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ON CENTRAL GAP NUMBERS OF SYMMETRIC GROUPS

Hirotaka KIKYO

Abstract. g(G) denotes the central gap number of a group G. We
show that for n ≥ 8, g(Sn) ≥ n and g(An) ≥ n − 2. We give exact
values of g(Sn) and g(An) for small n’s. In particular, g(S9) = 9 and
g(A9) = 7. Therefore, for any positive integer n 6= 1, 3, 5 there is a group
G such that n = g(G). G can be finite or infinite.

1. Introduction

K. Tanaka and others introduced the notion of ladder index of a group
related to stability of the logical formula expressing the commutativity of
a group [2]. The ladder index of a group is essentially the same as the
central gap number introduced by Lennox and Roseblade [3]. K. Tanaka
proved that the central gap number of a group cannot be 1, or 3. They are
trying to prove that this number cannot be 5, but it seems that they are not
successful. K. Tanaka conjectured that the central gap number of a group
cannot be odd, and asked what is the central gap number of S7 in a meeting
at RIMS, Kyoto University in March, 2003.

With an aid of a computer, the author found that the central gap number
of S7 is 6. By improving computer programs, the author managed to find
that the central gap numbers of S8, S9, S10, and S11 are 8, 9, 10, and 11
respectively, and those of A8, A9, A10, and A11 are 6, 7, 8, and 9 respectively.

By looking at logs of computer calculations, the author realized that the
central gap number of Sn is at least n for n ≥ 8, and that of An is at least
n − 2 for n ≥ 8.

In this paper, we prove this fact and calculate the central gap numbers of
Sn and An for n ≤ 9. The author has no readable proof for the exact values
of the central gap numbers of S10, S11, A10, and A11.

We can see that the central gap number of a direct product of groups is
the sum of those of direct components. Since g(S3) = 2 and g(A9) = 7, for
any positive integer n 6= 1, 3, 5 there is a group with the central gap number
n. The groups can be finite or infinite.

2. Preliminaries

Let G be a group. For a subset X of G, we write CG(X) for the centralizer
of X in G. If X = {a1, a2, . . . , an}, we also write CG(a1, a2, . . . , an) for
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CG(X). If G is known from the context, we just write C for CG. For a
subgroup H of G, we also write CH(X) for H ∩ CG(X) even if X is not a
subset of H.

The following definition is due to Lennox and Roseblade [3].

Definition 2.1. We say that a group G has a finite central gap number, or
merely a finite gap number, if there is a non-negative integer h such that in
any chain

CG(H1) ≤ CG(H2) ≤ · · · ≤ CG(Hn) ≤ · · ·

of centralizers of subgroups H1, H2, . . ., Hn, . . . of G, there are at most h
strict inclusions. g(G) denotes the least such h. We call g(G) the central
gap number of G.

Definition 2.2. Let G be a group. A sequence (a1, a2, . . . , an) of elements
of G is called a gap sequence in G if there is a sequence (b1, b2, . . . , bn) of
elements in G such that for each i ≤ n, bi commutes with aj for every
j < i but not with ai. We call (b1, b2, . . . , bn) a witness for the gap sequence
(a1, a2, . . . , an). We often display them in a vertical way as follows:

sequence witness
a1 ; b1

a2 ; b2
...

...
an ; bn

It is easy to see that g(G) is the length of the longest gap sequence in G.

Definition 2.3. For a natural number n, the height of n is k, written
ht(n) = k, if n = p1p2 · · · pk where each pi is a prime number.

For a finite group G, the order of a subgroup of G is a divisor of the order
of G. Therefore, we have the following:

Lemma 2.4. If ht(|CG(a1, a2, . . . , ak)|) = m then the length of a gap se-
quence in G beginning with (a1, a2, . . . , ak) is at most k + m.

