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ON THE FUNDAMENTAL GROUPS OF LOG

CONFIGURATION SCHEMES

Yuichiro HOSHI

Abstract. In the present paper, we study the cuspidalization problem
for the fundamental group of a curve by means of the log geometry of
the log configuration scheme, which is a natural compactification of the
usual configuration space of the curve. The goal of this paper is to show
that the fundamental group of the configuration space is generated by
the images from morphisms from a group extension of the fundamen-
tal groups of the configuration spaces of lower dimension, and that the
fundamental group of the configuration space can be partially recon-
structed from a collection of data concerning the fundamental groups of
the configuration spaces of lower dimension.

1. Introduction

In this paper, we study the cuspidalization problem for the fundamental
groups of curves. This problem may be formulated as follows: Let X be a
smooth, proper, geometrically connected curve of genus g ≥ 2 over a field
K, and r a natural number. Then the r-th configuration space

U(r)

of X is, by definition, the complement in the r-th product

r︷ ︸︸ ︷
X ×K · · · ×K X

of the diagonal divisors {(x1, · · · , xr) ∈

r︷ ︸︸ ︷
X ×K · · · ×K X |xi = xj}, where

1 ≤ i < j ≤ r; moreover, we have projections

U(r+1) −→ U(r)

obtained by forgetting the i-th factor, where 1 ≤ i ≤ r + 1. Roughly
speaking, the cuspidalization problem (due to Mochizuki [cf. [11]]) refers
the problem of “reconstructing” group-theoretically

the “output data” consisting of the fundamental groups

π1(U(r))

and morphisms

· · · −→ π1(U(r+1)) −→ π1(U(r)) −→ π1(U(r−1)) −→ · · ·

· · · −→ π1(X) = π1(U(1))
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induced by the above projections

from

the “input data” consisting of the morphism

π1(X) −→ π1(SpecK) ≃ Gal(Ksep/K) ,

where Ksep is a separable closure of K, induced by the struc-
ture morphism of X.

The purpose of this paper is to give an approach to this problem from the
viewpoint of log geometry, i.e., we shall make use of the geometry of the log
configuration scheme associated to X

X log
(r)

obtained by equipping a certain canonical compactification X(r) of U(r) with

the log structure defined by the divisor with normal crossings D(r)
def
= X(r) \

U(r) ⊆ X(r). LetMg,r be the moduli stack of r-pointed stable curves of genus
g over K whose r marked points are equipped with an ordering, Mg,r ⊆

Mg,r the open substack ofMg,r parametrizing smooth curves, andM
log
g,r the

log stack obtained by equipping Mg,r with the log structure associated to

the divisor with normal crossingsMg,r \Mg,r ⊆Mg,r. Then the log scheme

X log
(r) arises as the fiber product of the morphism of stacks SpecK →M

log
g,0

determined by the curve X and the morphism of stacks M
log
g,r → M

log
g,0

obtained by forgetting the marked points. Note that for a set of prime
numbers Σ, it follows from the log purity theorem that if p 6∈ Σ, where p is

the characteristic of K, then the strict open immersion U(r) →֒ X log
(r) induces

an isomorphism of the geometrically pro-Σ fundamental group of U(r) with

the geometrically pro-Σ log fundamental group of X log
(r) .

The divisor at infinity D(r) ⊆ X(r) admits a decomposition

D(r) =
⋃

I⊆{1,2,··· ,r};I♯≥2

D(r)I

by considering the configurations of the r marked points. Our first result is
as follows (cf. Theorem 4.1; Remark following Lemma 4.2):

Theorem 1.1. Let r ≥ 3 be an integer, and i, j, k ∈ {1, 2, · · · , r} distinct

elements of {1, 2, · · · , r}. Then the following hold:

(i) The images of the log fundamental groups π1(D
log
(r){i,j}

), π1(D
log
(r){j,k}

),

and π1(D
log
(r){i,j,k}) in π1(X

log
(r) ) topologically generate π1(X

log
(r) ).
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(ii) If K is of characteristic 0, then there exist exact sequences

1 −→ Ẑ(1)(Ksep) −→ π1(D
log
(r){i,j}) −→ π1(X

log
(r−1)) −→ 1 ;

1 −→ Ẑ(1)(Ksep) −→ π1(D
log
(r){i,j,k})

−→ π1(X
log
(r−2))×GK

π1(P
1
K \ {0, 1,∞}) −→ 1 .

This result can be regarded as a logarithmic analogue of [8], Remark 1.2.
Note that even if K is of characteristic p > 0, by replacing “log funda-
mental group” by “geometrically pro-l log fundamental group”, where l is a
prime number such that l 6= p, one can obtain a similar result of (ii) in the
statement of the above theorem (cf. Remark following Lemma 4.2).

Our second result (cf. Theorem 5.2) asserts that one can “reconstruct”
partially the log fundamental groups of the log configuration schemes of
higher dimension from a collection of data concerning the log fundamental
groups of the log configuration schemes of lower dimension by means of The-
orem 1.1; more precisely, one can construct group-theoretically a profinite

group “π1(X
log
(r+1))

G” and projections

qi : π1(X
log
(r+1))

G −→ π1(X
log
(r) ) ,

where 1 ≤ i ≤ r + 1, in such a way that

the morphism qi factors through the projection π1(X
log
(r+1))→

π1(X
log
(r) ) induced by the projection X log

(r+1) → X log
(r) obtained

by forgetting the i-th factor, and, moreover, the first arrow

of the factorization

π1(X
log
(r+1))

G −→ π1(X
log
(r+1)) −→ π1(X

log
(r) )

of qi is surjective

from a collection of data concerning the log fundamental groups of the log

configuration schemes X log
(k) , where 0 ≤ k ≤ r. Here, we use the terminology

“reconstruct” as a sort of “abbreviation” for the somewhat lengthy but
mathematically precise formulation given in the statement of Theorem 5.2.

By this second result, if one can also reconstruct group-theoretically the

kernel of the surjection π1(X
log
(r+1))

G → π1(X
log
(r+1)) which appears as the

first arrow in the above factorization of qi, then by taking the quotient by

this kernel, one can reconstruct the desired profinite group π1(X
log
(r+1)) (cf.

Proposition 5.1). However, unfortunately, no reconstruction of this kernel
is performed in this paper. Moreover, it seems to the author that if such a
reconstruction should prove to be possible, it is likely that the method of
reconstruction of this kernel should depend on the arithmetic of K in an
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essential way. On the other hand, in a subsequent paper [4], we obtain a
solution of a pro-l version of the cuspidalization problem over a finite field
by means of the results obtained in this paper.

This paper is organized as follows:
In Section 2, we define the log configuration schemes of curves and con-

sider the scheme-theoretic and log scheme-theoretic properties of log con-
figuration schemes. In Section 3, we study the geometry of the divisors at
infinity of log configuration schemes. In Section 4, we study properties of
the log fundamental groups of log configuration schemes and their divisors
at infinity by means of the results obtained in Sections 2 and 3. In Section 5,
we consider a partial reconstruction of the log fundamental groups of higher
dimensional log configuration schemes as discussed above.

Notations and Terminologies

Groups:

Let G be a profinite group, Σ a non-empty set of prime numbers, and n
an integer. We shall say that n is a Σ-integer if the prime divisors of n are
in Σ. We shall refer to the quotient

lim
←−

G/H

of G, where the projective limit is over all open normal subgroups H ⊆ G
such that the index [G : H] of H is a Σ-integer, as the maximal pro-Σ
quotient of G. We shall denote by G(Σ) the maximal pro-Σ quotient of G.

Log schemes:

For a log scheme X log, we shall denote by X (respectively, MX) the
underlying scheme (respectively, the sheaf of monoids that defines the log
structure) of X log. For a morphism f log of log schemes, we shall denote by
f the underlying morphism of schemes.

