
Math. J. Okayama Univ. 51 (2009), 47–69

ON l-ADIC ITERATED INTEGRALS, IV

— Ramification and generators of Galois actions on

fundamental groups and torsors of paths

Zdzis law WOJTKOWIAK

Abstract. We are studying Galois representations on fundamental
groups and on torsors of paths of a projective line minus a finite number
of points. We reprove by explicit calculations some known results about
ramification properties of such representations. We calculate the number
of generators in degree 1 of the images of these Galois representations.
We show also that the number of linearly independent generators in
degree greater than 1 is equal 1

2
ϕ(n) for the action of GQ(µn) on the fun-

damental group of P1
Q̄
\ ({0,∞} ∪ µn). Finally we show that the graded

Lie algebra associated with the action of GQ(µ5) on the fundamental

group of P1
Q̄
\ ({0,∞} ∪ µ5) is not free.
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16. Introduction to Part IV

The present paper is a continuation of our series of papers [14], [15] and [16].
Let a1, . . . , an, an+1 be K-points of a projective line P1

K and let X :=
P1
K \ {a1, . . . , an, an+1}. Let z and v be two K-points of X or tangential

points defined over K. Let l be a fixed prime number. In [14], [15] and [16]
we were studying Galois representations

ϕv : GK −→ Aut (π1(XK̄ ; v))

on a pro-l completion of the étale fundamental group of XK̄ based at v and

ψz,v : GK −→ Autset(π(XK̄ ; z, v))

Mathematics Subject Classification. 11G55, 11G99, 14G32.
While writing this paper we were supported by CNRS.
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on a torsor of pro-l paths from v to z.
In section 17 of the present paper we are studying ramification properties

of Galois representations ϕv and ψz,v. We give necessary and sufficient con-
ditions that the representation ϕv or ψz,v ramifies at a prime ideal p (not
dividing l) of OK . Our results generalize the theorem of Ihara (see [6] p.
53). We mention that ramification properties of Galois representations on
fundamental groups were also studied, though in some different direction,
in [9] and [10] and also in [13], where much more general result is proved by
different methods and in [3].

Our method is based on explicit description of meta-abelian quotients of
representations ϕv and ψz,v. It is different from techniques used in papers
quoted above.

The Galois group GK is equipped with a filtration {Gi(X, v)}i∈N (resp.
{Hi(X, z, v)}i∈N) deduced from the lower central series filtration of
π1(XK̄ ; v) by the morphism ϕv (resp. ψz,v) (see [14] section 3). Using
the standard embedding of π1(XK̄ ; v) into Q{{X1, . . . ,Xn}} and passing to
associated graded Lie algebras we get morphisms of Lie algebras

grLieϕv :
∞

⊕

i=1

(Gi(X, v)/Gi+1(X, v)) ⊗Q −→ Der∗Lie(X1, . . . ,Xn)

and

grLieψz,v :
∞

⊕

i=1

(Hi(X, v)/Hi+1(X, v)) ⊗Q −→

Lie(X1, . . . ,Xn) ×̃ Der
∗Lie(X1, . . . ,Xn)

(see [14] sections 4 and 5).
The Lie algebras Image(grLieϕv) and Image(grLieψv,z) are graded. We

calculate the number of generators in degree 1 linearly independent over Ql.
We show also how to construct such generators. We mention that in case of
Galois actions on π1 this question was also studied in [1].

The number of generators in degree i > 1 of Image(grLieϕv) or
Image(grLieψv,z) is less or equal dim H1(GK ; Ql(i)). This follows for ex-
ample from results in [4] and [5].

In [16] we have studied the action of GQ(µn) on π1(P
1
Q(µn)

\ ({0,∞} ∪

µn);
−→
01). We have shown that in degree i > 1 of the Lie algebra

Image(grLieϕ−→
01

) there are 1
2ϕ(n) derivations linearly independent over Ql.

In the present paper we will show that these derivations generate the Lie
algebra Image(grLieϕ−→

01
) in degrees greater than 1.



ON l-ADIC ITERATED INTEGRALS, IV 49

17. Ramification

Let K be a number field and let a1, . . . , an+1 be K-points of a projective
line P1. Let us assume that n ≥ 2. Let us set

X := P1
K \ {a1, . . . , an, an+1}.

Let v and z be K-points or tangential points defined over K of X. The
Galois group GK acts on π1(XK ; v) – pro-l completion of étale fundamental
group of XK based at v, and on π(XK ; z, v) – the π1(XK ; v)-torsor of l-adic
paths from v to z. Hence we have two representations

17.1.a. ϕv : GK −→ Aut(π1(XK̄ ; v))

and

17.1.b. ψz,v : GK −→ Autset(π(XK̄ ; z, v)).

We denote by {Γmπ1(XK̄ ; v)}m∈N the lower central series of π1(XK̄ ; v). Ob-
serve that the quotient set π(XK̄ ; z, v)/(Γm+1π1(XK̄ ; v)) is a
π1(XK̄ ; v)/(Γm+1π1(XK̄ ; v))-torsor. The Galois group GK acts on both quo-
tient objects. Hence we get Galois representations

17.2.a. ϕv(m) : GK −→ Aut
(

π1(XK̄ ; v)/(Γm+1π1(XK̄ ; v))
)

and

17.2.b. ψz,v(m) : GK −→ Autset

(

π(XK̄ ; z, v)/(Γm+1π1(XK̄ ; v))
)

.

Below we shall study ramification properties of these representations. We
start with the following obvious lemma.

Lemma 17.3. Let b1, . . . , bn+1 be K-points of P1 and let Y := P1
K \

{b1, . . . , bn, bn+1}. Let
f : X −→ Y

be an isomorphism of algebraic varieties over K. Let v and z be K-points
or tangential points defined over K of X. Then the induced morphisms

f∗ : π1(XK̄ ; v)→ π1(YK̄ ; f(v)) and f⋆ : π(XK̄ ; z, v)→ π(YK̄ ; f(z), f(v))

are isomorphisms of Galois representations on π1 and on torsors of paths,
i.e. for any σ ∈ GK ,

f∗ ◦ ϕv(σ) = ϕf(v)(σ) ◦ f∗ and f⋆ ◦ ψz,v(σ) = ψf(z),f(v)(σ) ◦ f⋆.

Hence to study representations of GK on fundamental groups and on torsors
of paths we can restrict our attention to some good model of X, which will
be defined below.

We denote by V(K) the set of finite places of the field K. Let p ∈ V(K).
We denote by vp : K → Z ∪ {∞} the valuation associated with p.