Now, we turn to our notation about permutations.
Let I be a set. S(I) is the symmetric group consisting of all bijections

from I to itself using composition as the multiplication. We multiply per-
mutations from right to left. A(I) is the alternating group consisting of all
even permutations on I. If I = {1, 2, . . . , n} then S(I) will be written Sn

and A(I) will be written An. If σ ∈ S(I) and x ∈ I, σ(x) is the image of x
by σ. If J ⊂ I then σ(J) = {σ(x) : x ∈ J}. If τ ∈ S(I), στ = τστ−1. We
say that σ is conjugate to σ′ over π by τ if (1) πτ = π, and (2) σ = σ′τ or
στ = σ′.



CENTRAL GAP NUMBERS OF SYMMETRIC GROUPS 65

Definition 2.5. For a permutation σ ∈ Sn, the type (cycle type) of σ is

(nmn , . . . , 2m2 , 1m1)

where mk is the number of k-cycles in the cycle decomposition of σ. We
usually omit kmk if mk = 0. We often omit 1m1 also. For example, if
σ = (1 2)(3 4)(5 6 7)(8)(9) ∈ S9 then the type of σ is (31, 22, 12), or (31, 22).
We call a cycle in the cycle decomposition of σ a cycle component of σ.

Let U be a subset of S(I). Then we define the support and the set of fixed
points of U by

suppI(U) = {x ∈ I : σ(x) 6= x for some σ ∈ U}

and
fixI(U) = {x ∈ I : σ(x) = x for all σ ∈ U}.

The following lemma is an easy fact but useful for checking if two permu-
tations are commuting.

Lemma 2.6. (1) Two permutations σ and τ are commuting if and only
if στ = σ. In particular, if σ and τ are commuting and θ is a cycle
component of σ then so is θτ .

(2) Suppose two permutations σ and τ act on a set Ω and στ = τσ.
If I ⊂ Ω is σ-invariant then so is τ(I). In particular, fixΩ(σ) and
suppΩ(σ) are τ -invariant.

Lemma 2.7. If X ⊂ S(J) and I = suppJ(X) then

CS(J)(X) = CS(I)(X) × S(J − I).

Proof. It is clear that the right hand side is a subset of the left hand side.
Suppose τ ∈ CS(J)(X). Then I = suppJ(X) is τ -invariant by Lemma 2.6

(2) and J − I is also τ -invariant. Therefore, τ ∈ S(I) × S(J − I) and hence
τ ∈ CS(I)(X) × S(J − I). �

The following fact is useful for analysis of An.

Lemma 2.8. If G is a subgroup of Sn containing an odd permutation then
(G : G ∩ An) = 2.

3. Lower Bounds

In this section, we show that n ≤ g(Sn) and n − 2 ≤ g(An) for any
n ≥ 8. We calculate the exact values of g(Sn) and g(An) for small n in later
sections. Note that g(Sn) and g(An) are less than n log2 n.

Theorem 3.1. (1) g(S3) ≥ 2.
(2) g(S5) ≥ g(S4) ≥ 4.
(3) g(S7) ≥ g(S6) ≥ 6.
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(4) g(Sn) ≥ n for n ≥ 8.

Proof. The following tables of gap sequences show the theorem:
(1)

sequence witness

(1 2) ; (1 2 3)
(1 2 3) ; (1 2)

(2)
sequence witness

(1 2)(3 4) ; (2 3)
(1 2) ; (1 3)(2 4)

(1 3)(2 4) ; (1 2)
(2 3) ; (1 2)(3 4)

(3)
sequence witness

(1 2) ; (2 3)
(3 4)(5 6) ; (4 5)

(3 4) ; (3 5)(4 6)
(1 3)(2 4) ; (1 2)

(2 3) ; (1 2)(3 4)
(4 5) ; (5 6)

(4)
sequence witness

(1 2)(3 4) ; (1 3)
(1 2) ; (1 3)(2 4)

(1 3)(2 4) ; (1 2)
(2 3) ; (1 2)(3 4)

(4 5) ; (5 6)
(5 6) ; (6 7)

...
...