Let P be a property of schemes [for example, “quasi-compact”, “con-
nected”, “normal”, “regular”] (respectively, morphisms of schemes [for ex-
ample, “proper”, “finite”, “étale”, “smooth”]). Then we shall say that a log
scheme (respectively, a morphism of log schemes) satisfies P if the under-
lying scheme (respectively, the underlying morphism of schemes) satisfies
P.

For fs log schemes X log, Y log, and Z log, we shall denote by X log ×Y log

Z log the fiber product of X log and Z log over Y log in the category of fs log

schemes. In general, the underlying scheme of X log×Y logZ log is not naturally

isomorphic to X ×Y Z. However, since strictness (note that a morphism
f log : X log → Y log is called strict if the induced morphism f∗MY → MX

on X is an isomorphism) is stable under base-change in the category of
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arbitrary log schemes, if X log → Y log is strict, then the underlying scheme
of X log ×Y log Z log is naturally isomorphic to X ×Y Z. Note that since the
natural morphism from the saturation of a fine log scheme to the original
fine log scheme is finite, properness and finiteness are stable under fs base-
change.

If there exist both schemes and log schemes in a commutative diagram,
then we regard each scheme in the diagram as the log scheme obtained by
equipping the scheme with the trivial log structure.

We shall refer to the largest open subset (possibly empty) of the under-
lying scheme of an fs log scheme on which the log structure is trivial as the
interior of the fs log scheme.

Let X log and Y log be log schemes, and f log : X log → Y log a morphism
of log schemes. Then we shall refer to the quotient of MX by the image of
the morphism f∗MY →MX induced by f log as the relative characteristic

sheaf of f log. Moreover, we shall refer to the relative characteristic sheaf of
the morphism X log → X induced by the natural inclusion O∗X →֒ MX as

the characteristic sheaf of X log.

Fundamental groups:

For a connected scheme X (respectively, log scheme X log) equipped with
a geometric point x→ X (respectively, log geometric point x̃log → X log), we
shall denote by π1(X,x) (respectively, π1(X

log, x̃log)) the fundamental group
of X (respectively, log fundamental group of X log). Since one knows that the
fundamental group is determined up to inner automorphisms independently
of the choice of base-point, we shall often omit the base-point, i.e., we shall
often denote by π1(X) (respectively, π1(X

log)) the fundamental group of X
(respectively, log fundamental group of X log).

For a set Σ of prime numbers and a scheme X (respectively, log scheme
X log) which is of finite type and geometrically connected over a field K,
we shall refer to the quotient of π1(X) (respectively, π1(X

log)) by the
closed normal subgroup obtained as the kernel of the natural projection from
π1(X ⊗K Ksep) (respectively, π1(X

log⊗K Ksep)), where Ksep is a separable
closure of K, to its maximal pro-Σ quotient π1(X⊗K Ksep)(Σ) (respectively,

π1(X
log ⊗K Ksep)(Σ)) as the geometrically pro-Σ fundamental group of X

(respectively, geometrically pro-Σ log fundamental group of X log). Thus,

the geometrically pro-Σ fundamental group π1(X)(Σ) of X (respectively,

geometrically pro-Σ log fundamental group π1(X
log)(Σ) of X log) fits into the

following exact sequence:

1 −→ π1(X ⊗K Ksep)(Σ) −→ π1(X)(Σ) −→ Gal(Ksep/K) −→ 1

(respectively,
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1 −→ π1(X
log ⊗K Ksep)(Σ) −→ π1(X

log)(Σ) −→ Gal(Ksep/K) −→ 1).

2. Log configuration schemes

In this Section, we define the log configuration scheme of a curve over a
field and consider the geometry of such log configuration schemes.

Throughout this Section, we shall denote by X a smooth, proper, geomet-
rically connected curve of genus g ≥ 2 over a field K whose (not necessarily
positive) characteristic we denote by p.

Let Mg,r be the moduli stack of r-pointed stable curves of genus g over

K whose r marked points are equipped with an ordering, andMg,r ⊆Mg,r

the open substack of Mg,r parametrizing smooth curves (cf. [7]). Let us

write Mg
def
= Mg,0 and Mg

def
= Mg,0. For 1 ≤ i ≤ r + 1, we shall de-

note by pM(r)i :Mg,r+1 → Mg,r the morphism of stacks obtained by forget-

ting the i-th marked point. Then by considering the morphism of stacks
pM(r)r+1 :Mg,r+1 →Mg,r, we obtain a natural isomorphism of Mg,r+1 with

the universal r-pointed stable curve over Mg,r (cf. [7], Corollary 2.6). Now

the complement Mg,r \ Mg,r is a divisor with normal crossings in Mg,r

(cf. [7], Theorem 2.7). Let us denote by M
log
g,r the fs log stack obtained by

equippingMg,r with the log structure associated to the divisor with normal

crossingsMg,r \Mg,r. Then since a natural action of the symmetric group

on r letters Sr onMg,r given by permuting the marked points preserves the

divisorMg,r \Mg,r, the action of Sr onMg,r extends to an action onM
log
g,r .

First, we define the log configuration scheme X log
(r) as follows:

Definition 1. Let r be a natural number. Then we shall define X(r) as the

fiber product of the classifying morphism of stacks SpecK → Mg deter-

mined by the curve X → SpecK and the morphism of stacks Mg,r →Mg

obtained by forgetting the marked points. Since Mg,r → Mg is repre-

sentable, X(r) is a scheme. We shall denote by X log
(r) the fs log scheme

obtained by equipping X(r) with the log structure induced by the log struc-

ture of M
log
g,r . We shall denote by UX(r)

the interior of X log
(r) , and by DX(r)

the reduced closed subscheme of X(r) obtained as the complement of UX(r)

in X(r). Note that by definition, the scheme UX(r)
is naturally isomorphic

to the usual r-th configuration space of X, and the action of Sr on Mg,r

(respectively, M
log
g,r) determines an action on X(r) (respectively, X log

(r) ). For

simplicity, we shall write U(r) (respectively, D(r)) instead of UX(r)
(respec-

tively, DX(r)
) when there is no danger of confusion.
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As is well-known, the pull-back of the divisor Mg,r \ Mg,r via pM(r)r+1 :

Mg,r+1 →Mg,r is a subdivisor of the divisor Mg,r+1 \Mg,r+1 (cf. [7], the
proof of Theorem 2.7). Thus, there exists a unique morphism of log stacks

pM log
(r)r+1 : M

log
g,r+1 → M

log
g,r whose underlying morphism of stacks is pM(r)r+1.

Moreover, for an integer 1 ≤ i ≤ r, since pM(r)i is obtained as the composite

of the automorphism of Mg,r+1 determined by the action of an element of
Sr and pM(r)r+1, the morphism of stacks pM(r)i also extends to a morphism of

log stacksM
log
g,r+1 →M

log
g,r. We shall denote this morphism of log stacks by

pM log
(r)i .

Definition 2. Let r be a natural number.