50 ZDZIS LAW WOJTKOWIAK

Definition 17.4. Let p be a finite place of K.

a) We say that a pair (X, v) has strong good reduction at p if
i) vp(ai) ≥ 0 for all i ∈ {1, . . . , n+ 1};
ii) if v is a K-point of X then vp(v) ≥ 0, if v = −−→ai0y is a tangential

point defined over K then vp(y) ≥ 0;
iii) the ai have distinct reduction modulo p;
iv) if v is a K-point of X then reduction of v modulo p is different

of that of the ai, if v is a tangential point then the reduction of
v modulo p is non zero.

b) We say that a triple (X, z, v) has strong good reduction at p if both
pairs (X, v) and (X, z) have strong good reduction at p.

We shall study relations between ramification properties of representa-
tions of GK on π1 and on torsors of paths and behavior of varieties after
reduction modulo prime ideals. Lemma 17.3 suggests the following defini-
tion.

Definition 17.5. Let p be a finite place of K.

a) We say that a pair (X, v) (resp. a triple (X, z, v)) has good reduction
at p if there is an isomorphism of algebraic varieties over K,

f : X −→ Y

such that a pair (Y, f(v)) (resp. a triple (Y, f(z), f(v))) has strong
good reduction at p.

b) If a pair (X, v) (resp. a triple (X, z, v)) has no good reduction at p

then we say that it has bad reduction at p.

Example 17.5.1. Let V := P1
Q \ {

1
5 ,

1
5 + 1, 1

5 + 2,∞}, v = 1
5 + 3, W :=

P1
Q \ {0, 1, 2,∞} and w = 3. The pair (V, v) has no strong good reduction at

(5), while the pair (W,w) has strong good reduction at (5). Observe that
f : (V, v) −→ (W,w) given by f(z) = z− 1

5 is an isomorphism over Q, hence
the pair (V, v) has good reduction at (5).

Definition 17.6. Let S(X, v) (resp. T (X, z, v)) be a set of finite places of
K, where a pair (X, v) (resp. a triple (X, z, v)) has bad reduction at p. We
set

Sl(X, v) := S(X, v) ∪ {λ ∈ V(K) | λ divides l}

and

Tl(X, z, v) := T (X, z, v) ∪ {λ ∈ V(K) | λ divides l}.

The next result generalizes Theorem 1 from [6].

Theorem 17.7. Let a1, . . . , an+1 be K-points of P1. Let X = P1
K \

{a1, . . . an+1} and let v and z be two K-points of X or tangential points
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defined over K. The representation

ψz,v : GK → Autset(π(XK̄ ; z, v))

is unramified outside Tl(X, z, v).

Proof. Let us take p /∈ Tl(X, z, v). Lemma 17.3 implies that we can suppose
that the triple (X, z, v) has strong good reduction at p.

We can also suppose that an+1 = ∞. Observe that the map f : X →
Y := P1

K \ {
1

a1−an+1
, . . . , 1

an−an+1
,∞}, f(z) = 1

z−an+1
is an isomorphism

over K. One sees immediately that the triple (Y, f(z), f(v)) has strong
good reduction at p if and only if (X, z, v) has strong good reduction at p.

For the rest we can imitate the proof of Theorem on page 53 in [6]. We
left details to the readers. �

Corollary 17.8. The representation

ϕv : GK → Aut (π1(XK̄ ; v))

is unramified outside Sl(X, v).

Proof. Observe that π1(XK̄ ; v) = π(XK̄ ; v, v). Hence the corollary follows
immediately from Theorem 17.7. �

Remark 17.8.1. We point out that, at least in the case of a fundamental
group, Theorem 17.7 is a special case of a much more general result (see
[13], Theorem 5.3.), which follows from [3].

Let x1, . . . , xn, xn+1 be geometric generators of π1(XK̄ ; v) associated with
a family of paths {γi}

n+1
i=1 from v to each ai (more precisely to a tangential

point defined over K at ai).
Let

X := {X1, . . . ,Xn}.

We recall that Ql{{X}} is a Ql-algebra of non-commutative power series in
non-commuting variables X1, . . . ,Xn. Let I := ker(Ql{{X}} → Ql) be the
augmentation ideal.

We denote by

k : π1(XK̄ ; v)→ Ql{{X}}

a continuous multiplicative embedding given by k(xi) := eXi for i = 1, . . . , n.
Let us fix a path p from v to z. The map tp : π(XK̄ ; z, v) −→ π1(XK̄ ; v)

given by tp(γ) = p−1 · γ is a bijection. The actions 17.1.a and 17.1.b of
GK on π1(XK̄ ; v) and π(XK̄ ; z, v) induce two actions of GK on Ql{{X}} via
embeddings k and k ◦ tp.

Hence we get two representations

ϕv : GK −→ Aut(Ql{{X}})
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and

ψz,v : GK −→ GL(Ql{{X}})

which are deduced from representations 17.1.a and 17.1.b (see [14] sections 1,
2 and 4 for more details). It follows from Corollary 17.8 and Theorem 17.7
that these representations are unramified outside Sl(X, v) and Tl(X, z, v)
respectively. We would like to know what are the minimal sets of finite
places of K outside which the representations ϕv and ψz,v are unramified.

First we recall some elementary definitions and results from [1], [14] and

[16]. Let z ∈ K and let (z
1
ln )n∈N be a compatible family of ln-th roots of z.

We define Kummer character κ(z) : GK → Zl by σ(z
1
ln )

z
1
ln

= ξ
κ(z)(σ)
ln .

We suppose that X = P1
K \ {a1, . . . , an,∞}, i.e. an+1 = ∞. Let σ ∈ GK

and let −→ai be a tangential point defined over K at ai. We recall that

17.9. ϕv(σ)(Xi) = Λv(
−→ai )(σ)−1 · (χ(σ)Xi) · Λv(

−→ai )(σ)

for i = 1, . . . , n (see [14] Proposition 2.2.1).
If v is a K-point of X then

17.10.a. Λv(
−→ai )(σ) ≡ 1 +

n
∑

k=1, k 6=i

κ(
ai − ak
v − ak

)(σ)Xk mod 〈Xi〉+ I2

for i = 1, . . . , n. If v = −−→ai0y is a tangential point defined over K at ai0 then

Λv(
−→ai )(σ) ≡ 1 + κ(

ai − ai0
y − ai0

)(σ)Xi0 +

n
∑

k=1, k 6=i,i0

κ(
ai − ak
ai0 − ak

)(σ)Xk17.10.b

mod 〈Xi〉+ I2

for i = 1, . . . , n (see [1] Lemma 2.2).

