend the defini-
tion of linkage. These functors are fundamental for homological theory of
Noetherian rings. There appears a relation to the duality theory introduced
and studied by Auslander and Bridger[l] and Iyamal[ll], that is, vanishing
of certain extension group is equivalent to existence of linkage for a dual of
a module.

In section two, we shall apply this fact to Gorenstein dimension and
Cohen-Macaulayness of modues, mainly over commutative Gorenstein lo-
cal ring, and obtain characterization of these notions by linkage. A duality
studied by Iyama[ll] can be applicable to the full subcategory of Cohen-
Macaulay modules of codimension £ > 0 over a Gorenstein local ring. We
decide the image of this subcategory and give a characterization of a Cohen-
Macaulay module of codimension k& > 0 (Theorem 2.6, Corollary 2.7).

In section three, we make an attempt to gerenalize the results of section
two to non-commutative Noetherian ring. It is desirable that a candidate
satisfies the equations (2.1) and (2.2) in section two. A module-finite Goren-
stein algebra studied in [8] satisfies them. Therefore, we treat such algebras
and show that these equations hold. We find that similar proof works for
module-finite Gorenstein algebras and get the same results as in section
two. The equation (2.1), called Auslander-Bridger Formula, is proved in
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many ways. Among others, we use the original version of [1] to prove it.
To do so, we dissolve a question, proposed by [14], about the proof of this
formula in [1] (see Remark 3.4.1).

2. LINKAGE AND DUALITY

Let A be a left and right Noetherian ring. Let modA (respectively,
modA°P) be the category of all finitely generated left (respectively, right) A-
modules. Throughout the paper, all modules are finitely generated and left
modules (if the ring is non-commutative) and right modules are considered
as A°P-modules. We denote the stable category by modA, the syzygy functor
by €2 : modA — modA, and the transpose functor by Tr : modA — modA°P.
Recall the definition of the functor Tr ([1], Chapter two, section 1 where it

is denoted by D, or [2], Chapter IV, section 1). Let P EN Ph— M —0
be a projective resolution of a module M € modA. Then the transpose of
M, TrM € modA°P, is equal to Cokf*, where (—)* : modA — modA®P is
defined by M* := Homp (M, A).

In order to relate linkage and duality, we combine the above functors.
One is the functor T}, := TrQQ*~! for k > 0 which was firstly introduced by
Auslander and Bridger [1] to define and study the (homological) torsion-
freeness and reflexivity, and recently used by Iyama [11] to define a duality
between some full subcategories given by grade. An another tool, an op-
erator A\ := QTr, is introduced in the nice article by Martsinkovsky and
Strooker [13]. Using the operator A, they defined the notion of linkage of
modules.

Let A be a semiperfect ring and M, N are finitely generated A-modules
having no nonzero projective direct summands. Then M = N in modA
if and only if M = N in modA (e.g., [6], 25.1.5 Corollary). Then AM is
determined up to isomorphism for a finitely gererated A-module M.

Throughout the paper, we assume that the underlying rings are always
semiperfect. It is well-known that a commutative local ring ([17], Theorem
4.46) and a module-finite algebra over a commutative Noetherian complete
local ring ([5], p.132) are semiperfect.

Following [13], we define

2.1. DEFINITION. A finitely generated A-module M and a A°°’-module N
are said to be horizontally linked if M = AN and N = AM, in other words,
M is horizontally linked (to AM) if and only if M =2 \2M.

A rather different definition of linkage of modules is proposed by Yoshino
and Isogawa [18]. However, both definitions coincide for Cohen-Macaulay
modules over a commutative Gorenstein ring (see [13], section 3).
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It is noted in [13], that a projective module is horizontally linked if and
only if it is isomorphic to the zero module (the statement after [13], Defi-
nition 3). We also note that, for a finitely generated A-module M having
no nonzero projective direct summands, if the projective dimension of TrM
equals one, i.e. M* = 0, then M is horizontally linked if and only if M is
isomorphic to the zero module.

Let us start with the following simple observation which connect duality
with linkage.