(i) Let 1 ≤ i ≤ r + 1 be an integer. Then pM(r)i : Mg,r+1 → Mg,r

(respectively, pM log
(r)i : M

log
g,r+1 → M

log
g,r) determines a morphism

X(r+1) → X(r) (respectively, X log
(r+1) → X log

(r) ). We shall denote this

morphism by pX(r)i (respectively, plog
X(r)i

). Note that by the definition

of stable curves, pX(r)i is proper, flat, geometrically connected, and

geometrically reduced. For simplicity, we shall write p(r)i (respec-

tively, plog
(r)i) instead of pX(r)i (respectively, plog

X(r)i
) when there is no

danger of confusion.
(ii) Let I = {i1, i2, · · · , iI♯}, where i1 < i2 < · · · < iI♯ , be a non-empty

subset of {1, 2, · · · , r}. Then we shall denote by

prlogX(r)I
: X log

(r) −→ X log
(r−I♯)

the morphism obtained as the compactification of the projection
UX(r)

→ UX
(r−I♯)

given by mapping (x1, · · · , xr) to (xi1 , · · · , xi
I♯

),

i.e., if the morphism UX(r)
→ UX

(r−I♯)
which induces a morphism

UX(r)
(S) −→ UX

(r−I♯)
(S)

(x1, · · · , xr) 7→ (xi1 , · · · , xi
I♯

)

for any scheme S over K, where xi is an S-valued point of X, is
given as the compsite

pUX
(r−I♯)

j
r−I♯
◦ pUX

(r−I♯+1)
j
r−I♯+1

◦ · · · ◦ pUX(r−2)
jr−2 ◦ pUX(r−1)

jr−1 ,

where pUX(i)
j is the projection UX(i+1)

→ UX(i)
obtained by forgetting

the j-th factor, then we shall write

prlogX(r)I

def
= plog

X
(r−I♯)

j
r−I♯
◦ plog

X
(r−I♯+1)

j
r−I♯+1

◦ · · · ◦ plog
X(r−2)jr−2

◦ plog
X(r−1)jr−1

.
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Note that it is immediate that this composite only depends on I,
i.e., this composite is independent of the choice of the sequence

(jr−I♯ , · · · , jr−1). For simplicity, we shall write prlog(r)I instead of

prlogX(r)I
when there is no danger of confusion.

Next, let us consider the scheme-theoretic and log scheme-theoretic prop-

erties of X log
(r) in more detail.

Proposition 2.1. Let r be a natural number, 1 ≤ i ≤ r + 1 an integer, and

I a non-empty subset of {1, 2, · · · , r}.

(i) The scheme X(r) is connected.

(ii) The morphism plog
(r)i is log smooth. In particular, prlog(r)I is also log

smooth.

(iii) The log scheme X log
(r) is log regular.

(iv) The scheme X(r) is regular, and the log structure of X log
(r) is given by

a divisor with normal crossings.

Proof. Assertion (i) follows from the fact that X(0) = SpecK is connected,
together with the fact that the p(r)i’s are proper and geometrically con-
nected.

Next, we prove assertion (ii). The assertion for plog
(r)r+1 follows from the

fact that pM log
(r)r+1 :M

log
g,r+1 →M

log
g,r is log smooth (cf. [5], Section 4). Since

plog
(r)i is a composite of an automorphism of X log

(r) obtained by permuting of

the marked points and plog
(r)r+1, the morphism plog

(r)i is also log smooth.

Assertion (iii) follows from assertion (ii), together with the log regularity

of the log scheme X log
(0) = SpecK.

Finally, we prove assertion (iv). Since the natural morphism X log
(r) →M

log
g,r

is strict, for any geometric point x→ X(r), the stalk (MX(r)
/O∗X(r)

)x of the

characteristic sheaf of X log
(r) at x → X(r) is isomorphic to N

⊕n for some

natural number n. Thus, assertion (iv) follows from assertion (iii). �

Proposition 2.2. Let r be a natural number, 1 ≤ i ≤ r + 1 an integer,

and xlog → X log
(r) a strict geometric point, i.e., a strict morphism whose

underlying morphism of schemes is a geometric point (cf. [3], Definition

1.1, (i)). Then the following sequence is exact:

lim
←−

π1(X
log
(r+1) ×X

log
(r)

xlog
λ )

via pr1−→ π1(X
log
(r+1))

via p
log
(r)i

−→ π1(X
log
(r) ) −→ 1 .
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Here, the projective limit is over all reduced covering points xlog
λ → xlog,

i.e., a morphism obtained as the composite of a connected Kummer finite log

étale covering (x′λ)log → xlog and the strict morphism xlog
λ → (x′λ)log whose

underlying morphism of schemes is the closed immersion xλ
def
= (x′λ)red →֒ x′λ

defined by the ideal generated by the nilpotent elements of Ox′
λ

(cf. [3],

Definition 1.1, (ii)).

Proof. This follows immediately from Proposition 2.1; [3], Theorem 2.3. �

3. Divisors at infinity of log configuration schemes

We continue with the notation of the preceding Section. In this Section,
we consider the scheme-theoretic and log scheme-theoretic properties of the
divisors defining the log structures of the log configuration schemes.

Definition 3. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r}
of cardinality I# ≥ 2 equipped with the natural ordering. Then we shall
denote by

(C(r)I −→ X(r−I#+1) ×K M0,I#+1)

the r-pointed stable curve of genus g obtained by applying the clutching
morphism of stacks (cf. [7], Definition 3.8)

βg,0,{1,2,··· ,r}\I,I :Mg,r−I#+1 ×K M0,I#+1 →Mg,r ,

where {1, 2, · · · , r} \ I is equipped with the natural ordering, to the (r −
I# + 1)-pointed stable curve of genus g

X(r−I#+2) ×K M0,I#+1 −→ X(r−I#+1) ×K M0,I#+1

obtained by base-changing pX
(r−I#+1)

r−I#+2 : X(r−I#+2) → X(r−I#+1) and

the (I# + 1)-pointed stable curve of genus 0

X(r−I#+1) ×K M0,I#+2 −→ X(r−I#+1) ×K M0,I#+1

obtained by base-changing the universal curve M0,I#+2 → M0,I#+1 over

M0,I#+1. Note that the clutching locus of

X(r−I#+2) ×K M0,I#+1 −→ X(r−I#+1) ×K M0,I#+1

(respectively, X(r−I#+1) ×K M0,I#+2 −→ X(r−I#+1) ×K M0,I#+1)

is the (r − I# + 1)-st (respectively, (I# + 1)-st) section (cf. [7], Definition
3.8).

Then it is immediate that the classifying morphism of stacks X(r−I#+1)×K

M0,I#+1 →Mg,r determined by the r-pointed stable curve of genus g

(C(r)I −→ X(r−I#+1) ×K M0,I#+1)
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factors through X(r), and the resulting morphism X(r−I#+1)×KM0,I#+1 →
X(r) is a closed immersion since it is a proper monomorphism. We shall
denote by δX(r)I this closed immersion, by DX(r)I the scheme-theoretic image

of δX(r)I , by Dlog
X(r)I

the log scheme obtained by equipping DX(r)I with the

log structure induced by the log structure of X log
(r) , and by δlog

X(r)I
: Dlog

X(r)I
→

X log
(r) the strict closed immersion whose underlying morphism of schemes is

δX(r)I . For simplicity, we shall write D(r)I (respectively, Dlog
(r)I ; respectively,

δ(r)I ; respectively, δlog
(r)I) instead of DX(r)I (respectively, Dlog

X(r)I
; respectively,

δX(r)I ; respectively, δlog
X(r)I

) when there is no danger of confusion.

Proposition 3.1. Let r ≥ 2; 1 ≤ i ≤ r + 1 be integers, and I a subset of

{1, 2, · · · , r} of cardinality I# ≥ 2.

(i) The scheme D(r)I is irreducible.