We recall also that

17.11. ψz,v(σ) = LΛv(z)(σ) ◦ ϕv(σ),

where

17.12.a. Λv(z)(σ) ≡ 1 +

n
∑

k=1

κ(
z − ak
v − ak

)(σ)Xk mod I2

if v and z are K-points of X;
17.12.b.

Λv(z)(σ) ≡ 1 + κ(
x− ai1
v − ai1

)(σ)Xi1 +
n

∑

k=1
k 6=i1

κ(
ai1 − ak
v − ak

)(σ)Xk mod I2
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if v is a K-point of X and z = −−→ai1x is a tangential point defined over K at
ai1 ;
17.12.c.

Λv(z)(σ) ≡ 1 + κ(
z − ai0
y − ai0

)(σ)Xi0 +

n
∑

k=1
k 6=i0

κ(
z − ak
ai0 − ak

)(σ)Xk mod I2

if v = −−→ai0y is a tangential point defined over K at ai0 and z is a K-point of
X;

Λv(z)(σ) ≡ 1 + κ(
ai1 − ai0
y − ai0

)(σ)Xi0 + κ(
x− ai1
ai0 − ai1

)(σ)Xi117.12.d

+
n

∑

k=1
k 6=i0,i1

κ(
ai1 − ak
ai0 − ak

)(σ)Xk mod I2

if v = −−→ai0y and z = −−→ai1x are tangential points defined over K at ai0 and ai1
respectively (see [16] Proposition 14.1.1).

Now we shall define finite subsets of V(K), where representations ϕv and
ψz,v are obviously ramified. These subsets of V(K) we shall find looking at
congruences 17.10 and 17.12.

Definition 17.13.

i) If v is a K-point of X then we set

S(X, v) := {p ∈ V(K) | ∃(i, k), i 6= k and vp(
ai − ak
v − ak

) 6= 0}.

ii) If v = −−→ai0y is a tangential point defined over K at ai0 then we set

S(X, v) :=

{

p ∈ V(K) |
∃(i, k), k 6= i, i0 andvp(

ai−ak
ai0−ak

) 6= 0

or ∃i, i 6= i0 andvp(
ai−ai0
y−ai0

) 6= 0

}

.

iii) If v and z are K-points of X then we set

T (X, z, v) := {p ∈ V(K) | ∃k, vp(
z − ak
v − ak

) 6= 0} ∪ S(X, v).

iv) We left to the reader definitions of T (X, z, v) in the remained three
cases corresponding to the last three congruences 17.12.

We point out that the subsets S(X, v) and T (X, z, v) of V(K) are defined
only for X = P1

K \ {a1, . . . , an,∞}, i.e. X such that an+1 =∞.

Proposition 17.14. Let X = P1
K \ {a1, . . . , an,∞}, where a1, . . . , an ∈ K.

Let v and z be K-points of X or tangential points defined over K. We have

i) the representation ψz,v(2) is ramified at every finite place belonging
to T (X, z, v);



54 ZDZIS LAW WOJTKOWIAK

ii) the representation ϕv(2) is ramified at every finite place belonging
to S(X, v);

iii) T (X, z, v) ⊂ Tl(X, z, v) and S(X, v) ⊂ Sl(X, v).

Proof. The embedding k : π1(XK̄ ; v)→ Ql{{X}} induces an embedding

π1(XK̄ ; v)/Γm+1π1(XK̄ ; v) → Ql{{X}}/I
m+1.

Hence we get representations

ψz,v(m) : GK → GL(Ql{{X}}/I
m+1)

and

ϕv(m) : GK → Aut(Ql{{X}}/I
m+1)

deduced from representations 17.2.a and 17.2.b. (The representations
ψz,v(m) and ϕv(m) of GK on Ql{{X}}/I

m+1 can be also obtained from
representations ψz,v : GK → GL(Ql{{X}}) and ϕv : GK → Aut(Ql{{X}})
by passing to the quotient Ql{{X}}/I

m+1.)

Let M := K̄ker ψz,v(2) be a fixed field of the subgroup ker ψz,v(2) of GK .
Observe that the representation ψz,v(2) : GK → GL (Ql{{X}}/I

3) factors
through the epimorphism GK → Gal(M/K) and that the induced map
Gal(M/K)→ GL (Ql{{X}}/I

3) is injective.
Let us assume that v and z are K-points of X. Let p ∈ T (X, z, v).

If vp(
ai−ak
v−ak

) 6= 0 then p ramifies in a field K((ai−akv−ak
)

1
lm ) for any m > 0.

It follows from the formula 17.10.a that K((ai−akv−ak
)

1
lm ) ⊂ M. Hence the

representation ψz,v(2) ramifies at p. If vp(
z−ak
v−ak

) 6= 0 then using the formula

17.12.a we get that the representation ψz,v(2) ramifies at p.
The case when one or both points are tangential points we left to the

reader. The point ii) follows immediately from i).
If p ∈ T (X, z, v) then the representation ψz,v(2) ramifies at p. Theorem

17.7 implies that p ∈ Tl(X, z, v). The inclusion S(X, v) ⊂ Sl(X, v) follows
immediately from Corollary 17.8. �

Lemma 17.15. Let X = P1
K \ {0, 1, a3, . . . , an,∞}, i.e. a1 = 0 and a2 = 1

and an+1 = ∞. Let z and v be two K-points of X or tangential points
defined over K. Then a triple (X, z, v) (resp. a pair (X, v)) has strong good
reduction at p if and only if p /∈ T (X, z, v) (resp. p /∈ S(X, v).)

Proof. Let us assume that p /∈ T (X, z, v). We assume that v is a K-point
of X. For every pair i 6= k we have vp(

ai−ak
v−ak

) = 0 because p /∈ S(X, v).

This implies vp(
ai−ak
aj−ak

) = 0 for any triple i, j, k such that i 6= k and j 6= k.

For k = 1 and j = 2 we get vp(ai) = 0 for i > 1. Taking j = 1 we get
vp(ai−ak) = vp(ak) for k > 1 and i 6= k. Hence vp(ai−ak) = 0 for any pair
i 6= k. Therefore the ai have distinct reduction modulo p.
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Taking k = 1 we get vp(v) = 0. Taking i = 1 we get vp(v − ak) = 0.
This implies that the pair (X, v) has strong good reduction at p. If z is also
a K-point then the condition vp(

z−ak
v−ak

) = 0 for all k implies that the pair

(X, z) has also strong good reduction at p. Hence the triple (X, z, v) has
strong good reduction at p.