2.2. PROPOSITION. Let k > 0. Then T, M is horizontally linked if and
only if Extk (M, A) = 0.

Proof. This is a direct consequence of the definition of linkage and the
following exact sequence:

0 — BExtk (M, A) — T,M — N°T,M — 0,
which is given in [11], section 2 or [10], the proof of Lemma 2.1. [J

We prepare the facts about Gorenstein dimension from [1] and [4], Chap-
ter 1. A A-module M is said to have G-dimension zero, denoted by G-
dimyM = 0, if M* = M and Extk(M,A) = Extk.,(M* A) = 0 for
k > 0. This is equivalent to ‘Extk(M,A) = Extk.,(TrM,A) = 0 for
k > 0 ([1], Proposition 3.8). For a positive integer k, we say that M
has G-dimension less than or equal to k, denoted by G-dimyM < k, if
there exists an exact sequence 0 — G — -+ — Gy — M — 0 with
G-dimpG; = 0 for (0 < i < k). It follows from [1], Theorem 3.13 that
G-dimpy M < k if and only if G-dimpaQ*M = 0. If G-dimpyM < oo, then
G-dimp M = sup{k : Extk (M, A) # 0}([1], p. 95 or [4], (1.2.7)).

Invariance of G-dimension under linkage is studied in [13].

2.3. THEOREM([13], Theorem 1). Let A be a semiperfect right and left
Noetherian ring and M a A-module having no nonzero projective direct
summands. Then the following conditions are equivalent.

(1) G-dimpy M = 0,
(2) G-dimper AM = 0 and M is horizontally linked.

In the rest of this section, we consider a commutative ring case and apply
the above results to Cohen-Macaulay modules over a commutative Goren-
stein local ring. See [3] for Cohen-Macaulay rings and modules and Goren-
stein rings.
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Let R be a (commutative) Gorenstein local ring and M a finitely generated
R-module. Then there are the following useful equalities:

(2.1) G-dimgrM + depthM = dim R
(2.2) gradepM + dim M = dim R,
where gradep M := inf{k > 0 : Ext% (M, R) # 0}. The first equality is due

to [1], Theorems 4.13 and 4.20 and the second one to [15], Lemma 4.8. (See
also [8], Proposition 4.11.)

The combination of linkage and duality produces the following character-
ization of a maximal Cohen-Macaulay module which improves [13], Propo-
sition 8.

2.4. THEOREM. Let R be a Gorenstein local ring and M a finitely gen-
erated R-module having no nonzero projective direct summands. Then the
following are equivalent

(1) M is a maximal Cohen-Macaulay module,
(2) Ty M is horizontally linked for k > 0,

(3) AM is a maximal Cohen-Macaulay module and M is horizontally
linked.

Proof. (1) < (2): Since R is Gorenstein, M is maximal Cohen-Macaulay
if and only if G-dimgM = 0. This is equivalent to Ext% (M, R) = 0 for
k # 0 by [1], Theorem 4.20. Thus (1) < (2) follows from Proposition 2.2.

(1) & (3):This is a direct consequence of Theorem 2.3. [

By the above theorem, G-dimension is described using linkage.

2.5. PROPOSITION. Let R be a Gorenstein local ring and M a finitely
generated module. Then G-dimpM < k if and only if T; ;M is horizontally
linked for i > 0.

Proof. T, M is horizontally linked for i > 0 < T;QQ*M is horizontally
linked for i > 0 < G-dimpQFM = 0 < G-dimpM < k. O

We apply duality theory on a non-commutative Noetherian ring due to
Iyama [11] to the category of Cohen-Macaulay modules. Suppose that A
is a right and left Noetherian ring. Then the functor T} gives a duality
between the categories {X € modA : grade, X > k} and {Y € modA°P :
rgrade,op Y > k and pdyopY < k} [11], 2.1.(1), where rgradeporY := {k >
0 : ExtRo, (Y, A) # 0} stands for a reduced grade of Y [9]. Returning to our
case, we consider a commutative Noetherian local ring R and a finitely gen-
erated R-module M. Then it holds that G-dimpM > graderp M, in general.
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Moreover, if G-dimgpM < oo, then M is a Cohen-Macaulay module if and
only if G-dimpM = graderhM by the equations (2.1) and (2.2). Thus we
can apply the above duality to the category of Cohen-Macaulay R-modules.

A finitely generated module M over a Cohen-Macaulay local ring R is
called a Cohen-Macaulay module of codimension k, if depthM = dim M =
dim R — k. Put the full subcategory of modR

Cr := {M € modR : M is a Cohen-Macaulay R-module of codimension k}.

In order to give a duality, we need a counterpart of the category Cp. We
put the full subcategory of modR

rgradep N = pdpN = k and
A2N is a maximal Cohen-Macaulay module [ ’

C,/C = {N € modR :

where pdp N stands for a projective dimension of N. Let C,,, respectively
Cj» be the full subcategory of modR induced from Cy, respectively Cj..

