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LINKAGE AND DUALITY OF MODULES

Kenji NISHIDA

Abstract. Martsinkovsky and Strooker [13] recently introduced mod-
ule theoretic linkage using syzygy and transpose. This generalization
brings possibility of much application of linkage, especially, to homo-
logical theory of modules. In the present paper, we connect linkage of
modules to certain duality of modules. We deal with Gorenstein di-
mension, Cohen-Macaulay modules over a Gorenstein local ring using
linkage and generalize the results to non-commutative algebras.

1. Introduction

The theory of linkage, devised by Peskine and Szpiro[16], is recently
generalized to module theoretic version by Martsinkovsky and Strooker in
[13]. They generalize the theory for wide class of rings, including non-
commutative semiperfect Noetherian rings. The use of composition of two
sort of functors, syzygy and transpose, enables them to extend the defini-
tion of linkage. These functors are fundamental for homological theory of
Noetherian rings. There appears a relation to the duality theory introduced
and studied by Auslander and Bridger[1] and Iyama[11], that is, vanishing
of certain extension group is equivalent to existence of linkage for a dual of
a module.

In section two, we shall apply this fact to Gorenstein dimension and
Cohen-Macaulayness of modues, mainly over commutative Gorenstein lo-
cal ring, and obtain characterization of these notions by linkage. A duality
studied by Iyama[11] can be applicable to the full subcategory of Cohen-
Macaulay modules of codimension k > 0 over a Gorenstein local ring. We
decide the image of this subcategory and give a characterization of a Cohen-
Macaulay module of codimension k > 0 (Theorem 2.6, Corollary 2.7).

In section three, we make an attempt to gerenalize the results of section
two to non-commutative Noetherian ring. It is desirable that a candidate
satisfies the equations (2.1) and (2.2) in section two. A module-finite Goren-
stein algebra studied in [8] satisfies them. Therefore, we treat such algebras
and show that these equations hold. We find that similar proof works for
module-finite Gorenstein algebras and get the same results as in section
two. The equation (2.1), called Auslander-Bridger Formula, is proved in

2000 Mathematics Subject Classification. 13C14, 13C40, 16E65
keywords: Linkage, Duality, Gorenstein dimension
Research of the author is supported by Grant-in-Aid for Scientific Researches C(2) in
Japan

71



72 KENJI NISHIDA

many ways. Among others, we use the original version of [1] to prove it.
To do so, we dissolve a question, proposed by [14], about the proof of this
formula in [1] (see Remark 3.4.1).

2. Linkage and duality

Let Λ be a left and right Noetherian ring. Let modΛ (respectively,
modΛop) be the category of all finitely generated left (respectively, right) Λ-
modules. Throughout the paper, all modules are finitely generated and left
modules (if the ring is non-commutative) and right modules are considered
as Λop-modules. We denote the stable category by modΛ, the syzygy functor
by Ω : modΛ → modΛ, and the transpose functor by Tr : modΛ → modΛop.
Recall the definition of the functor Tr ([1], Chapter two, section 1 where it

is denoted by D, or [2], Chapter IV, section 1). Let P1
f
→ P0 → M → 0

be a projective resolution of a module M ∈ modΛ. Then the transpose of
M , TrM ∈ modΛop, is equal to Cokf∗, where (−)∗ : modΛ → modΛop is
defined by M∗ := HomΛ(M,Λ).

In order to relate linkage and duality, we combine the above functors.
One is the functor Tk := TrΩk−1 for k > 0 which was firstly introduced by
Auslander and Bridger [1] to define and study the (homological) torsion-
freeness and reflexivity, and recently used by Iyama [11] to define a duality
between some full subcategories given by grade. An another tool, an op-
erator λ := ΩTr, is introduced in the nice article by Martsinkovsky and
Strooker [13]. Using the operator λ, they defined the notion of linkage of
modules.

Let Λ be a semiperfect ring and M, N are finitely generated Λ-modules
having no nonzero projective direct summands. Then M ∼= N in modΛ
if and only if M ∼= N in modΛ (e.g., [6], 25.1.5 Corollary). Then λM is
determined up to isomorphism for a finitely gererated Λ-module M .

Throughout the paper, we assume that the underlying rings are always
semiperfect. It is well-known that a commutative local ring ([17], Theorem
4.46) and a module-finite algebra over a commutative Noetherian complete
local ring ([5], p.132) are semiperfect.