If the triple (X, z, v) has strong good reduction at p then it follows from
the Definition 17.4 that vp(

ai−ak
v−ak

) = 0 for all pair i 6= j and vp(
z−ak
v−ak

) = 0

for all k. Hence p /∈ T (X, z, v).
The case when v or z are tangential points defined over K as well as a

case of a pair (X, v) we left to the reader. �

In the next theorem and corollary we shall consider representations of GK
on pro-l completion of the étale fundamental group of XK̄ and on torsors
of pro-l paths simultaneously for all prime numbers l. Therefore until the
end of section 17 we shall put subscripts l and superscripts (l) to indicate
dependence on a prime number l.

Theorem 17.16. Let a1, . . . , an+1 be K-points of P1 and let X = P1
K \

{a1, . . . , an+1}. Let z and v be twoK-points ofX or tangential points defined
over K. Let p be a finite place of K. Then the following conditions are
equivalent:

i) the triple (X, z, v) has good reduction at p;
ii) for all prime numbers l but the one which is divisible by p, the

representation ψ
(l)
z,v is unramified at p;

iii) there exists a prime number l such that the representation ψ
(l)
z,v is

unramified at p;
iv) for all prime numbers l but the one which is divisible by p, the

representation

ψ(l)
z,v(2) : GK −→ Autset

(

π(XK̄ ; z, v)l/Γ
3π1(XK̄ ; v)l

)

is unramified at p;

v) there exists a prime number l such that the representation ψ
(l)
z,v(2) is

unramified at p.

Proof. It follows from Theorem 17.7 that i) implies ii). It is clear that ii)
implies iii) and iv), that iii) implies v) and that iv) implies v).

Let us assume v). The triple (X, z, v) is isomorphic over K to a triple
(Y,w, u), where Y = P1

K \ {0, 1, b3, . . . , bn,∞}. It follows from Lemma 17.3
that the representation

ψ(l)
w,u(2) : GK −→ Autset

(

π(YK̄ ;w, u)l/(Γ
3π1(YK̄ ;u)l)

)
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is unramified at p. Proposition 17.14 implies that p /∈ T (Y,w, u). Hence the
triple (Y,w, u) has strong good reduction at p by Lemma 17.15. Therefore
by the definition the triple (X, z, v) has good reduction at p. �

Corollary 17.17. Let a1, . . . , an+1 be K-points of P1 and let X = P1
K \

{a1, . . . , an+1}. Let v be a K-point of X or a tangential point defined over K
at one of the ai. Let p be a finite place of K. Then the following conditions
are equivalent:

i) the pair (X, v) has good reduction at p;
ii) for all prime numbers l but the one which is divisible by p, the

representation ϕ
(l)
v is unramified at p;

iii) there exists a prime number l such that the representation ϕ
(l)
v is

unramified at p;
iv) for all prime numbers l but the one which is divisible by p, the

representation

ϕ(l)
v (2) : GK −→ Aut

(

π1(XK̄ ; v)l/Γ
3π1(XK̄ ; v)l

)

is unramified at p;

v) there exists a prime number l such that the representation ϕ
(l)
v (2) is

unramified at p.

Proof. The proof follows immediately from Theorem 17.16 if we take z = v.
�

Remark 17.17.1. The points i), ii) and iii) of Corollary 17.17 are special
case of Theorem 5.3 in [13]. We mention also that ramification properties of
Galois representations on fundamental groups were also studied in [9] and
in [10] by Takayuki Oda.

We point at the following simple and useful result as in most our examples
X = P1 \ {0, 1, a3, . . . , an,∞}.

Corollary 17.18. Let X = P1
K \{0, 1, a3, . . . , an,∞}, where a3, . . . , an ∈ K.

Let z and v be two K-points of X or tangential points defined over K. Let
p be a finite place of K. The following conditions are equivalent:

i) the triple (X, z, v) has strong good reduction at p;
ii) the triple (X, z, v) has good reduction at p.

Proof. Let us assume that (X, z, v) has good reduction at p. It follows from
Theorem 17.16 that it exists a prime number l such that the representa-

tion ψ
(l)
z,v is unramified at p. Therefore p /∈ T (X, z, v) by Proposition 17.14.

Lemma 17.15 implies that the triple (X, z, v) has strong good reduction at
p. �
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Let R be a set of finite places of K. We define

OK,R := {x ∈ K | ∀ p /∈ R , vp(x) ≥ 0} .

Corollary 17.19. The representation

ψ(l)
z,v : GK → Autset(π(XK̄ ; z, v)l)) (resp.ϕ(l)

v : GK → Aut(π1(XK̄ ; v)l)

factors through the epimorphism

GK → π1(SpecOK,Tl(X,z,v); Spec K̄))

(resp. GK → π1(SpecOK,Sl(X,v); Spec K̄)

induced by the inclusion OK,Tl(X,z,v) →֒ K (resp. OK,Sl(X,v) →֒ K).

Proof. By Theorem 17.16 the representation ψz,v is unramified outside the
set Tl(X, z, v).

If R ⊂ V(K) then the étale fundamental group of SpecOK,R is the Galois
group Gal(F/K), where F is a maximal Galois extension of K unramified
outside R. This implies that ψz,v factors through the epimorphism

GK → π1(SpecOK,Tl(X,z,v); Spec K̄).

�

18. Galois cohomology of number fields

This section contains some well known results, which we shall use in the
next two sections.

Let K be a number field. Let T be a finite subset of V(K) containing all
finite places of K lying over l. We recall that π1(SpecOK,T ; Spec K̄) is the
Galois group of the maximal extension of K unramified outside T. Observe
that the l-part of the cyclotomic character χ : GK → Z∗

l induces

χ : π1(SpecOK,T ; Spec K̄) −→ Z∗
l

(the induced map we still denote by χ) because T contains all finite places
of K lying over l. To simplify the notation we set

πχ1 (OK,T ) := ker (π1(SpecOK,T ; Spec K̄)
χ
−→ Z∗

l ) .

We denote by πχ1 (OK,T )l the pro-l completion of πχ1 (OK,T ). The group

Γ := Gal(K(µl∞)/K)

acts on

πχ1 (OK,T )abl := πχ1 (OK,T )l/[π
χ
1 (OK,T )l, π

χ
1 (OK,T )l]

and for each i we have an isomorphism

HomΓ(πχ1 (OK,T )abl ; Ql(i)) ≈ H
1(SpecOK,T ; Ql(i)) .
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It is well known that

dimQl H
1(SpecOK,T ; Ql(i)) = r1 + r2 for i > 1 and odd;

dimQl H
1(SpecOK,T ; Ql(i)) = r2 for i > 0 and even;

and

dimQl H
1(SpecOK,T ; Ql(1)) = dimQ(O∗

K,T ⊗Q) .