2.6. THEOREM. Let R be a Gorenstein local ring. Let k > 0. Then the
functor Ty, gives a duality between full subcategories C;, and C) such that
Ty, o T}, is isomorphic to the identity funtor.

Proof. Tt follows from [11], 2.1. (1) that

M € Cp = rgradepTM = pdpTpM = k and T, T M = M,

N € C;, = gradegy Ty N > k and T}, T, N = N.

It suffices to prove that TM € C; (respectively, C;) whenever M € Cj
(respectively, C;). Let M € C, and --- - P, — -+ — Pp - M — 0
a minimal free resolution of M. Then we have an exact sequence 0 —
(Q*M)* — Pf — Py, — TrQF M — 0, which gives an exact sequence

0 — (Q*M)* — P; — N\T)yM — 0,

by definition of T},. From an exact sequence 0 — Q*1M — P, — QM — 0
and the assumption that G-dimrpM = k, we have an exact sequence

0— (QFM)* — Pr — (QFFIM)* — 0.

Hence AT}, M = (QFHLM)*. Since G-dimzrM = k, we have G-dimpQF 1M =
0, so that G-dimg(Q**1M)* = 0, hence G-dimpA?T, M = 0 which implies
that AT}, M is a maximal Cohen-Macaulay module.

Conversely, let N € C;. It suffices to prove that G-dimrT} N < k. Since
OFT,LN is a syzygy module, the canonical homomorphism ¢ : QFT,N —
(QFT, N)** is monic. From Auslander formula [1], Proposition 2.6, Cokyp =
Ext% (TrQ*T, N, R), whose right hand side is equal to Ext(A2T}, Tp N, R) =
Exth(A2N, R) = 0 by assumption. Hence Q*T},N = (QFT,N)**. From a
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minimal free resolution -+ — @Q; — -+ — Qo — TN — 0, we get an exact
sequence

0 — (QTLN)* — Qf — A\>N — 0.
Since A2N is a maximal Cohen-Macaulay module, (Q*T}N)* is also a max-
imal Cohen-Macaulay module, so that (Q¥T,N)** = QFT,N is a maximal
Cohen-Macaulay module. This implies that G-dimzQ*T, N = 0, and then
G—dimRTkN < k. O

2.7. COROLLARY. Let M be a finitely generated R-module of grader M =
k > 0. Then the following are equivalent

(1) M is a Cohen-Macaulay module of codimension k,

(2) rgradegT, M =pdrT,M = k and A>T}, M is a maximal Cohen-Macaulay
modaule.

3. A GENERALIZATION TO NON-COMMUTATIVE GORENSTEIN ALGEBRAS

We shall generalize the results of section two concerning Gorenstein rings
to module finite (non-commutative) Gorenstein algebras over a commutative
Noetherian complete local ring. Such algebras are extensively studied in [8].

Throughout this section, let (R, m) be a commutative Noetherian com-
plete local ring. Let A be a module-finite R-algebra, that is, A is an R-
algebra which is finitely generated as an R-module. As is noted in section
2, A is semiperfect. We define a Gorenstein algebra (cf. [8], Lemma 4.7).

3.1. DEFINITION. Let A be a module-finite R-algebra. We call A a
Gorenstein R-algebra, if A is a Cohen-Macaulay R-module with idpyA =
dimpg A, where idy X stands for an injective dimension of a A-module X.

It follows from [8], Corollary 4.8 that this definition is left-right symmet-
ric. In order to characterize a Gorenstein algebra, we need the following
‘homogeneity condition’ studied in [7].

(h) Ext} (S, A) # 0 for every simple A-module S, where t = depthzA.

We denote by (h°P), when we consider A°P-modules. Then we state a the-
orem which is essential for generalizing the results in §2 to non-commutative
algebras.

3.2. THEOREM. (cf. [1], Theorem 4.20) Let A be a module-finite R-
algebra and t = depthpA. Then the following are equivalent.

(1) A is a Gorenstein R-algebra,

(2) A satisfies the condition (h) and idyA < oo,
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(2") A satisfies the condition (h°P) and idper A < 00,

(3) A satisfies the condition (h) and G-dimyM < oo for any finitely
generated A-module M,

(3') A satisfies the condition (h°P) and G-dimper M < oo for any finitely
generated A°P-module M

When this is the case, it holds that idy A = idpor A = dimp A = ¢.