(n − 5 n − 4) ; (n − 4 n − 3)

(n − 3 n − 2)(n − 1 n) ; (n − 2 n − 1)
(n − 3 n − 2) ; (n − 3 n − 1)(n − 2 n)

(n − 3 n − 1)(n − 2 n) ; (n − 3 n − 2)
(n − 2 n − 1) ; (n − 3 n − 2)(n − 1 n)

�

Theorem 3.2. (1) g(A5) ≥ g(A4) ≥ 2.
(2) g(A7) ≥ g(A6) ≥ 4.
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(3) g(An) ≥ n − 2 for n ≥ 8.

Proof. The following tables of gap sequences show the theorem:
(1)

sequence witness

(1 2)(3 4) ; (1 2 3)
(1 2 3) ; (1 2)(3 4)

(2)

sequence witness

(1 2)(3 4) ; (1 2 3)
(1 3)(2 4) ; (1 2)(5 6)
(1 2)(5 6) ; (1 3)(2 4)
(1 2 3) ; (1 2)(3 4)

(3)

sequence witness

(1 2)(3 4) ; (1 3 2)
(1 3)(2 4) ; (1 2)(5 6)
(1 3 2) ; (1 2)(3 4)

(1 2)(4 5) ; (5 7 6)
(1 2)(5 6) ; (6 8 7)

...
...

(1 2)(n − 5 n − 4) ; (n − 4 n − 2 n − 3)

(n − 3 n − 2)(n − 1 n) ; (n − 3 n − 1 n − 2)
(1 2)(n − 3 n − 2) ; (n − 3 n − 1)(n − 2 n)
(1 2)(n − 4 n − 3) ; (n − 3 n − 2)(n − 1 n)

�

4. Exact Values

We begin with an evaluation of upper bounds of g(Sn). The following
lemma is well-known.

Lemma 4.1. If σ ∈ Sn has type (1m1 , 2m2 , . . . nmn) then

|CSn
(σ)| = 1m1m1!2

m2m2! · · · n
mnmn!.

The following lemma is due to K. Tanaka [2]. We give a proof for conve-
nience.

Lemma 4.2 (K. Tanaka). g(G) 6= 3 for any group G.
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Proof. Suppose g(G) ≥ 3. Let (a1, a2, a3) and (b1, b2, b3) respectively be a
gap sequence and its witness in G.

If a1 and a2 are commuting then (a1, a2, b2, b1) is a gap sequence in G
with witness (b1, b2, a2, a1).

If a1 and a2 are not commuting then (b3, a1, a2, a3) is a gap sequence in
G with witness (a3, a2, a1, b3).

Therefore, g(G) ≥ 4 in both cases. �

Proposition 4.3. g(S3) = 2 and g(A3) = 0.

Proof. We work in S3. Any nontrivial element of S3 is conjugate to (1 2)
or (1 2 3). By Lemma 4.1, |C((1 2))| = 2 and |C((1 2 3))| = 3. Since both
orders have height 1, g(S3) ≤ 2 by Lemma 2.4. g(S3) ≥ 2 by Theorem 3.1
(1).

g(A3) = 0 since A3 is abelian. �

Proposition 4.4. g(S4) = g(S5) = 4 and g(A4) = g(A5) = 2.

Proof. We work in S5. For any non-trivial element σ of S5, Table 1 obtained
by Lemma 4.1 shows that ht(|C(σ)|) ≤ 3.