Generators of H1(SpecOK,T ; Ql(1)) are given by Kummer classes of genera-
tors of the group O∗

K,T . This observation we shall use in the next section to
calculate the number of linearly independent over Ql generators in degree
one of the associated graded Lie algebras of the image of ϕv and ψz,v.

Generators of H1(SpecOK,T ; Ql(i)) for i > 1 are given by Soulé classes
(see [12]). For K = Q(µn) Soulé classes can be expressed by l-adic poly-
logarithms (see [17]). In general case one can hope that Soulé classes can
be expressed by linear combinations of l-adic polylogarithms (surjectivity in
Zagier conjecture for polylogarithms [19]) or by linear combination of l-adic
iterated integrals (see [14]) or at least by Galois invariant linear combination
of l-adic polylogarithms or l-adic iterated integrals.

Lemma 18.1. Let R be a finite set of finite places of K containing all
places lying over l. The sequence of homomorphisms

GK ←֓ GK(µl∞ ) → πχ1 (OK,R)→ πχ1 (OK,R)l

induces a sequence of isomorphisms

H1(GK ; Ql(i)) −→ Hom Γ(GK(µl∞ ); Ql(i))←− Hom Γ(πχ1 (OK,R); Ql(i))

Hom Γ(πχ1 (OK,R); Ql(i))←− Hom Γ(πχ1 (OK,R)l; Ql(i))

for any i > 1.

Proof. The first isomorphism follows from the Lyndon spectral sequence
applied to an exact sequence

1→ GK(µl∞ ) → GK → Γ→ 1.

Applying the Lyndon spectral sequence to an exact sequence of groups

1→ πχ1 (OK,R)→ π1(Spec OK,R,Spec K̄)→ Γ→ 1

we get an isomorphism

H1(Spec OK,R; Ql(i)) ≃ HomΓ(πχ1 (OK,R); Ql(i)).

The homomorphisms are continuous with respect to Krull topologies of Ga-
lois groups and l-adic topology of coefficients. Hence we get an isomorphism

HomΓ(πχ1 (OK,R)l; Ql(i)) ≃ HomΓ(πχ1 (OK,R); Ql(i)).



ON l-ADIC ITERATED INTEGRALS, IV 59

It follows from [11] Proposition 1 and Lemma 5 that we have an isomorphism

H1(GK ; Ql(i)) ≃ H
1(Spec OK,R; Ql(i)).

Combining all this we get that the second arrow is an isomorphism.
The homomorphism Hom Γ(πχ1 (OK,R); Ql(i)) ← Hom Γ(πχ1 (OK,R)l; Ql(i))
is an isomorphism because of the universal property of the pro-l completion.
�

Lemma 18.2. Let a1, . . . , an+1 be K-points of P1 and let X = P1
K \

{a1, . . . , an+1}. Let v and z be K-points of X or tangential points defined
over K. For any i > 0 the restriction homomorphisms

H1(GK ; Ql(i))→ HomΓ(Gi(X, v)); Ql(i))

and

H1(GK ; Ql(i))→ HomΓ(Hi(X, z, v)); Ql(i))

are injective.

Proof. Let [f ] ∈ H1(GK ; Ql(i)). Let us assume that the class [f ] is differ-
ent from zero but its restriction to Gi(X, v) is trivial. Then one can find
1 ≤ k < i such that f|Gk(X,v) 6= 0 and f|Gk+1(X,v) = 0. Hence f induces a

non trivial Γ-homomorphism from (Gk(X, v)/Gk+1(X, v))⊗Ql to Ql(i). But
this is impossible because (Gk(X, v)/Gk+1(X, v)) ⊗ Ql ≃ Ql(k)

nk (see [14],
Proposition 3.0.1). �

19. Generators

Let K be a number field and let a1, . . . , an be K-points of a projective
line P1. Let us set

X := P1
K \ {a1, . . . , an,∞}.

Let z and v be two K-points of X or tangential points defined over K. We
recall from section 17 that we have two representations

ϕv : GK −→ Aut(Ql{{X}})

and

ψz,v : GK −→ GL(Ql{{X}})

obtained from action of GK on π1(XK̄ ; v) and π(XK̄ ; z, v) respectively.
These representations are unramified outside the set of prime ideals Sl(X, v)
and Tl(X; z, v) respectively. Hence it follows that the representation ϕv and
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ψz,v factor respectively through π1( SpecOK,Sl(X,v); SpecK̄) and

π1( Spec OK,Tl(X,z,v); SpecK̄), i.e., we have commutative diagrams

GK
α

((RRRRRRRRRRRRRRR

ϕv // Aut(Ql{{X}})

π1( Spec OK,Sl(X,v); SpecK̄)

ϕv
44iiiiiiiiiiiiiiii

and

GK
β

))RRRRRRRRRRRRRRRR

ψz,v // GL(Ql{{X}})

π1( Spec OK,Tl(X,z,v); SpecK̄),

ψz,v

44iiiiiiiiiiiiiiii

where α and β are the obvious natural surjections. (To avoid too heavy no-
tation the induced maps from π1( SpecOK,Sl(X,v); SpecK̄) and

π1( Spec OK,Tl(X,z,v); SpecK̄), we denote also by ϕv and ψz,v respectively.)
Now we recall some results of Hain and Matsumoto from [5] and [4]. Let

R be a finite set of prime ideals of OK containing all prime ideals lying over
l. Hain and Matsumoto considered a category of continuous weighted Tate
representations of GK , unramified outside the prime ideals of R, in finite
dimensional Ql-vector spaces. They showed that this category is tannakian
over Ql. They showed that its fundamental group, which we denote here by
G(K,R, l), is an affine proalgebraic group over Ql, an extension of the mul-
tiplicative group Gm over Ql by an affine proalgebraic prounipotent group
U(K,R, l) equipped with the weight filtration induced by action of Gm by
conjugation. The representations ϕv and ψz,v are continuous weighted Tate
representations of GK unramified outside the sets Sl(X, v) and Tl(X, z, v) re-
spectively (see [18] Proposition 1.0.3.). It follows from the universal property
of the group G(K,R, l) that the homomorphisms ϕv and ψz,v factor through
the groups G(K,Sl(X, v), l) and G(K,Tl(X, z, v), l) respectively, i.e., there
are the following commutative diagrams

π1( Spec OK,Sl(X,v); SpecK̄)
ϕv //

**UUUUUUUUUUUUUUUUU

αv

%%JJJJJJJJJJJJJJJJJJJJJJJJ
Aut(Ql{{X}})

GK/G∞

)

	

ϕv

66mmmmmmmmmmmmm

G(K,Sl(X, v), l)

βv

<<
zzzzzzzzzzzzzzzzzzzzz
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and