The proof is done after generalizing several facts in [1], Chapter four to
our case.

3.3. PROPOSITION. (cf. [1], Proposition 4.12) Assume that A satisfies the
condition (h) and M is a finitely generated A-module with G-dimpy M < co.
Then the following are equivalent

(1) G-dimpy M = 0,
(2) depthp M > depthpA,
(3) depthp M = depthpA,

Proof. Let depthpA = t.

(1) = (2): Let 1, -+ ,z; be a A-sequence in m. We show that x,--- ,x;
is an M-sequence by induction on i. Let ¢ = 1. Since M = M™** and z; is
A-regular, x, is M-regular.

Suppose that ¢ > 1 and the assertion holds for ¢ — 1. Then xq,--- ,x;_1

is an M-sequence. Put I = (z1,---,2;_1), R = R/I, A = AJIN, M =
M/IM. Then (R,m/I) is a commutative Noetherian complete local ring.
By [1], Lemma 4.9 or [4], Corollary 1.4.6, G-dimzM = G-dimpyM = 0.
Since T; € R is a A-regular element, T; is M-regular, hence x1,--- ,2; is an
M-sequence. Therefore, depthM > depthA.
(2) = (3): Assume that ¢ = 0. We prove that if G-dimM < oo, then G-
dimM = 0. The condition (h) implies Homy (S, A) # 0 for every simple
A-module S. Hence, for a finitely generated A-module M, if M* = 0 then
M = 0.

Suppose that G-dimp M < 1. We have an exact sequence 0 — L1 — Ly —
M — 0 with G-dimpL; =0 (i = 0,1). Hence we have an exact sequence

0— M* — L} — L} — Ext) (M,A) — 0
and Extf\(M ,A) =0 for i > 1. By this sequence, we have an exact sequence
0 — Extj(M,A)* — Ly — Ly,

where L1 — Lg is monic. Thus Ext} (M, A)* = 0, and so Ext} (M, A) = 0 by
the previous paragraph. Since G-dimaM < oo, this proves G-dimy M = 0.
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Suppose that G-dimyM < n. Let 0 — L, 2 -+ 2% Ly — M — 0 be
exact with G-dimpL; =0 (0 < i < n). Since G-dimp (Imf,,—1) < 1, we have
G-dimp (Imf,,—1) = 0 by the above argument. Repeating this process, we
get G-dimpy M = 0.

Next, we prove that depthpM = 0. We only need the reflexivity of M.
By the condition (h), there exists an exact sequence 0 — C' — A, where C
is a direct sum of all non-isomorphic simple A-modules. This sequence gives
an exact sequence

0 — Homp (M*,C) — M™ = M.

Since M* # 0, we have Homp (M*,C) # 0. Since mHompg(M*,C) = 0, we
see that m has no M-regular element, so that depthM = 0. This proves (2)
= (3) for the case that depthpA = 0.

Let t = depthA > 0. We have depthM > depthA > 1, so that there is
an element x € m which is A and M-regular. By [1], Lemma 4.9, we have
G-dimp j;pn M /2 M < oo. It follows from [3], Proposition 1.2.10 (d) that

Hence, by induction on ¢, we have depthp/,pM/xM = depthg,,pA/zA,
and then depthM = depthA. Therefore, (2) = (3) holds.
(3) = (1): By assumption, it suffices to prove that Exty(M,A) = 0 for
1 > 0. We show the assertion by induction on ¢.

Let t = 0. Then G-dimpM = 0 by the proof (2) = (3).

Let t > 0. Then depthM = depthA > 1. We take an element x € m
which is A and M-regular. Then, by [3], Proposition 1.2.10 (d),

Hence we have Extix/xA(M/xM, A/xA) = 0 for ¢ > 0 by induction. This
gives Ext)y (M, A/xA) =0 for i > 0 (cf. [12], p.155). From an exact sequence
0—A5A— A/zA — 0, we get an exact sequence

Ext’ (M, A) = Ext) (M, A) — Ext} (M, A/zA) = 0.
By Nakayama’s Lemma, it holds that Ext% (M, A) = 0 for i > 0 O

3.4. PROPOSITION. (cf. [1], Theorem 4.13) Assume that A satisfies the
condition (h). Let M € modA with G-dimyM < oo. Then we have an
equality