(ii) The divisor D(r) of X(r) is
⋃

J D(r)J , where J ranges over the subsets

of {1, 2, · · · , r} of cardinality ≥ 2.
(iii) The closed subscheme of X(r+1) determined by the composite of the

natural closed immersions defined in Definition 3

X(r−I#+1) ×K M0,I#+2 →֒ C(r)I →֒ X(r+1)

(respectively, X(r−I#+2) ×K M0,I#+1 →֒ C(r)I →֒ X(r+1) )

is D(r+1)I∪{r+1} (respectively, D(r+1)I).
(iv) Let J be a subset of {1, 2, · · · , r} of cardinality ≥ 2. Then D(r)I ∩

D(r)J 6= ∅ if and only if I ⊆ J , J ⊆ I, or I ∩ J = ∅.
(v) The inverse image of D(r)I ⊆ X(r) via p(r)i is D(r+1)(I∪{r+1})δi ∪

D(r+1)Iδi , where

δi = ((1, 2, · · · , r + 1) 7→ (1, 2, · · · , i− 1, i + 1, · · · , r, r + 1, i)) ∈ Sr+1 ,

and Iδi = {δi(k) | k ∈ I}.

Proof. First, we prove assertion (i). The log smoothness of the morphism

plog
(s)s+1 : X log

(s+1) → X log
(s) and the morphism M

log
0,t+4 → M

log
0,t+3 obtained by

forgetting the (t+4)-th marked point, where s, t are natural numbers, imply

the log regularity of X log
(r−I#+1)

×K M
log
0,I#+1; therefore, D(r)I is normal (cf.

[6], Theorem 4.1). Moreover, by a similar argument to the argument used
in the proof of Proposition 2.1, (i), D(r)I is connected. Thus, in light of the
normality just observed, D(r) is irreducible.

Assertions (ii), (iii), (iv), and (v) follow from the construction of D(r)I . �
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Proposition 3.2. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r}

of cardinality I♯ ≥ 2. Then the morphism Dlog
(r)I → D(r)I = X(r−I♯+1) ×K

M0,I♯+1 induced by the natural inclusion O∗D(r)I
→֒ MD(r)I

determines a

morphism

ν log
X(r)I

: Dlog
(r)I −→ X log

(r−I♯+1)
×K M

log
0,I♯+1

which is of type N, i.e., the underlying morphism of schemes is an iso-

morphism, and the relative characteristic sheaf is locally constant with stalk

isomorphic to N (cf. [3], Definition 4.1). Moreover, let I [i] be the unique

subset of {1, 2, · · · , r − 1} such that for j ∈ {1, 2, · · · , r − 1}, j ∈ I [i] if and

only if {
j ∈ I (if j < i)

j + 1 ∈ I (if j ≥ i) .

Then the following hold:

(i) If i ∈ I, then (I [i])♯ = I♯ − 1, and the diagram

X log
(r−I♯+1)

×K M
log
0,I♯+1

ν
log
X(r)I

←−−−− Dlog
(r)I

δ
log
(r)I
−−−−→ X log

(r)y via p
log
(r−1)i

y
yp

log
(r−1)i

X log
(r−I♯+1)

×K M
log
0,I♯ ←−−−−−−−

ν
log

X(r−1)I[i]

Dlog

(r−1)I [i] −−−−−−→
δ
log

(r−1)I[i]

X log
(r−1)

commutes, where if I = {i1, i2, · · · , iI♯}, i1 < i2 < · · · < iI♯ , and

i = ij , then the left-hand vertical arrow is the morphism induced

by the morphism M
log
0,I♯+1 → M

log
0,I♯ obtained by forgetting the j-th

marked point.

(ii) If i 6∈ I, then (I [i])♯ = I♯, and the diagram

X log
(r−I♯+1)

×K M
log
0,I♯+1

ν
log
X(r)I

←−−−− Dlog
(r)I

δ
log
(r)I
−−−−→ X log

(r)y via p
log
(r−1)i

y
yp

log
(r−1)i

X log
(r−I♯)

×K M
log
0,I♯+1 ←−−−−−−−

ν
log

X(r−1)I[i]

Dlog

(r−1)I [i] −−−−−−→
δ
log

(r−1)I[i]

X log
(r−1)

commutes, where if {1, 2, · · · , r} \ I = {i1, i2, · · · , ir−I♯}, i1 < i2 <
· · · < ir−I♯ , and i = ij, then the left-hand vertical arrow is the

morphism induced by plog
(r−I♯)j

: X log
(r−I♯+1)

→ X log
(r−I♯)

.
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Proof. By the definition of Dlog
(r)I , the log scheme obtained by forgetting the

portion of the log structure of Dlog
(r)I defined by the divisor D(r)I of X(r) is

isomorphic to X log
(r−I♯+1)

×K M
log
0,I♯+1; moreover, it follows from [3], Lemma

4.12, (i), together with the definition of the log structure of Dlog
(r)I , that

the morphism Dlog
(r)I → D(r)I induced by the natural inclusion O∗D(r)I

→֒

MD(r)I
factors through the morphism obtained by forgetting the portion of

the log structure of Dlog
(r)I defined by the divisor D(r)I of X(r). Thus, we

obtain a morphism Dlog
(r)I → X log

(r−I♯+1)
×K M

log
0,I♯+1. On the other hand, by

construction, it is a morphism of type N.
The assertion that the diagrams in the statement of Proposition 3.2 com-

mute follows from Proposition 3.1, (v), together with the definitions of Dlog
(r)I

and ν log
X(r)I

.

�

Definition 4. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r} of
cardinality I♯ ≥ 2. Then we shall denote by νX(r)I the underlying morphism

of schemes of the morphism ν log
X(r)I

, and by UX(r)I the open subscheme of

DX(r)I determined by the open immersion

UX
(r−I♯+1)

×K M0,I♯+1 →֒ X(r−I♯+1) ×K M0,I♯+1

ν−1
X(r)I

∼
→ DX(r)I .

For simplicity, we shall write ν log
(r)I (respectively, ν(r)I ; respectively, U(r)I)

instead of ν log
X(r)I

(respectively, νX(r)I ; respectively, UX(r)I) when there is no

danger of confusion.

4. Fundamental groups of the log configuration schemes

We continue with the notation of the preceding Section. In this Section,
we study fundamental facts concerning the log fundamental groups of log
configuration schemes and their divisors at infinity. Let Σ be a non-empty
set of prime numbers. We shall fix a separable closure Ksep of K and denote
by GK the absolute Galois group Gal(Ksep/K) of K. Moreover, we shall

denote by Λ the maximal pro-Σ quotient of Ẑ(1)(Ksep).

Definition 5. Let r be a natural number. Then we shall denote by Πlog
X(r)

(respectively, Πlog
Mr+3,K

) the geometrically pro-Σ log fundamental group of

X log
(r) (respectively, the log scheme M

log
0,r+3) and write ΠX

def
= Πlog

X(1)
, and
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Πlog
PK

def
= Πlog

M4,K
. Moreover, if r ≥ 2, then for a subset I of {1, 2, · · · , r} of

cardinality ≥ 2, we shall denote by Πlog
X(r)I

the geometrically pro-Σ log fun-

damental group of Dlog
X(r)I

. For simplicity, we shall write Πlog
(r) (respectively,

Πlog
Mr+3

; respectively, Πlog
P

; respectively, Πlog
(r)I) instead of Πlog

X(r)
(respectively,

Πlog
Mr+3,K

; respectively, Πlog
PK

; respectively, Πlog
X(r)I

) when there is no danger of

confusion.

First, we show the following theorem.

Theorem 4.1. Let X be a smooth, proper, geometrically connected curve of

genus ≥ 2 over a field K, r ≥ 3 an integer, and i, j, k ∈ {1, 2, · · · , r} distinct

elements of {1, 2, · · · , r}. Then, for any non-empty set of prime numbers

Σ, the geometrically pro-Σ log fundamental group of X log
(r) is topologically

generated by the respective images of the geometrically pro-Σ log fundamental

groups of Dlog
(r){i,j}, Dlog

(r){j,k}, and Dlog
(r){i,j,k}.