π1( Spec OK,Tl(X,z,v); SpecK̄)
ψz,v //

**UUUUUUUUUUUUUUUUUU

µz,v

%%LLLLLLLLLLLLLLLLLLLLLLLLL
GL(Ql{{X}})

GK/H∞

(

�

ψz,v

66llllllllllllll

G(K,Tl(X, z, v), l)

νz,v

<<yyyyyyyyyyyyyyyyyyyyy

respectively. The groups G∞ = G∞(X, v) and H∞ = H∞(X, z, v) are ker-
nels of the representations ϕv and ψz,v respectively. Hence the representa-
tions ϕv and ψz,v factor through GK/G∞ and GK/H∞ respectively. The
corresponding morphism from GK/G∞ to Aut(Ql{{X}}) and from GK/H∞

to GL(Ql{{X}}) we denote also by ϕv and ψz,v.
The groups GK/G∞(X, v) and GK/H∞(X, z, v) are equipped with filtra-

tions {Gi/G∞}i∈N and {Hi/H∞}i∈N such that (Gi/Gi+1)⊗Q ≃ Ql(i)
ni and

(Hi/Hi+1)⊗Q ≃ Ql(i)
mi for all i ∈ N (see [14]). Passing with the morphisms

ϕv : GK/G∞ −→ Aut(Ql{{X}}) and ψz,v : GK/H∞ −→ GL(Ql{{X}}) to
associated graded Lie algebras, we get morphisms

Φv :

∞
⊕

i=1

(Gi/Gi+1)⊗Q −→ Der∗Lie (X)

and

Ψz,v :
∞

⊕

i=1

(Hi/Hi+1)⊗Q −→ Lie(X)×̃Der∗Lie (X)

which are main objects of our studies.
It follows from the universal property of the group G(K,R, l) that there

are unique surjective, compatible with filtrations morphisms of groups

γv : U(K,Sl(X, v), l) → (G1/G∞)⊗Q

and

λz,v : U(K,Tl(X, z, v), l) → (H1/H∞)⊗Q.

After restriction to GK(µl∞ ) and passing to associated graded Lie algebras
we get the following commutative diagrams
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grLieπχ1 (OK,Sl(X,v))l ⊗Q
Φv :=gr Lie ϕv //

**UUUUUUUUUUUUUUUUU

Av

%%LLLLLLLLLLLLLLLLLLLLLLLLLL
Der∗ Lie(X)

⊕

∞

i=1(Gi/Gi+1)⊗Q

Φv

55kkkkkkkkkkkkkk

grLie U(K,Sl(X, v), l)

Bv

;;wwwwwwwwwwwwwwwwwwwwww

Γv

OO

where Av := grLieαv, Bv := grLieβv , Γv := grLieγv and

gr Lie πχ1 (OK,Tl(X,z,v)
)l ⊗ Q

Ψz,v:=gr Lie ψz,v
//

**UUUUUUUUUUUUUUUUU

Mz,v

%%LLLLLLLLLLLLLLLLLLLLLLLLL
Lie (X)×̃Der∗ Lie(X)

L∞
i=1(Hi/Hi+1) ⊗ Q

Ψz,v

44jjjjjjjjjjjjjjjj

gr Lie U(K,Tl(X, z, v), l)

Nz,v

::ttttttttttttttttttttttt

Λz,v

OO

where Mz,v := grLieµz,v, Nz,v := grLieνz,v and Λz,v := grLieλz,v respec-
tively. All morphism are compatible with actions of Γ =Gal(K(µl∞)/K)
and Gm(Ql) by conjugations. Hence all morphisms are strict with respect
to filtrations. This implies the following results.

Proposition 19.1. We have

i) The morphisms of associated graded Lie algebras

and
Φv :

⊕∞
i=1(Gi/Gi+1)⊗Q −→ Der∗Lie (X)

Ψz,v :
⊕∞

i=1(Hi/Hi+1)⊗Q −→ Lie(X)×̃Der∗Lie (X)

are injective.
ii) The morphism of associated graded Lie algebras

and
Γv : grLieU(K,Sl(X, v), l) −→

⊕∞
i=1(Gi/Gi+1)⊗Q

Λz,v : grLieU(K,Tl(X, z, v), l) −→
⊕∞

i=1(Hi/Hi+1)⊗Q

are surjective.
iii) We have

and

Image(Φv) = grLie(Image(ϕv |GK(µl∞ )
)⊗Q)

Image(Ψz,v) = grLie(Image(ψz,v |GK(µl∞ )
)⊗Q).
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Corollary 19.2. The Lie algebra Image(Φv) (resp. Image(Ψz,v)) is gen-
erated by r1 + r2 elements in each odd and greater than 1 degree, by r2

elements in each even positive degree and by dim(O∗
K,Sl(X,v)

⊗ Q) (resp.

dim(O∗
K,Tl(X,z,v) ⊗Q)) elements in degree 1.

Proof. In degrees greater than 1 the result follows immediately from the re-
sult of Hain and Matsumoto (see [5]) about the number of generators of the
associated graded Lie algebras grLieU(K,Sl(X, v), l) and
grLieU(K,Tl(X, z, v), l) (which is equal r1 + r2 = dimH1(GK ; Ql(i)) for
i > 1 and odd, r2 = dimH1(GK ; Ql(i)) for i > 0 and even) and from
Proposition 19.1.

In case of degree 1 we give an elementary proof without using the results
of Hain-Matsumoto. It follows from congruences 17.10 and 17.12 that gen-
erators in degree 1 are dual to Kummer characters of elements belonging
to O∗

K,Sl(X,v)
and O∗

K,Tl(X,z,v) respectively. Hence the number of generators

in degree 1 of the Lie algebra Image(Φv) (resp. Image(Ψz,v)) is smaller or
equal dim(O∗

K,Sl(X,v)
⊗Q) (resp. dim(O∗

K,Tl(X,z,v) ⊗Q)). �

Now we would like to know a number of linearly independent over Ql

generators in degree i.
The result concerning generators in degree 1, in case of Galois action on

π1 was already proved in [1] (see [1], Proposition 2.3). We present it here in
a little different form.

We recall that cross-ratio of four points on a projective line is defined by
the formula

[a : b : c : d] :=
a− c

a− d
·
b− d

b− c
.

We extend this definition to include the case when one of the points is a
tangential point.

Let v := λ d
d(z−a) (v =

−−−−−→
a, a+ λ). We set a ⊖ v := −λ and b ⊖ v := b − a

if a 6= b. We define a cross-ratio of three points a, b, c and of a tangential
point v by the formula

[a : b : c : v] :=
a− c

a⊖ v
·
b⊖ v

b− c
.