Following [13], we define

2.1. Definition. A finitely generated Λ-module M and a Λop-module N
are said to be horizontally linked if M ∼= λN and N ∼= λM , in other words,
M is horizontally linked (to λM) if and only if M ∼= λ2M .

A rather different definition of linkage of modules is proposed by Yoshino
and Isogawa [18]. However, both definitions coincide for Cohen-Macaulay
modules over a commutative Gorenstein ring (see [13], section 3).
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It is noted in [13], that a projective module is horizontally linked if and
only if it is isomorphic to the zero module (the statement after [13], Defi-
nition 3). We also note that, for a finitely generated Λ-module M having
no nonzero projective direct summands, if the projective dimension of TrM
equals one, i.e. M∗ = 0, then M is horizontally linked if and only if M is
isomorphic to the zero module.

Let us start with the following simple observation which connect duality
with linkage.

2.2. Proposition. Let k > 0. Then TkM is horizontally linked if and
only if ExtkΛ(M,Λ) = 0.

Proof. This is a direct consequence of the definition of linkage and the
following exact sequence:

0 → ExtkΛ(M,Λ) → TkM → λ2TkM → 0,

which is given in [11], section 2 or [10], the proof of Lemma 2.1. �

We prepare the facts about Gorenstein dimension from [1] and [4], Chap-
ter 1. A Λ-module M is said to have G-dimension zero, denoted by G-
dimΛM = 0, if M∗∗ ∼= M and ExtkΛ(M,Λ) = Extk

Λop(M∗,Λ) = 0 for

k > 0. This is equivalent to ‘ExtkΛ(M,Λ) = ExtkΛop(TrM,Λ) = 0 for
k > 0’ ([1], Proposition 3.8). For a positive integer k, we say that M
has G-dimension less than or equal to k, denoted by G-dimΛM ≤ k, if
there exists an exact sequence 0 → Gk → · · · → G0 → M → 0 with
G-dimΛGi = 0 for (0 ≤ i ≤ k). It follows from [1], Theorem 3.13 that
G-dimΛM ≤ k if and only if G-dimΛΩkM = 0. If G-dimΛM < ∞, then
G-dimΛM = sup{k : ExtkΛ(M,Λ) 6= 0}([1], p. 95 or [4], (1.2.7)).

Invariance of G-dimension under linkage is studied in [13].

2.3. Theorem([13], Theorem 1). Let Λ be a semiperfect right and left
Noetherian ring and M a Λ-module having no nonzero projective direct
summands. Then the following conditions are equivalent.

(1) G-dimΛM = 0,

(2) G-dimΛopλM = 0 and M is horizontally linked.

In the rest of this section, we consider a commutative ring case and apply
the above results to Cohen-Macaulay modules over a commutative Goren-
stein local ring. See [3] for Cohen-Macaulay rings and modules and Goren-
stein rings.
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Let R be a (commutative) Gorenstein local ring and M a finitely generated
R-module. Then there are the following useful equalities:

(2.1) G-dimRM + depthM = dim R

(2.2) gradeRM + dimM = dimR,

where gradeRM := inf{k ≥ 0 : ExtkR(M,R) 6= 0}. The first equality is due
to [1], Theorems 4.13 and 4.20 and the second one to [15], Lemma 4.8. (See
also [8], Proposition 4.11.)

The combination of linkage and duality produces the following character-
ization of a maximal Cohen-Macaulay module which improves [13], Propo-
sition 8.

2.4. Theorem. Let R be a Gorenstein local ring and M a finitely gen-
erated R-module having no nonzero projective direct summands. Then the
following are equivalent

(1) M is a maximal Cohen-Macaulay module,

(2) TkM is horizontally linked for k > 0,

(3) λM is a maximal Cohen-Macaulay module and M is horizontally
linked.

Proof. (1) ⇔ (2): Since R is Gorenstein, M is maximal Cohen-Macaulay
if and only if G-dimRM = 0. This is equivalent to ExtkR(M,R) = 0 for
k 6= 0 by [1], Theorem 4.20. Thus (1) ⇔ (2) follows from Proposition 2.2.

(1) ⇔ (3):This is a direct consequence of Theorem 2.3. �

By the above theorem, G-dimension is described using linkage.