Proof. It is immediate that it is enough to show the assertion in the case
where Σ is the set of all prime numbers; thus, assume that Σ is the set of
all prime numbers. Moreover, it is immediate that it is enough to show the
assertion in the case where {i, j, k} = {1, 2, 3}; thus, assume that {i, j, k} =
{1, 2, 3}.

It follows that the composite Dlog
(r){2,3}

δ
log
(r){2,3}
→ X log

(r)

p
log
(r−1)3
→ X log

(r−1) coincides

with ν log
(r){2,3}; in particular, this composite is of type N (cf. Proposition

3.2). Therefore, the composite Πlog
(r){2,3}

via δ
log
(r){2,3}
→ Πlog

(r)

via p
log
(r−1)3
→ Πlog

(r−1)

is surjective (cf. [3], Lemma 4.5). Thus, it is enough to show that the

respective images of Πlog
(r){1,2} and Πlog

(r){1,2,3} in Πlog
(r) topologically gener-

ate the kernel of the morphism Πlog
(r) → Πlog

(r−1) induced by plog
(r−1)3. Let

xlog → X log
(r−1) be a strict geometric point of X log

(r−1) whose image lies in

U(r−1){1,2}. Then it follows from Proposition 2.2 that the kernel of the mor-

phism Πlog
(r) → Πlog

(r−1) induced by plog
(r−1)3 is included in the image of the

natural morphism π1(X
log

(r)xlog) → Πlog
(r), where X log

(r)xlog is the fs log scheme

obtained as the fiber product of plog
(r−1)3 : X log

(r) → X log
(r−1) and xlog → X log

(r−1).

On the other hand, it follows from the definition of the open subscheme
U(r−1){1,2} ⊆ D(r−1){1,2}, together with Proposition 3.1, (v), that the log
schemes obtained by equipping the irreducible components of X(r)xlog with

the log structures induced by the log structure of X log

(r)xlog are the log schemes
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obtained as the respective fiber products of the diagrams

Dlog
(r){1,2}yvia p

log
(r−1)3

xlog −−−−→ X log
(r−1)

;

Dlog
(r){1,2,3}yvia p

log
(r−1)3

xlog −−−−→ X log
(r−1) .

Therefore, the assertion follows from the logarithmic analogue of [13], Ex-
ample 5.5 (cf. also [13], §5.5). �

Remark. Theorem 4.1 can be regarded as a logarithmic analogue of [8],
Remark 1.2.

Definition 6. We shall say that a set of prime numbers Σ is innocuous in

K if

Σ =

{
the set of all prime numbers or {l} if p = 0

{l} if p ≥ 2 ,

where l is a prime number which is invertible in K.

In the rest of this paper, we assume that

Σ is innocuous in K.

Lemma 4.2. Let r, r′ be natural numbers, and I a subset of {1, 2, · · · r} of

cardinality I♯ ≥ 2.

(i) The natural morphism U(r) ×K M0,r′+3 → X log
(r) ×K M

log
r′+3 induces

an isomorphism π1(U(r) ×KM0,r′+3)
(Σ) ∼→ Πlog

(r) ×GK
Πlog
Mr′+3

, where

“π1(−)(Σ)” is the geometrically pro-Σ fundamental group of “(−)”.

In particular, the natural morphism U(r) → X log
(r) (respectively,

U(r)I → X log
(r−I♯+1)

×K M
log
0,I♯+1) induces an isomorphism

π1(U(r))
(Σ) ∼→ Πlog

(r)

(respectively, π1(U(r)I)
(Σ) ∼→ Πlog

(r−I♯+1)
×GK

Πlog
M

I♯+1
).

(ii) Let 1 ≤ i ≤ r + 1 (respectively, 1 ≤ i ≤ r + 4) be an integer,

and x → U(r) (respectively, x → M0,r+3) a geometric point of U(r)

(respectively, M0,r+3). Then the sequence

1 −→ π1(X
log
(r+1) ×X

log
(r)

x)(Σ) via pr1−→ Πlog
(r+1) −→ Πlog

(r) −→ 1

(respectively,

1 −→ π1(M
log
0,r+4 ×Mlog

0,r+3
x)(Σ) via pr1−→ Πlog

Mr+4
−→ Πlog

Mr+3
−→ 1 )
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is exact, where the third arrow is the morphism induced by the mor-

phism plog
(r)i (respectively, M

log
0,r+4 → M

log
0,r+3 obtained by forgetting

the i-th marked point).
(iii) For a profinite group Γ (respectively, a scheme S), we shall denote by

S(Γ) (respectively, Sét) the classifying site of Γ, i.e., the site defined

by considering the category of finite sets equipped with a continuous

action of Γ (respectively, the étale site of S). Then we have natural

morphisms of sites

(U(r)×KM0,r′+3)ét −→ S(π1(U(r)×KM0,r′+3)
(Σ))←− S(Πlog

(r)×GK
Πlog
Mr‘+3

) .

Let A be a finite Πlog
(r)×GK

Πlog
Mr′+3

-module whose order is a Σ-integer,

and n an integer. Then the morphisms

Hn
ét(U(r) ×K M0,r′+3,FA)←− Hn(π1(U(r) ×K M0,r′+3)

(Σ), A)

−→ Hn(Πlog
(r) ×GK

Πlog
Mr′+3

, A)

induced by the above morphisms of sites are isomorphisms, where

FA is the locally constant sheaf on U(r) ×K M0,r′+3 determined by

A.

Proof. Assertion (i) follows immediately from the log purity theorem (cf.
[9], Theorem 3.3, also [3], Remark 1.10), together with [3], Proposition 2.4,
(ii).

Next, we prove assertion (ii). To prove assertion (ii), by base-changing,
we may assume that K is a separably closed field. Moreover, if Σ is the
set of all prime numbers, then this follows from [8], Lemma 2.4, together
with assertion (i). Thus, we may assume that Σ = {l} for a prime number
l which is invertible in K. Then, to prove assertion (ii), it follows from [8],
Lemma 3.1, (i), the assertion in the case where Σ is the set of all prime
numbers, together with [1], Proposition 3, that it is enough to show that
the representation

π1(U(r)) −→ Aut((π1(X
log
(r+1) ×X

log
(r)

x)(Σ))ab)

(respectively, π1(M
log
0,r+3) −→ Aut((π1(M

log
0,r+4 ×Mlog

0,r+3
x)(Σ))ab))

determined by the exact sequence appearing in the statement of assertion
(ii) in the case where Σ is the set of all prime numbers factors through a

pro-Σ quotient of π1(U(r)) (respectively, π1(M
log
0,r+3)). On the other hand,

it is immediate that this representation is trivial. This completes the proof
of assertion (ii).

Finally, we prove assertion (iii). The assertion that the second morphism
in question is an isomorphism follows immediately from assertion (i); thus,
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we prove the assertion that the first morphism in question is an isomor-
phism. We prove this assertion by induction on r + r′. If r + r′ = 0,
then the assertion is well-known. If r 6= 0, then by considering the par-

tial compactification U(r−1) ×K X ×KM0,r′+3
(pr1,pr3)→ U(r−1) ×KM0,r′+3 of

(p(r−1)r, id)|U(r)×KM0,r′+3
: U(r)×KM0,r′+3 → U(r−1)×KM0,r′+3, it follows

from [2], Corollary 10.3, that the sheaf

F ′
def
= R

q((p(r−1)r, id)|U(r)×KM0,r′+3
)∗FA

is locally constant and constructible; moreover, it follows from [2], Theo-

rem 7.3, that the Πlog
(r−1) ×GK

Πlog
Mr′+3

-module F ′x is naturally isomorphic

to Hq(U,FA|U ), where x → U(r−1) ×K M0,r′+3 is a geometric point of

U(r−1) ×K M0,r′+3, and U
def
= U(r) ×U(r−1)

x. On the other hand, the nat-

ural morphism Hn(π,A) → Hn
ét(U,FA|U ) is an isomorphism, where π

def
=

π1(U)(Σ). Indeed, one then verifies immediately that it is enough to verify
that every étale cohomology class of U with coefficients in FA|U vanishes
upon pull-back to some connected finite étale Σ-covering V → U . More-
over, by passing to an appropriate V , we may assume that FA|U is trivial.
Then the vanishing assertion in question is immediate (respectively, a tau-
tology) for n = 0 (respectively, n = 1). Moreover, the vanishing assertion
in question is immediate for n ≥ 3 by [2], Theorem 9.1. If U is affine, then
since Hn

ét(U,FA|U ) vanishes for n = 2 (cf. [2], Theorem 9.1), the assertion
is immediate. If U is proper, then it is enough to take V → U so that the
degree of V → U annihilates A (cf. e.g., the discussion at the bottom of [2],
p. 136).