Table 1. Orders of centralizers in S5

type of σ |C(σ)| ht(|C(σ)|)

(21, 13) 22 · 3 3
(22, 11) 23 3
(31, 12) 2 · 3 2
(31, 21) 2 · 3 2
(41, 11) 22 2

(51) 5 1

We have g(S4) = g(S5) = 4 by Lemma 2.4 and Theorem 3.1 (2).
By Lemma 2.8, Table 1 shows that ht(|CA5

(σ)|) ≤ 2 for any non-trivial
element σ in A5. Hence, g(A5) ≤ 3 by Lemma 2.4. We have g(A5) 6= 3 by
Lemma 4.2. Therefore, g(A4) = g(A5) = 2 by Theorem 3.2 (1). �

Proposition 4.5. g(S6) = g(S7) = 6.

Proof. We work in S7. We have Table 2 for S7 by Lemma 4.1.
Let (σ1, σ2, . . .) be a gap sequence in S7. We show that ht(|C(σ1)|) ≤ 5

or ht(|C(σ1, σ2)|) ≤ 4. Then we have g(S6) = g(S7) = 6 by Lemma 2.4 and
Theorem 3.1 (3).

Suppose ht(|C(σ1)|) > 5. Table 2 shows that σ1 has type (21). If σ2 has a
type other than (21), (22), (23), and (31), then we have ht(|C(σ1, σ2)|) ≤ 4.
If σ2 has type (22), (23), or (31), we can find τ ∈ S7 such that τ commutes
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Table 2. Orders of centralizers in S7

type of σ |C(σ)| ht(|C(σ)|)

(21, 15) 24 · 3 · 5 6
(22, 13) 24 · 3 5
(23, 11) 24 · 3 5
(31, 14) 23 · 32 5

(31, 21, 12) 22 · 3 3
(31, 22) 23 · 3 4
(32, 11) 2 · 32 3

type of σ |C(σ)| ht(|C(σ)|)

(41, 13) 23 · 3 4
(41, 21, 11) 23 3

(41, 31) 22 · 3 3
(51, 12) 2 · 5 2
(51, 21) 2 · 5 2
(61, 11) 2 · 3 2

(71) 71 1

with σ2 but not with σ1. This means that in these cases, C(σ1, σ2) is a
proper subgroup of C(σ2) and thus its order has a height at most 4. Hence
σ2 must have type (21). So, the pair (σ1, σ2) is conjugate to ((1 2), (2 3)) or
((1 2), (3 4)).

By Lemma 2.7, C((1 2), (2 3)) = S({4, 5, 6, 7}), and it has order 24 with
ht(24) = 4. Again by Lemma 2.7,

C((1 2), (3 4)) = S({1, 2}) × S({3, 4}) × S({5, 6, 7}),

and it has order 24 with ht(24) = 4. �

Proposition 4.6. g(S9) = 9.

Proof. We work in S9. We have Table 3 for S9 by Lemma 4.1.
Let (σ1, σ2, . . .) be a gap sequence in S9. We show that ht(|C(σ1)|) ≤ 8

or ht(|C(σ1, σ2)|) ≤ 7. Then we have the statement by Lemma 2.4 and
Theorem 3.1 (4).

If ht(|C(σ1)|) > 8 then σ1 has type (21). If σ2 has a type other than (21),
(22), (24), and (31), then ht(|C(σ1, σ2)|) ≤ 7.

If σ1 has type (21) and σ2 has type (22), (24) or (31), we can find τ ∈ S9

such that τ ∈ C(σ2) but τ 6∈ C(σ1). Hence C(σ1, σ2) is a proper subgroup
of C(σ2) and thus the height of its order is strictly less than 8.

If σ1 and σ2 have the same type (21), then the pair (σ1, σ2) is conjugate
to ((1 2), (2 3)) or ((1 2), (3 4)). CS9

((1 2), (2 3)) = S({4, . . . , 9}) has order
6! with ht(6!) = 7.