2.5. Proposition. Let R be a Gorenstein local ring and M a finitely
generated module. Then G-dimRM ≤ k if and only if Ti+kM is horizontally
linked for i > 0.

Proof. Ti+kM is horizontally linked for i > 0 ⇔ TiΩ
kM is horizontally

linked for i > 0 ⇔ G-dimRΩkM = 0 ⇔ G-dimRM ≤ k. �

We apply duality theory on a non-commutative Noetherian ring due to
Iyama [11] to the category of Cohen-Macaulay modules. Suppose that Λ
is a right and left Noetherian ring. Then the functor Tk gives a duality
between the categories {X ∈ modΛ : gradeΛX ≥ k} and {Y ∈ modΛop :
rgradeΛopY ≥ k and pdΛopY ≤ k} [11], 2.1.(1), where rgradeΛopY := {k >
0 : Extk

Λop(Y,Λ) 6= 0} stands for a reduced grade of Y [9]. Returning to our
case, we consider a commutative Noetherian local ring R and a finitely gen-
erated R-module M . Then it holds that G-dimRM ≥ gradeRM , in general.
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Moreover, if G-dimRM < ∞, then M is a Cohen-Macaulay module if and
only if G-dimRM = gradeRM by the equations (2.1) and (2.2). Thus we
can apply the above duality to the category of Cohen-Macaulay R-modules.

A finitely generated module M over a Cohen-Macaulay local ring R is
called a Cohen-Macaulay module of codimension k, if depthM = dim M =
dim R − k. Put the full subcategory of modR

Ck := {M ∈ modR : M is a Cohen-Macaulay R-module of codimension k}.

In order to give a duality, we need a counterpart of the category Ck. We
put the full subcategory of modR

C′

k :=

{

N ∈ modR :
rgradeRN = pdRN = k and

λ2N is a maximal Cohen-Macaulay module

}

,

where pdRN stands for a projective dimension of N . Let Ck, respectively
C′

k, be the full subcategory of modR induced from Ck, respectively C′

k.

2.6. Theorem. Let R be a Gorenstein local ring. Let k > 0. Then the
functor Tk gives a duality between full subcategories Ck and C ′

k such that
Tk ◦ Tk is isomorphic to the identity funtor.

Proof. It follows from [11], 2.1. (1) that

M ∈ Ck ⇒ rgradeRTkM = pdRTkM = k and TkTkM ∼= M,

N ∈ C′

k ⇒ gradeRTkN ≥ k and TkTkN ∼= N.

It suffices to prove that TkM ∈ C′

k (respectively, Ck) whenever M ∈ Ck

(respectively, C′

k). Let M ∈ Ck and · · · → Pi → · · · → P0 → M → 0
a minimal free resolution of M . Then we have an exact sequence 0 →
(ΩkM)∗ → P ∗

k → P ∗

k+1 → TrΩkM → 0, which gives an exact sequence

0 → (ΩkM)∗ → P ∗

k → λ2TkM → 0,

by definition of Tk. From an exact sequence 0 → Ωk+1M → Pk → ΩkM → 0
and the assumption that G-dimRM = k, we have an exact sequence

0 → (ΩkM)∗ → P ∗

k → (Ωk+1M)∗ → 0.

Hence λ2TkM ∼= (Ωk+1M)∗. Since G-dimRM = k, we have G-dimRΩk+1M =
0, so that G-dimR(Ωk+1M)∗ = 0, hence G-dimRλ2TkM = 0 which implies
that λ2TkM is a maximal Cohen-Macaulay module.

Conversely, let N ∈ C′

k. It suffices to prove that G-dimRTkN ≤ k. Since

ΩkTkN is a syzygy module, the canonical homomorphism ϕ : ΩkTkN →
(ΩkTkN)∗∗ is monic. From Auslander formula [1], Proposition 2.6, Cokϕ =
Ext2R(TrΩkTkN,R), whose right hand side is equal to Ext1R(λ2TkTkN,R) =
Ext1R(λ2N,R) = 0 by assumption. Hence ΩkTkN ∼= (ΩkTkN)∗∗. From a
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minimal free resolution · · · → Qi → · · · → Q0 → TkN → 0, we get an exact
sequence

0 → (ΩkTkN)∗ → Q∗

k → λ2N → 0.