Therefore, by considering the Hochschild-Serre spectral sequence (cf. [12],
Theorem 2.1.5) associated to the exact sequence

1 −→ π −→ Πlog
(r) ×GK

ΠMr‘+3

via (plog
(r−1)r

,id)
−→ Πlog

(r−1) ×GK
ΠMr‘+3

−→ 1

obtained by assertion (ii) and the Leray spectral sequence associated to
the morphism (p(r−1)r, id)|U(r)×KM0,r′+3

, it follows that it is enough to show

the assertion in the case where the pair of natural numbers “(r, r′)” in the
statement of assertion (iii) is (r − 1, r′). Moreover, if r′ 6= 0, then by a
similar argument to the above argument, it is verified that it is enough to
show the assertion in the case where the pair of natural numbers “(r, r′)”
in the statement of assertion (iii) is (r, r′ − 1). This completes the proof of
assertion (iii). �

Remark. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r} of cardi-
nality I♯ ≥ 2. Then by Lemma 4.2, (i), (iii), it follows from Proposition
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3.2, together with similar arguments to the arguments used in the proves

of [10], Lemmas 4.3; 4.4, and [3], Proposition 4.22, that the morphism ν log
(r)I

determines an exact sequence

1 −→ Λ −→ Πlog
(r)I

via ν
log
(r)I

−→ Πlog
(r−I♯+1)

×GK
Πlog
M

I♯+1
−→ 1 .

Lemma 4.3. Let r ≥ 2; 1 ≤ i ≤ r be integers, I a subset of {1, 2, · · · , r}
of cardinality I♯ ≥ 2, and I [i] the subset of {1, 2, · · · , r − 1} defined in the

statement of Proposition 3.2. Then the following hold:

(i) If i ∈ I, then the diagram

Πlog
(r)I

via ν
log
(r)I

−−−−−→ Πlog
(r−I♯+1)

×GK
Πlog
M

I♯+1

via p
log
(r−1)i

y
y

Πlog

(r−1)I [i] −−−−−−−−→
via ν

log

(r−1)I[i]

Πlog
(r−I♯+1)

×GK
Πlog
M

I♯

is cartesian, where if I = {i1, i2, · · · , iI♯}, i1 < i2 < · · · < iI♯ , and

i = ij , then the right-hand vertical arrow is the morphism induced

by the morphism M
log
0,I♯+1 → M

log
0,I♯ obtained by forgetting the j-th

marked point.

(ii) If i 6∈ I, then the diagram

Πlog
(r)I

via ν
log
(r)I

−−−−−→ Πlog
(r−I♯+1)

×GK
Πlog
M

I♯+1

via p
log
(r−1)i

y
y

Πlog

(r−1)I [i] −−−−−−−−→
via ν

log

(r−1)I[i]

Πlog
(r−I♯)

×GK
Πlog
M

I♯+1

is cartesian, where if {1, 2, · · · , r} \ I = {i1, i2, · · · , ir−I♯}, i1 < i2 <
· · · < ir−I♯, and i = ij, then the right-hand vertical arrow is the

morphism induced by plog
(r−I♯)j

: X log
(r−I♯+1)

→ X log
(r−I♯)

.

Proof. This follows from Proposition 3.2; Remark following Lemma 4.2, to-

gether with the fact that the restriction of Dlog
(r)I → Dlog

(r−1)I [i] to the generic

point of Dlog
(r)I is strict. �
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Lemma 4.4.

(i) Let r ≥ 2 be an integer, and I = {i, i + 1}, where i = 1, 2. Then the

following diagram is cartesian:

Πlog
(r)I

via prlog
(r)I

−−−−−−→ Πlog
(2){1,2}

via ν
log
(r)I

y
yvia ν

log
(2){1,2}

Πlog
(r−1) −−−−−−−−→

via prlog
(r−1){i}

ΠX .

(ii) Let r ≥ 3 be an integer. Then the following diagram is cartesian:

Πlog
(r){1,2,3}

via prlog
(r){1,2}

−−−−−−−−→ Πlog
(2){1,2}

via ν
log
(r){1,2,3}

y
yvia ν

log
(2){1,2}

Πlog
(r−2) ×GK

Πlog
P

−−−−→
pr1

Πlog
(r−2) −−−−−−−−−→

via prlog
(r−2){1}

ΠX .

Proof. This follows from Lemma 4.3 by induction on r. �

Definition 7.

(i) Let r ≥ 2 be an integer, and I = {i, i + 1}, where i = 1, 2. Then we
shall write

ΠGX(r)I

def
= Πlog

X(r−1)
×ΠX

Πlog
X(2){1,2} ,

where the morphism implicit in the fiber product Πlog
X(r−1)

→ ΠX (re-

spectively, Πlog
X(2){1,2} → ΠX) is the morphism induced by prlog(r−1){i}

(respectively, ν log
X(2){1,2}). On the other hand, by Lemma 4.4, (i), the

morphism Πlog
X(r)I

→ Πlog
X(r−1)

induced by ν log
X(r)I

and the morphism

Πlog
X(r)I

→ Πlog
X(2){1,2} induced by prlogX(r)I

induce an isomorphism

ΠGX(r)I

∼
−→ Πlog

X(r)I
.

We shall denote this isomorphism by αlog
X(r)I

.

(ii) Let r ≥ 3 be an integer. Then we shall write

ΠG
X(r){1,2,3}

def
= Πlog

PK
×GK

Πlog
X(r−2)

×ΠX
Πlog

X(2){1,2} ,

where the morphism implicit in the fiber product Πlog
X(r−2)

→ ΠX (re-

spectively, Πlog
X(2){1,2}

→ ΠX) is the morphism induced by prlog
(r−2){1}
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(respectively, ν log
X(2){1,2}). On the other hand, by Lemma 4.4, (ii), the

morphism Πlog
X(r){1,2,3} → Πlog

X(r−2)
×GK

Πlog
PK

induced by ν log
X(r){1,2,3}

and the morphism Πlog
X(r){1,2,3} → Πlog

X(2){1,2} induced by prlog
X(r){1,2}

induce an isomorphism

ΠG
X(r){1,2,3}

∼
−→ Πlog

X(r){1,2,3} .

We shall denote this isomorphism by αlog
X(r){1,2,3}.

5. Partial reconstruction of the fundamental groups of

higher dimensional log configuration schemes

We continue with the notation of the preceding Section; in particular, we
assume that the set of prime numbers Σ is innocuous in K. In this Section,
we show that the fundamental group of the configuration space can be par-
tially reconstructed from a collection of data concerning the fundamental
groups of the configuration spaces of lower dimension.