G-dimp M + depthp M = depthpA

Proof. If G-dimM = 0, we are done by the previous proposition. Suppose
that G-dimM = n > 0 and the equation holds for n—1. Let 0 - K — P —
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M — 0 be exact with P finitely generated projective. Since G-dimK =
n — 1, we have G-dimK + depthK = depthA by induction. Suppose that
depthM > depthP. Then depthM > depthA. Hence G-dimM = 0 holds
by the previous proposition. This contradicts to G-dimM > 0. Hence
depthM < depthP, so depthK = depthM + 1 by, e.g., [3], Proposition
1.2.9. Therefore, n + depthM = depthA. O

3.4.1. REMARK. Recently, it is pointed out in [14] that the proof of [1],
Theorem 4.13 (b) includes a ‘serious mistake’. Although we think that there
is no ‘serious mistake’, we might say that the proof needs some supplemen-
tary explanation as above to use induction on G-dimM.

PROOF OF THEOREM 3.2. The equivalences (1) < (2) and (1) < (2)
are showed by [8], Theorem 3.7 and Corollary 4.10. Then idyA = idper A =
dimpr A =t is a direct consequence of [8], Proposition 4.11.(5).

(2) = (3): Since idpA = ¢, we have Ext} (Q*M, A) = Extit (M, A) = 0 for
i>0. Let -+ — P, — -+ — Py — Q'M — 0 be a projective resolution of
QM. Then we have an exact sequence

0—>(QtM)*—>PS<—>"'—>P/j—>"'
Put C := Cok(F; — P, ;). Then there is an exact sequence
0—TrQM - P} —---— P — P,y —C—0.
Since idpor A = t, we have
Exthop (TrQ! M, A) 22 Exthop (QC, A) =2 Ext{H(C,A) =0, for i > 0.

Thus G-dimyQ'M = 0, and then G-dimy M < t.

(3) = (2): Suppose that Ext)(M,A) # 0 holds. Then G-dimyM > i. By
Proposition 3.4, we see that t — depthpM > ¢, so t > i. Therefore, if ¢ < 1,
then Ext’ (M, A) = 0 for all M € modA. This implies idyA < ¢. O

We assume that A is a Gorenstein R-algebra. Let M be a finitely gener-
ated A-module. Then the following equalities hold true by [8], Proposition
4.11

(3.1) G-dimpM + depthpM = dimp A

(3.2) gradeyM + dimp M = dimp A.
We consider the functors €2, Tr, T} over modA or modA°P, and an operator
A on modA or modA°P then we can define linkage and duality of modules
over A.

A finitely generated A-module is called a mazximal Cohen-Macaulay A-
module, respectively a Cohen-Macaulay A-module of codimension k if it is
a maximal Cohen-Macaulay R-module, respectively a Cohen-Macaulay R-
module of codimension k. It follows from Theorem 3.2 and equalities (3.1),
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(3.2) that M € modA is a maximal Cohen-Macaulay A-module if and only
if G-dimyM = 0.

Using above arrangement, a generalization of 2.4 - 2.7 in section two are
routin task. The proofs are almost the same as in section two. Here, we
provide non-commutative version of main theorems, Theorems 2.4 and 2.6.

3.5. THEOREM (a non-commutative version of Theorem 2.4) Let A be
a Gorenstein R-algebra and M a finitely generated A-module having no
nonzero projective direct summands. Then the following are equivalent

(1) M is a maximal Cohen-Macaulay A-module,
(2) T M is horizontally linked for k > 0,

(3) AM is a maximal Cohen-Macaulay A-module and M is horizontally
linked.

Proof. This theorem is proved by the similar way to Theorem 2.4. []

Let
Cr(A) :={M € modA : M is a Cohen-Macaulay A-module of codimension k},

/ L ~ rgradey, N = pd, N =k and A2N is
Cr(A) = {N € modA : a maximal Cohen-Macaulay A-module
and Cj(A), C(A) be the full subcategories of modA induced from Cg(A),
Cr.(A).

3.6. THEOREM. (a non-commutative version of Theorem 2.6) Let A
be a Gorenstein R-algebra. Let k > 0. Then the functor T} gives a duality
between full subcategories C;,(A) and C) (A°P) such that T} 0T} is isomorphic
to the identity functor.

Proof. 1t follows from [8], Theorem 4.12 that if L is a maximal Cohen-
Macaulay A-module, i.e., L € Co(A), then Exty(L,A) = 0 for i > 0,
Homy (L,A) € Co(A°P), and L = Hompop(Homp(L,A),A). Then letting
(—)* := Homp(—, A), the proof is done by the similar way to Theorem 2.6.
U
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