Since λ2N is a maximal Cohen-Macaulay module, (ΩkTkN)∗ is also a max-
imal Cohen-Macaulay module, so that (ΩkTkN)∗∗ ∼= ΩkTkN is a maximal
Cohen-Macaulay module. This implies that G-dimRΩkTkN = 0, and then
G-dimRTkN ≤ k. �

2.7. Corollary. Let M be a finitely generated R-module of gradeRM =
k > 0. Then the following are equivalent

(1) M is a Cohen-Macaulay module of codimension k,

(2) rgradeRTkM =pdRTkM = k and λ2TkM is a maximal Cohen-Macaulay
module.

3. A generalization to non-commutative Gorenstein algebras

We shall generalize the results of section two concerning Gorenstein rings
to module finite (non-commutative) Gorenstein algebras over a commutative
Noetherian complete local ring. Such algebras are extensively studied in [8].

Throughout this section, let (R,m) be a commutative Noetherian com-
plete local ring. Let Λ be a module-finite R-algebra, that is, Λ is an R-
algebra which is finitely generated as an R-module. As is noted in section
2, Λ is semiperfect. We define a Gorenstein algebra (cf. [8], Lemma 4.7).

3.1. Definition. Let Λ be a module-finite R-algebra. We call Λ a
Gorenstein R-algebra, if Λ is a Cohen-Macaulay R-module with idΛΛ =
dimR Λ, where idΛX stands for an injective dimension of a Λ-module X.

It follows from [8], Corollary 4.8 that this definition is left-right symmet-
ric. In order to characterize a Gorenstein algebra, we need the following
‘homogeneity condition’ studied in [7].

(h) ExttΛ(S,Λ) 6= 0 for every simple Λ-module S, where t = depthRΛ.

We denote by (hop), when we consider Λop-modules. Then we state a the-
orem which is essential for generalizing the results in §2 to non-commutative
algebras.

3.2. Theorem. (cf. [1], Theorem 4.20) Let Λ be a module-finite R-
algebra and t = depthRΛ. Then the following are equivalent.

(1) Λ is a Gorenstein R-algebra,

(2) Λ satisfies the condition (h) and idΛΛ < ∞,
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(2 ′) Λ satisfies the condition (hop) and idΛopΛ < ∞,

(3) Λ satisfies the condition (h) and G-dimΛM < ∞ for any finitely
generated Λ-module M ,

(3 ′) Λ satisfies the condition (hop) and G-dimΛopM < ∞ for any finitely
generated Λop-module M

When this is the case, it holds that idΛΛ = idΛopΛ = dimR Λ = t.

The proof is done after generalizing several facts in [1], Chapter four to
our case.

3.3. Proposition. (cf. [1], Proposition 4.12) Assume that Λ satisfies the
condition (h) and M is a finitely generated Λ-module with G-dimΛM < ∞.
Then the following are equivalent

(1) G-dimΛM = 0,

(2) depthRM ≥ depthRΛ,

(3) depthRM = depthRΛ,

Proof. Let depthRΛ = t.
(1) ⇒ (2): Let x1, · · · , xi be a Λ-sequence in m. We show that x1, · · · , xi

is an M -sequence by induction on i. Let i = 1. Since M ∼= M∗∗ and x1 is
Λ-regular, x1 is M -regular.

Suppose that i > 1 and the assertion holds for i − 1. Then x1, · · · , xi−1

is an M -sequence. Put I = (x1, · · · , xi−1), R = R/I, Λ = Λ/IΛ, M =
M/IM . Then (R,m/I) is a commutative Noetherian complete local ring.
By [1], Lemma 4.9 or [4], Corollary 1.4.6, G-dimΛM = G-dimΛM = 0.

Since xi ∈ R is a Λ-regular element, xi is M -regular, hence x1, · · · , xi is an
M -sequence. Therefore, depthM ≥ depthΛ.
(2) ⇒ (3): Assume that t = 0. We prove that if G-dimM < ∞, then G-
dimM = 0. The condition (h) implies HomΛ(S,Λ) 6= 0 for every simple
Λ-module S. Hence, for a finitely generated Λ-module M , if M∗ = 0 then
M = 0.