One checks that so defined cross-ratio is invariant by isomorphisms of a
projective line.

Proposition 19.3. Let X = P1
K \ {a1, . . . , an+1}. Let z and v be K-points

or tangential points defined over K of X. Then we have

i) The number of linearly independent over Ql generators in degree 1
of the Lie algebra Image (Φv) is equal to a dimension of a vector
subspace of K∗⊗Q generated by elements [ai : aj : ak : v]⊗ 1 for all
i, j, k.
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ii) The number of linearly independent over Ql generators in degree 1
of the Lie algebra Image (Ψz,v) is equal to a dimension of a vector
subspace of K∗ ⊗ Q generated by elements [ai : aj : ak : v] ⊗ 1 and
[ai : aj : ak : z]⊗ 1 for all i, j, k.

Proof. Let us assume that v is a K-point. Let f : X → Y = P1
K \

{b1, . . . , bn,∞} be an isomorphism defined over K such that f(ai) = bi
for i = 1, . . . , n and f(an+1) =∞. Let us set u = f(v).

It follows from Lemma 17.3 that the graded Lie algebras Image(Φv) and
Image(Φu) are isomorphic. Generators of the Lie algebra Image (Φu) in
degree 1 are elements dual to a base of a subspace generated by Kummer
characters which appear in the formula 17.10.a.

Observe that [ai : an+1 : ak : v] · [aj : an+1 : ak : v]−1 = [ai : aj : ak : v]

and that [ai : an+1 : ak : v] = [bi :∞ : bk : u] = bi−bk
bi−u

is exactly the element
which appear in the formula 17.10.a.

Let us denote by (K∗)l
n

the subgroup of ln-th powers in K∗. The homo-
morphism

lim
←−
n

(K∗/(K∗)l
n

)⊗Q −→ Hom(GK(µl∞ ); Ql)

deduced from the Kummer pairing and the natural morphism

K∗ ⊗Q −→ lim
←−
n

(K∗/(K∗)l
n

)⊗Q

are injective.
Hence the number of linearly independent over Ql generators of

Image (Φv) in degree 1 is equal to a dimension of a vector subspace of
K∗ ⊗Q generated by elements [ai : aj : ak : v]⊗ 1 for all i, j, k.

The proof in a case when v is a tangential point as well as the proof of ii)
are similar and we omit them. �

Remark 19.3.1. The same subgroup of K∗ ⊗ Q appears also in a paper
of H. Nakamura on anabelian geometry (see [7] Theorems A and B). We
were hoping to recover the results of Nakamura from [7] and [8] by our
explicit calculations. However the referee pointed out to us that the results
of Nakamura are much deeper as he also picks up the generators of inertia
subgroups from a pro-finite free group with Galois action, while in this paper
they are given (our geometric generators). Still in view of Corollary 17.17
and the relation to Nakamura’s work one can ask if anabelian geometry is
not in fact nilpotent modulo Γ3 geometry.

Lemma 19.4. Let R be a finite set of finite places of K containing all
places lying over l. The natural homomorphism

πχ1 (OK,R)l −→ U(K,R, l)
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induces a sequence of isomorphisms

Hom Γ(πχ1 (OK,R)l; Ql(i))←− Hom Gm(Ql)(U(K,R, l); Ql(i))←−

←− Hom Gm(Ql)(grLieU(K,R, l)ab ; Ql(i))

for any i > 1.
Proof. The lemma follows immediately from results of Hain and Matsumoto
in [5] and [4]. �

20. P1
Q(µn) \ ({0,∞} ∪ µn)

Let us assume that l does not divide n. In [16] we have studied represen-

tations of Galois groups on π1(VQ̄;
→
01), where

V := P1
Q(µn)\({0,∞} ∪ µn).

We have constructed a family of derivations in the image of the homomor-
phism of associated graded Lie algebras

Φ−→
01

:= gr Lie ϕ→
01

: gr Lie(G1(V,
→
01)/G∞(V,

→
01))⊗Q→ Der∗Lie(X),

where X := {X,Y0, . . . , Yn−1} (see [16] section 15). We raised a question
if these derivations generate the image of the homomorphism Φ→

01
(see [16],

Conjectures 15.4.10, 15.5.7).
The next result is the first step to give an affirmative answer to this

question (see also [18]).
Let us set

S := {p ∈ V(Q(µn)) | p divides n · l}.

Proposition 20.1. Let V = P1
Q(µn)\({0,∞} ∪ µn).

i) The representation

ϕ→
01

: GQ(µn) → Aut(π1(VQ(µn)
;
→
01))

is unramified at p if and only if p /∈ S.
ii) The representation ϕ→

01
factors through the epimorphism

GQ(µn) → π1(SpecOQ(µn),S ; SpecQ(µn)).

Proof. Observe that a pair (V,
−→
01) has strong good reduction at p if and

only if p does not divide n. Corollaries 17.17 and 17.18 imply that the
representation ϕ−→

01
is unramified at p if and only if p /∈ S.

The point ii) follows immediately from Corollary 17.19. �
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Let ξn := e
2πi
n be a primitive n-th root of 1. Our next result concerns

generators in degree one of the Lie algebra Image(Φ−→
01

).

Proposition 20.2. The number of linearly independent over Ql generators
in degree 1 of the Lie algebra Image(Φ−→

01
) is equal to the rank of the subgroup

of Q(µn)
∗ generated by elements 1− ξkn for 0 < k < n.

Proof. Observe that [ξ−kn : 0 : 1 :
−→
01] = ξ−kn −1

ξ−kn
= 1 − ξkn. The other cross-

ratios are of the form ξan ·
1−ξkn
1−ξjn

. Hence the result follows from Proposition

19.3. �

Let i > 1. We recall the following well known equality

dimQl H
1(SpecOQ(µn),S ; Ql(i)) =

1

2
ϕ(n),

where ϕ(n) is the order of Z/n∗.
If l does not divide n then we can choose l-adic paths γk on P1

Q̄
\{0, 1,∞}

from
−→
01 to ξkn such that l(ξkn)γk = 0. Then l-adic polylogarithms li(ξ

k
n)γk are

cocycles.
We recall here Conjecture 14.4.2 from [16].

Conjecture 20.3. Let γk (0 < k < n) be l-adic paths on P1
Q̄
\ {0, 1,∞}

from
−→
01 to ξkn such that l(ξkn)γk = 0. Let i be greater than 1. Then the l-adic

polylogarithms li(ξ
k
n)γk for 0 < k < n

2 and (k, n) = 1 are linearly independent

over Ql and generate H1(GQ(µn); Ql(i)) = H1(SpecOQ(µn),S ; Ql(i)).
Our last result shows that the derivations in Image(Φ−→

01
) constructed in

[16], section 15 do generate the Lie algebra Image(Φ−→
01

).