Definition 8. Let r ≥ 3 be an integer. Then we shall denote by ΠGX(r)
the

profinite group obtained as the free profinite product of

Πlog
X(r){1,2} ; Πlog

X(r){2,3} ; Πlog
X(r){1,2,3} .

We shall denote by

fX(r)
: ΠGX(r)

−→ Πlog
X(r)

the morphism determined by the morphisms Dlog
X(r)I

δ
log
X(r)I

→ X log
(r) where I =

{1, 2}, {2, 3}, and {1, 2, 3}. Note that it follows from Theorem 4.1 that fX(r)

is surjective. Let I = {1, 2}, {2, 3}, or {1, 2, 3}. Then by the definition of

ΠGX(r)
, we have a natural morphism

Πlog
X(r)I

−→ ΠGX(r)
.

We shall denote this morphism by δ GX(r)I
.

Next, we define the collection of data used in the partial reconstruction of

the log fundamental groups of higher dimensional log configuration schemes

performed in Theorem 5.2 below.

Definition 9. Let r ≥ 2 be an integer.

(i) We shall denote by DX(Σ), or DX(1)
(Σ), the collection of data con-

sisting of
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(i-1) the profinite groups

Πlog
X(2)

, Πlog
X(2){1,2}, ΠX , GK , Πlog

PK
;

(i-2) the morphisms

Πlog
X(2)

via p
log
X(1)i

−→ ΠX (i = 1, 2) ,

and the morphisms induced by the respective structure mor-
phisms

ΠX −→ GK ; Πlog
PK
−→ GK ;

(i-3) the morphism

Πlog
X(2){1,2}

via δ
log
X(2){1,2}

−→ Πlog
X(2)

.

(ii) We shall denote by DX(r)
(Σ) the collection of data consisting of

(ii-1) the profinite groups

Πlog
X(k)

(1 ≤ k ≤ r + 1), Πlog
X(2){1,2}, GK , Πlog

PK
;

(ii-2) the morphisms

Πlog
X(k)

via p
log
X(k−1)i

−→ Πlog
X(k−1)

(2 ≤ k ≤ r + 1, 1 ≤ i ≤ k),

Πlog
X(2){1,2}

via ν
log
X(2){1,2}

−→ ΠX ,

and the morphisms induced by the respective structure mor-
phisms

ΠX −→ GK ; Πlog
PK
−→ GK ;

(ii-3) the composites

ΠGX(r+1)I

α
log
X(r+1)I

∼
−→ Πlog

X(r+1)I

via δ
log
X(r+1)I

−→ Πlog
X(r+1)

,

where I = {1, 2}, {2, 3}, and {1, 2, 3}.
(iii) We shall denote by DGX(r)

(Σ) the collection of data consisting of

(iii-1) the data obtained by replacing Πlog
X(r+1)

in (ii-1) by ΠGX(r+1)
;
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(iii-2) the data obtained by replacing Πlog
X(r+1)

via p
log
X(r)i

→ Πlog
X(r)

(1 ≤ i ≤

r+1) in (ii-2) by ΠGX(r+1)

fX(r+1)
→ Πlog

X(r+1)

via p
log
X(r)i

→ Πlog
X(r)

(1 ≤ i ≤

r + 1);

(iii-3) the data obtained by replacing Πlog
X(r+1)

(respectively,

“via δlog
X(r+1)I

”) in (ii-3) by ΠGX(r+1)
(respectively, “via δ GX(r+1)I

”).

In the following, let Y be a smooth, proper, geometrically connected curve
of genus ≥ 2 over a field L, and ΣY a non-empty set of prime numbers which
is innocuous in L. We shall fix a separable closure Lsep of L and denote by
GL the absolute Galois group Gal(Lsep/L) of L.

Definition 10. Let r ≥ 2 be an integer.

(i) We shall refer to isomorphisms

Πlog
X(k)

∼
−→ Πlog

Y(k)
(k = 1, 2) ; Πlog

X(2){1,2}

∼
−→ Πlog

Y(2){1,2} ;

GK
∼
−→ GL ; Πlog

PK

∼
−→ Πlog

PL

which are compatible with the morphisms given in the definitions of
DX(Σ) and DY (ΣY ) as an isomorphism of DX(Σ) with DY (ΣY ).

(ii) We shall refer to isomorphisms

Πlog
X(k)

∼
−→ Πlog

Y(k)
(1 ≤ k ≤ r + 1) ; Πlog

X(2){1,2}

∼
−→ Πlog

Y(2){1,2} ;

GK
∼
−→ GL ; Πlog

PK

∼
−→ Πlog

PL

which are compatible with the morphisms given in the definitions of
DX(r)

(Σ) and DY(r)
(ΣY ) as an isomorphism of DX(r)

(Σ) with

DY(r)
(ΣY ).

(iii) We shall refer to isomorphisms

ΠGX(r+1)

∼
−→ ΠGY(r+1)

; Πlog
X(k)

∼
−→ Πlog

Y(k)
(1 ≤ k ≤ r) ;

Πlog
X(2){1,2}

∼
−→ Πlog

Y(2){1,2} ; GK
∼
−→ GL ; Πlog

PK

∼
−→ Πlog

PL

which are compatible with the morphisms given in the definitions of
DGX(r)

(Σ) and DGY(r)
(ΣY ) as an isomorphism of DGX(r)

(Σ) with

DGY(r)
(ΣY ).

(iv) Let φG(r) : DGX(r)
(Σ)

∼
→ DGY(r)

(ΣY ) be an isomorphism of DGX(r)
(Σ) with

DGY(r)
(ΣY ). Then by forgetting the isomorphism ΠGX(r+1)

∼
→ ΠGY(r+1)

in φG(r), we obtain an isomorphism of DX(r−1)
(Σ) with DY(r−1)

(ΣY ).
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We shall denote this isomorphism by F−1(φ
G
(r)). Note that it is im-

mediate that the correspondence

φG(r) 7→ F−1(φ
G
(r))

is functorial.

Remark. If there exists an isomorphism of DX(Σ) (respectively, DX(r)
(Σ);

respectively, DGX(r)
(Σ)) with DY (ΣY ) (respectively, DY(r)

(ΣY ); respectively,

DGY(r)
(ΣY )), then Σ = ΣY . Indeed, this follows from the fact that the abelian-

ization of the kernel of ΠX → GK (respectively, ΠY → GL) is a non-trivial

module which is free over Z
(Σ) (respectively, Z

(ΣY )).

Proposition 5.1. Let r ≥ 2 be an integer, Σ a set of prime numbers that

is innocuous in K and L, and φG(r) : DGX(r)
(Σ)

∼
→ DGY(r)

(Σ) an isomorphism.

Then if the isomorphism ΠGX(r+1)

∼
→ ΠGY(r+1)

in φG(r) induces an isomorphism

of the kernel of the morphism fX(r+1)
: ΠGX(r+1)

→ Πlog
X(r+1)

with the kernel of

the morphism fY(r+1)
: ΠGY(r+1)

→ Πlog
Y(r+1)

, then there exists an isomorphism

F (φG(r)) : DX(r)
(Σ)

∼
→ DY(r)

(Σ). Moreover, the correspondence

φG(r) 7→ F (φG(r))

is functorial.