CS9
((1 2), (3 4)) = S({1, 2}) × S({3, 4}) × S({5, . . . , 9})

has order 2 · 2 · 5! with ht(2 · 2 · 5!) = 7. �

5. Gap numbers of S8, A6, A7, A8 and A9

We calculate g(S8), g(A9), g(A6), g(A7), and g(A8) in this order.
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Table 3. Orders of centralizers in S9

type of σ |C(σ)| ht(|C(σ)|)

(21, 17) 25 · 32 · 5 · 7 9
(22, 15) 26 · 3 · 5 8
(23, 13) 25 · 32 7
(24, 11) 27 · 3 8
(31, 16) 24 · 33 · 5 8

(31, 21, 14) 24 · 32 6
(31, 22, 12) 24 · 3 5

(31, 23) 24 · 32 6
(32, 13) 22 · 33 5

(32, 21, 11) 22 · 32 4
(33) 2134 5

(41, 15) 25 · 3 · 5 7
(41, 21, 13) 24 · 3 5
(41, 22, 11) 25 5
(41, 31, 12) 23 · 3 4

type of σ |C(σ)| ht(|C(σ)|)

(41, 31, 21) 23 · 3 4
(42, 11) 25 5
(51, 14) 23 · 3 · 5 5

(51, 21, 12) 22 · 5 3
(51, 22) 23 · 5 4

(51, 31, 11) 3 · 5 2
(51, 41) 22 · 5 3
(61, 13) 22 · 32 4

(61, 21, 11) 22 · 3 3
(61, 31) 2 · 32 3
(71, 12) 2 · 7 2
(71, 21) 2 · 7 2
(81, 11) 23 3

(91) 32 2

Lemma 5.1. Let G8 = CS4
((1 2)(3 4)). |G8| = 8 and consists of the

identity, (1 2), (3 4) (type (21)), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) (type
(22)), (1 3 2 4) and (1 4 2 3) (type (41)).

Let G4 be the subgroup of G8 consists of the identity, and the three ele-
ments of type (22). Then G4 = G8 ∩ A4 and G4 = CS4

(σ, σ′) for any two
distinct elements of type (22) in S4.

Lemma 5.2. Suppose σ, σ′ ∈ S8 have the same type (24) and σ 6= σ′.

(1) The pair (σ, σ′) is conjugate to a pair of (1 2)(3 4)(5 6)(7 8) and one
of the following:
(i) (1 3)(2 4)(5 6)(7 8);
(ii) (1 3)(2 5)(4 6)(7 8);
(iii) (1 3)(2 4)(5 7)(6 8);
(iv) (1 3)(2 7)(4 5)(6 8).

(2) The order of CS8
(σ, σ′) is 32, 12, 32, and 8 respectively for cases (i),

(ii), (iii) and (iv) in (1).
(3) Let G8 and G4 be as in Lemma 5.1 and G′

8 and G′
4 respectively be

their conjugates by (1 5)(2 6)(3 7)(4 8) (G′
8 and G′

4 are subgroups of
S({5, 6, 7, 8})).

In case (i) in (1), CS8
(σ, σ′) = G4 × G′

8.
In case (iii) in (1), G4 × G′

4 is a normal subgroup of G32 =
CS8

(σ, σ′) of index 2.
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Proof. (1) Up to conjugacy, we can assume that σ = (1 2)(3 4)(5 6)(7 8). If
σ and σ′ have 3 or more cycle components in common then σ = σ ′.

Assume that σ and σ′ have exactly 2 cycle components in common. Up
to conjugacy over σ, we can assume (5 6) and (7 8) are the common cycle
components. Then σ′ = (1 a)(2 b)(5 6)(7 8). Since σ is fixed under conju-
gation by (3 4) = (a b), σ′ is conjugate to (1 3)(2 4)(5 6)(7 8) over σ. This
is (i).

Suppose σ and σ′ have exactly one cycle component in common. Up to
conjugacy over σ, we can assume that (7 8) is the common cycle component
of σ and σ′. Then σ′ = (1 a)(2 b)(c d)(7 8) and {c, d} 6= {3, 4}. Since σ is
fixed under the conjugation by (3 4), we can assume that a or b is 3, and
since σ is also fixed under the conjugation by (1 2), we can assume that
σ′ = (1 3)(2 b)(c d)(7 8). Since {c, d} 6= {5, 6}, b must be 5 or 6. Also,
σ is fixed under the conjugation by (5 6). Therefore, σ ′ is conjugate to
(1 3)(2 5)(4 6)(7 8) over σ.