Suppose that G-dimΛM ≤ 1. We have an exact sequence 0 → L1 → L0 →
M → 0 with G-dimΛLi = 0 (i = 0, 1). Hence we have an exact sequence

0 → M∗ → L∗

0 → L∗

1 → Ext1Λ(M,Λ) → 0

and ExtiΛ(M,Λ) = 0 for i > 1. By this sequence, we have an exact sequence

0 → Ext1Λ(M,Λ)∗ → L1 → L0,

where L1 → L0 is monic. Thus Ext1Λ(M,Λ)∗ = 0, and so Ext1Λ(M,Λ) = 0 by
the previous paragraph. Since G-dimΛM < ∞, this proves G-dimΛM = 0.
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Suppose that G-dimΛM ≤ n. Let 0 → Ln
fn

→ · · ·
f1
→ L0 → M → 0 be

exact with G-dimΛLi = 0 (0 ≤ i ≤ n). Since G-dimΛ(Imfn−1) ≤ 1, we have
G-dimΛ(Imfn−1) = 0 by the above argument. Repeating this process, we
get G-dimΛM = 0.

Next, we prove that depthRM = 0. We only need the reflexivity of M .
By the condition (h), there exists an exact sequence 0 → C → Λ, where C
is a direct sum of all non-isomorphic simple Λ-modules. This sequence gives
an exact sequence

0 → HomΛ(M∗, C) → M∗∗ ∼= M.

Since M∗ 6= 0, we have HomΛ(M∗, C) 6= 0. Since mHomR(M∗, C) = 0, we
see that m has no M -regular element, so that depthM = 0. This proves (2)
⇒ (3) for the case that depthRΛ = 0.

Let t = depthΛ > 0. We have depthM ≥ depthΛ ≥ 1, so that there is
an element x ∈ m which is Λ and M -regular. By [1], Lemma 4.9, we have
G-dimΛ/xΛM/xM < ∞. It follows from [3], Proposition 1.2.10 (d) that

depthR/xRM/xM = depthRM − 1 ≥ depthRΛ − 1 = depthR/xRΛ/xΛ.

Hence, by induction on t, we have depthR/xRM/xM = depthR/xRΛ/xΛ,

and then depthM = depthΛ. Therefore, (2) ⇒ (3) holds.
(3) ⇒ (1): By assumption, it suffices to prove that Exti

Λ(M,Λ) = 0 for
i > 0. We show the assertion by induction on t.

Let t = 0. Then G-dimΛM = 0 by the proof (2) ⇒ (3).
Let t > 0. Then depthM = depthΛ ≥ 1. We take an element x ∈ m

which is Λ and M -regular. Then, by [3], Proposition 1.2.10 (d),

depthR/xRM/xM = depthRM − 1 = depthRΛ − 1 = depthR/xRΛ/xΛ.

Hence we have ExtiΛ/xΛ(M/xM,Λ/xΛ) = 0 for i > 0 by induction. This

gives Exti
Λ(M,Λ/xΛ) = 0 for i > 0 (cf. [12], p.155). From an exact sequence

0 → Λ
x
→ Λ → Λ/xΛ → 0, we get an exact sequence

ExtiΛ(M,Λ)
x
→ ExtiΛ(M,Λ) → ExtiΛ(M,Λ/xΛ) = 0.

By Nakayama’s Lemma, it holds that Exti
Λ(M,Λ) = 0 for i > 0 �

3.4. Proposition. (cf. [1], Theorem 4.13) Assume that Λ satisfies the
condition (h). Let M ∈ modΛ with G-dimΛM < ∞. Then we have an
equality

G-dimΛM + depthRM = depthRΛ

Proof. If G-dimM = 0, we are done by the previous proposition. Suppose
that G-dimM = n > 0 and the equation holds for n−1. Let 0 → K → P →
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M → 0 be exact with P finitely generated projective. Since G-dimK =
n − 1, we have G-dimK + depthK = depthΛ by induction. Suppose that
depthM ≥ depthP . Then depthM ≥ depthΛ. Hence G-dimM = 0 holds
by the previous proposition. This contradicts to G-dimM > 0. Hence
depthM < depthP , so depthK = depthM + 1 by, e.g., [3], Proposition
1.2.9. Therefore, n + depthM = depthΛ. �

3.4.1. Remark. Recently, it is pointed out in [14] that the proof of [1],
Theorem 4.13 (b) includes a ‘serious mistake’. Although we think that there
is no ‘serious mistake’, we might say that the proof needs some supplemen-
tary explanation as above to use induction on G-dimM .