Theorem 20.4. Let us assume that l does not divide n. Let V = P1
Q(µn) \

({0,∞} ∪ µn). Let

Φ−→
01

:= grLieϕ−→
01

:

∞
⊕

i=1

(Gi(V,
−→
01)/Gi+1(V,

−→
01))⊗Q −→ Der∗Lie(X)

be the homomorphism of associated graded Lie algebras induced by the

Galois representation ϕ−→
01

: GQ(µn) −→ Aut(π1(VQ̄;
−→
01)) (see [16] section 15).

Let us assume that Conjecture 20.3 holds. Let σki ∈ Gi(V,
−→
01)/Gi+1(V,

−→
01)

for i = 1, 2, 3, . . . and for 0 < k < n
2 and (k, n) = 1 be elements dual to l-adic

polylogarithms li(ξ
k
n) for i = 1, 2, 3, . . . and for 0 < k < n

2 and (k, n) = 1,

i.e., li(ξ
k
n)(σ

k
i ) 6= 0 and li(ξ

k
n)(σ

h
i ) = 0 if k 6= h. Then the elements Φ−→

01
(σki )

for i = 1, 2, 3, . . . and for 0 < k < n
2 and (k, n) = 1 are linearly independent

over Ql and generate the Lie algebra Image(Φ−→
01

).
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Proof. We have assume that Conjecture 20.3 holds. Therefore the l-adic
polylogarithms li(ξ

k
n) for 0 < k < n

2 and (k, n) = 1 form a base of

H1(GQ(µn); Ql(i)) if we choose suitably paths from
−→
01 to ξkn. It follows from

[16] Lemma 15.3.1 that l-adic polylogarithms li(ξ
k
n) for 0 ≤ k < n appears as

coefficients in degree i for the Galois action on π1(VQ̄;
−→
01). Hence it follows

from [14] Theorem 5.3.1 point i) that they vanish on Gi+1(V,
−→
01). There-

fore Lemma 18.2 implies that l-adic polylogarithms li(ξ
k
n) for 0 < k < n

2

and (k, n) = 1 are linearly independent over Ql on Gi(V,
−→
01)/Gi+1(V,

−→
01).

Hence elements σki of Gi(V,
−→
01)/Gi+1(V,

−→
01) dual to l-adic polylogarithms

li(ξ
k
n) for 0 < k < n

2 and (k, n) = 1 are linearly independent over Ql in

Gi(V,
−→
01)/Gi+1(V,

−→
01) ⊗ Q. The elements of grLieU(Q(µn), S, l)

ab dual to
linearly independent over Ql generators of

HomGm(Ql)(grLieU(Q(µn), S, l)
ab; Ql(i))

for i ∈ N are free generators of the Lie algebra grLieU(Q(µn), S, l). By
Lemmas 18.1 and 19.4 we have an isomorphism

H1(GQ(µn); Ql(i)) ≃ HomGm(Ql)(grLieU(Q(µn), S, l)
ab; Ql(i)).

The morphism

grLieU(Q(µn), S, l) −→ ⊕
∞
i=1Gi(V,

−→
01)/Gi+1(V,

−→
01)⊗Q

is surjective by Proposition 19.1.ii). Hence the elements σki for 0 < k < n
2

and (k, n) = 1 generate Gi(V,
−→
01)/Gi+1(V,

−→
01)⊗Q as a vector space over Ql

because they are dual to linearly independent generators of H1(GQ(µn); Q(i))

by Conjecture 20.3. It follows from Proposition 19.1.i) that elements Φ(σki )
for i = 1, 2, . . ., 0 < k < n

2 and (k, n) = 1 are linearly independent over Ql

and generate the Lie algebra Image(Φ−→
01

). �

Remark 20.4.1. The referee asked to compare differences and similarities
between Theorem 20.4 of the present paper and the results of [2]. If we
correctly understand Theorem 2.1 in [2] corresponds to our Theorem 20.4.
Goncharov gets Theorem 2.1 directly from the motivic theory of classical
polylogarithms. We work only in l-adic setting. We use results from [4]
and [5] together with the assumption that H1(GQ(µn); Q(i)) is generated by
l-adic polylogarithms.

Goncharov in [2] has shown that the graded Lie algebra Image(Φ−→
01

) as-

sociated with the action of GQ(µp)(µl∞ ) on π1(P
1
Q̄
\({0,∞} ∪ µp);

−→
01) is not

free for any prime p ≥ 5 (see [2] Corollary 7.13). We show here by explicit
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calculations that for p = 5 there are two linearly independent over Ql deriva-
tions of degree one in the graded Lie algebra Image(Φ−→

01
) whose commutator

vanishes.

Proposition 20.5.

i) In degree 1 of the graded Lie algebra Image(Φ−→
01

) associated with the

action of GQ(µ5)(µl∞ ) on π1(P
1
Q̄
\({0,∞} ∪ µ5);

−→
01) there are deriva-

tions D1 and D2 linearly independent over Ql such that

D1(Y0) = [Y0, Y1 + Y4] D2(Y0) = [Y0, Y2 + Y3].

ii) We have

[D1,D2] = 0.

Hence the graded Lie algebra Image(Φ−→
01

) associated with the action

of GQ(µ5)(µl∞ ) on π1(P
1
Q̄
\({0,∞} ∪ µ5);

−→
01) is not free.

Proof. The point i) follows immediately from [16] Proposition 15.4.1. To
show that the commutator [D1,D2] of the derivations D1 and D2 vanishes
it is sufficient to show that {Y1 +Y4, Y2 +Y3} = 0 (see [16], Definition 15.2.4,
Lemmas 15.2.5 and 15.2.8, and page 24 for the definition of the bracket
{ , }). One has {Y1 + Y4, Y2 + Y3} = [Y1 + Y4, Y2 + Y3] + D1(Y2 + Y3) −
D2(Y1 + Y4) = [Y1, Y2] + [Y1, Y3] + [Y4, Y2] + [Y4, Y3] + [Y2, Y3] + [Y2, Y1] +
[Y3, Y4] + [Y3, Y2]− [Y1, Y3]− [Y1, Y4]− [Y4, Y1]− [Y4, Y2] = 0. �

Remark 20.5.1. In [1] it is shown by the same method that the graded Lie
algebra Image(Φ−→

01
) is not free in the case of Galois action on

π1(P
1
Q̄
\({0,∞} ∪ µ7);

−→
01).
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