Proof. Since the morphism fX(r+1)
: ΠGX(r+1)

→ Πlog
X(r+1)

(respectively, fY(r+1)
:

ΠGY(r+1)
→ Πlog

Y(r+1)
) is surjective (cf. Theorem 4.1), by the assumption,

we obtain an isomorphism φ : Πlog
X(r+1)

∼
→ Πlog

Y(r+1)
induced by the isomor-

phism ΠGX(r+1)

∼
→ ΠGY(r+1)

in φG(r). Therefore, by replacing the isomorphism

ΠGX(r+1)

∼
→ ΠGY(r+1)

in φG(r) by φ, we obtain an isomorphism F (φG(r)) of the

desired type. �

Theorem 5.2. Let r ≥ 2 be an integer, Σ a set of prime numbers which

is innocuous in K and L, and φ(r−1) : DX(r−1)
(Σ)

∼
→ DY(r−1)

(Σ) an iso-

morphism. Then there exists an isomorphism F+1(φ(r−1)) : DGX(r)
(Σ)

∼
→

DGY(r)
(Σ) such that

F−1(F+1(φ(r−1))) = φ(r−1) .

Moreover, the correspondence

φ(r−1) 7→ F+1(φ(r−1))

is functorial.
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Proof. First, we define an isomorphism φG{1,2} (respectively, φG{2,3} ; re-

spectively, φG{1,2,3}) of ΠG
X(r+1){1,2}, (respectively, ΠG

X(r+1){2,3}; respectively,

ΠG
X(r+1){1,2,3}) with ΠG

Y(r+1){1,2}, (respectively, ΠG
Y(r+1){2,3}; respectively,

ΠG
Y(r+1){1,2,3}) as follows:

(i) We define an isomorphism φG{1,2} : ΠG
X(r+1){1,2}

∼
→ ΠG

Y(r+1){1,2}
as the

isomorphism induced by the isomorphisms Πlog
X(r)

∼
→ Πlog

Y(r)
,

Πlog
X(2){1,2}

∼
→ Πlog

Y(2){1,2}, and ΠX
∼
→ ΠY in φ(r−1).

(ii) We define an isomorphism φG{2,3} : ΠG
X(r+1){2,3}

∼
→ ΠG

Y(r+1){2,3} as the

isomorphism induced by the isomorphisms Πlog
X(r)

∼
→ Πlog

Y(r)
,

Πlog
X(2){1,2}

∼
→ Πlog

Y(2){1,2}, and ΠX
∼
→ ΠY in φ(r−1).

(iii) We define an isomorphism φG{1,2,3} : ΠG
X(r+1){1,2,3}

∼
→ ΠG

Y(r+1){1,2,3}

as the isomorphism induced by the isomorphisms Πlog
PK

∼
→ Πlog

PL
,

Πlog
X(r−1)

∼
→ Πlog

Y(r−1)
, Πlog

X(2){1,2}

∼
→ Πlog

Y(2){1,2}, GK
∼
→ GL, and ΠX

∼
→

ΠY in φ(r−1).

Then these isomorphisms φG{1,2} , φG{2,3} , and φG{1,2,3} induce an isomorphism
of the profinite group ΠGX(r+1)

obtained as the free profinite product of

ΠG
X(r+1){1,2} ; ΠG

X(r+1){2,3} ; ΠG
X(r+1){1,2,3}

(cf. Definitions 7; 8) with the profinite group ΠGY(r+1)
obtained as the free

profinite product of

ΠG
Y(r+1){1,2} ; ΠG

Y(r+1){2,3} ; ΠG
Y(r+1){1,2,3} .

Now we denote this isomorphism by φG .
On the other hand, for an integer 1 ≤ i ≤ r + 1, we define a projection

qX(r)i : ΠGX(r+1)
→ Πlog

X(r)
as follows:

(i) If i = 1 or 2, then we define a morphism q
{1,2}
X(r)i

: ΠG
X(r+1){1,2} =

Πlog
X(r)
×ΠX

Πlog
X(2){1,2} → Πlog

X(r)
as the first projection. If i ≥ 3, then

we define a morphism q
{1,2}
X(r)i

: ΠG
X(r+1){1,2} → Πlog

X(r)
as the composite

ΠG
X(r+1){1,2}

via p
log
X(r−1)i−2×id

D
log
X(2){1,2}

−→ ΠG
X(r){1,2}
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α
log
X(r){1,2}

−→ Πlog
X(r){1,2}

via δ
log
X(r){1,2}

−→ Πlog
X(r)

.

(ii) We define a morphism q
{2,3}
X(r)1

: ΠG
X(r+1){2,3} → Πlog

X(r)
as the mor-

phism obtained by replacing ΠG
X(r+1){1,2} (respectively, plog

X(r−1)i−2)

by ΠG
X(r+1){2,3} (respectively, plog

X(r−1)1
) in the definition of “q

{1,2}
X(r)i

for

i ≥ 3”. If i = 2 or 3, then we define a morphism q
{2,3}
X(r)i

: ΠG
X(r+1){2,3} =

Πlog
X(r)
×ΠX

Πlog
X(2){1,2} → Πlog

X(r)
as the first projection. If i ≥ 4, then

we define a morphism q
{2,3}
X(r)i

: ΠG
X(r+1){2,3} → Πlog

X(r)
as the morphism

obtained by replacing ΠG
X(r+1){1,2} by ΠG

X(r+1){2,3} in the definition of

“q
{1,2}
X(r)i

for i ≥ 3”.

(iii) If i = 1, 2, or 3, then we define a morphism q
{1,2,3}
X(r)i

: ΠG
X(r+1){1,2,3} →

Πlog
X(r)

as the composite

ΠG
X(r+1){1,2,3}

pr2,3
−→ ΠG

X(r){1,2}

α
log
X(r){1,2}
−→ Πlog

X(r){1,2}

via δ
log
X(r){1,2}

−→ Πlog
X(r)

.

If i ≥ 4, then we define a morphism q
{1,2,3}
X(r)i

: ΠG
X(r+1){1,2,3} → Πlog

X(r)

as the composite

ΠG
X(r+1){1,2,3}

via id
P
log
K

×p
log
X(r−2)i−3×id

D
log
X(2){1,2}

−→ ΠG
X(r){1,2,3}

α
log
X(r){1,2,3}

−→ Πlog
X(r){1,2,3}

via δ
log
X(r){1,2,3}

−→ Πlog
X(r)

.

Moreover, by a similar procedure to the procedure that we applied to define

the morphism q
{1,2}
X(r)i

(respectively, q
{2,3}
X(r)i

; respectively, q
{1,2,3}
X(r)i

), we define a

morphism q
{1,2}
Y(r)i

(respectively, q
{2,3}
Y(r)i

; respectively, q
{1,2,3}
Y(r)i

).

Then these morphisms q
{1,2}
X(r)i

, q
{2,3}
X(r)i

, and q
{1,2,3}
X(r)i

(respectively, q
{1,2}
Y(r)i

, q
{2,3}
Y(r)i

,

and q
{1,2,3}
Y(r)i

) induce a morphism ΠGX(r+1)
→ Πlog

X(r)
(respectively, ΠGY(r+1)

→

Πlog
Y(r)

). We denote this morphism by qX(r)i (respectively, qY(r)i).

Then by Lemma 4.4, together with constructions, for any 1 ≤ i ≤ r+1, the

morphism qX(r)i (respectively, qY(r)i) factors as the composite ΠGX(r+1)

fX(r+1)
→

Πlog
X(r+1)

via p
log
X(r)i

→ Πlog
X(r)

(respectively, ΠGY(r+1)

fY(r+1)
→ Πlog

Y(r+1)

via p
log
Y(r)i

→ Πlog
Y(r)

);
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moreover, the diagram

ΠGX(r+1)

φG

∼
−−−−→ ΠGX(r+1)

qX(r)i

y
yqY(r)i

Πlog
X(r)

∼
−−−−→ Πlog

Y(r)

commutes, where the bottom horizontal arrow is the isomorphism in φ(r−1).

Therefore, by equipping φ(r−1) with the isomorphism φG , we obtain an iso-

morphism F+1(φ(r−1)) of DGX(r)
(Σ) with DGY(r)

(Σ) of the desired type. �
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