Proof of Theorem 3.2. The equivalences (1) ⇔ (2) and (1) ⇔ (2′)
are showed by [8], Theorem 3.7 and Corollary 4.10. Then idΛΛ = idΛopΛ =
dimR Λ = t is a direct consequence of [8], Proposition 4.11.(5).

(2) ⇒ (3): Since idΛΛ = t, we have Exti
Λ(ΩtM,Λ) ∼= Exti+t

Λ (M,Λ) = 0 for
i > 0. Let · · · → Pk → · · · → P0 → ΩtM → 0 be a projective resolution of
ΩtM . Then we have an exact sequence

0 → (ΩtM)∗ → P ∗

0 → · · · → P ∗

k → · · · .

Put C := Cok(P ∗

t → P ∗

t+1). Then there is an exact sequence

0 → TrΩtM → P ∗

2 → · · · → P ∗

t → P ∗

t+1 → C → 0.

Since idΛopΛ = t, we have

ExtiΛop(TrΩtM,Λ) ∼= ExtiΛop(ΩtC,Λ) ∼= Exti+t
Λ (C,Λ) = 0, for i > 0.

Thus G-dimΛΩtM = 0, and then G-dimΛM ≤ t.
(3) ⇒ (2): Suppose that Exti

Λ(M,Λ) 6= 0 holds. Then G-dimΛM ≥ i. By
Proposition 3.4, we see that t − depthRM ≥ i, so t ≥ i. Therefore, if t < i,
then ExtiΛ(M,Λ) = 0 for all M ∈ modΛ. This implies idΛΛ ≤ t. �

We assume that Λ is a Gorenstein R-algebra. Let M be a finitely gener-
ated Λ-module. Then the following equalities hold true by [8], Proposition
4.11

(3.1) G-dimΛM + depthRM = dimR Λ

(3.2) gradeΛM + dimR M = dimR Λ.

We consider the functors Ω,Tr, Tk over modΛ or modΛop, and an operator
λ on modΛ or modΛop then we can define linkage and duality of modules
over Λ.

A finitely generated Λ-module is called a maximal Cohen-Macaulay Λ-

module, respectively a Cohen-Macaulay Λ-module of codimension k if it is
a maximal Cohen-Macaulay R-module, respectively a Cohen-Macaulay R-
module of codimension k. It follows from Theorem 3.2 and equalities (3.1),
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(3.2) that M ∈ modΛ is a maximal Cohen-Macaulay Λ-module if and only
if G-dimΛM = 0.

Using above arrangement, a generalization of 2.4 - 2.7 in section two are
routin task. The proofs are almost the same as in section two. Here, we
provide non-commutative version of main theorems, Theorems 2.4 and 2.6.

3.5. Theorem (a non-commutative version of Theorem 2.4) Let Λ be
a Gorenstein R-algebra and M a finitely generated Λ-module having no
nonzero projective direct summands. Then the following are equivalent

(1) M is a maximal Cohen-Macaulay Λ-module,

(2) TkM is horizontally linked for k > 0,

(3) λM is a maximal Cohen-Macaulay Λ-module and M is horizontally
linked.

Proof. This theorem is proved by the similar way to Theorem 2.4. �

Let

Ck(Λ) := {M ∈ modΛ : M is a Cohen-Macaulay Λ-module of codimension k},

C′

k(Λ) :=

{

N ∈ modΛ :
rgrade

Λ
N = pd

Λ
N = k and λ2N is

a maximal Cohen-Macaulay Λ-module

}

and Ck(Λ), C′

k(Λ) be the full subcategories of modΛ induced from Ck(Λ),
C′

k(Λ).

3.6. Theorem. (a non-commutative version of Theorem 2.6) Let Λ
be a Gorenstein R-algebra. Let k > 0. Then the functor Tk gives a duality
between full subcategories Ck(Λ) and C′

k(Λ
op) such that Tk ◦Tk is isomorphic

to the identity functor.

Proof. It follows from [8], Theorem 4.12 that if L is a maximal Cohen-
Macaulay Λ-module, i.e., L ∈ C0(Λ), then ExtiΛ(L,Λ) = 0 for i > 0,
HomΛ(L,Λ) ∈ C0(Λ

op), and L ∼= HomΛop(HomΛ(L,Λ),Λ). Then letting
(−)∗ := HomΛ(−,Λ), the proof is done by the similar way to Theorem 2.6.
�
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