Suppose σ and σ′ have no cycle components in common. Since (1 2) is
not a cycle component of σ′, σ′ is (1 a)(2 b)(∗ ∗)(∗ ∗). Since σ has 3 orbits
other than {1, 2}, there is an orbit {c, d} of σ such that a, b 6∈ {c, d}. Since
(c d) is not a cycle component of σ′, σ′ = (1 ∗)(2 ∗)(c ∗)(d ∗). Hence, σ′ is
conjugate to (1 ∗)(2 ∗)(5 ∗)(6 ∗) over σ. Consider how 3 and 4 occur. σ ′ is
conjugate to (1 3)(2 4)(5 ∗)(6 ∗) or (1 3)(2 ∗)(5 4)(6 ∗) over σ. Therefore,
σ′ is conjugate to

(1 3)(2 4)(5 7)(6 8) or (1 3)(2 7)(4 5)(6 8)

over σ. These are (iii) and (iv).
(2) Recall G4 and G8 in Lemma 5.1. Let G′

8 and G′
4 be conjugates of

G8 and G4 by (1 5)(2 6)(3 7)(4 8). So, G′
8 = CS({5,6,7,8})((5 6)(7 8)) and

G′
4 = CS({5,6,7,8})((5 6)(7 8), (5 7)(6 8)).
Let σ = (1 2)(3 4)(5 6)(7 8).
Case (i). σ′ = (1 3)(2 4)(5 6)(7 8). If τ commutes with both σ and σ ′ then

(5 6)τ and (7 8)τ are cycle components of both σ and σ′. Hence, {5, . . . , 8}
is τ -invariant and thus τ ∈ S4 × S({5, . . . , 8}). Therefore,

CS8
(σ, σ′) = CS4×S({5,...,8})(σ, σ′) = G4 × G′

8.

Case (ii). σ′ = (1 3)(2 5)(4 6)(7 8). Let τ ∈ S8 be an element commuting
with both σ and σ′. Then (7 8)τ is a cycle component of both σ and σ′, and
thus (7 8)τ = (7 8). Hence, {1, . . . , 6} and {7, 8} are τ -invariant.

Suppose τ(1) = 1. (1 2)τ = (1 τ(2)) is a cycle component of σ and
thus τ(2) = 2. (2 5)τ = (2 τ(5)) is a cycle component of σ′ and thus
τ(5) = 5. (5 6)τ = (5 τ(6)) is a cycle component of σ and thus τ(6) = 6.
(4 6)τ = (τ(4) 6) is a cycle component of σ′ and thus τ(4) = 4. Similarly, if
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τ(1) ∈ {1, . . . , 6} then τ on {1, . . . , 6} is uniquely determined depending on
the value of τ(1). Hence there are 6 possibilities for τ on {1, . . . , 6}.

We conclude that CS8
(σ, σ′) has exactly 12 elements and contains (7 8).

Case (iii). σ′ = (1 3)(2 4)(5 7)(6 8). Let τ ∈ S8 be an element commuting
with both σ and σ′.

Suppose τ(1) = 3. (1 2)τ = (3 τ(2)) is a cycle component of σ and
(1 3)τ = (3 τ(3)) is a cycle component of σ′. Thus, τ(2) = 4 and τ(3) = 1.
(3 4)τ = (1 τ(4)) is a cycle component of σ. Thus, τ(4) = 2. Hence,
τ = (1 3)(2 4)τ ′ for some τ ′ ∈ S({5, 6, 7, 8}). This τ ′ must commute with
(5 6)(7 8) and (5 7)(6 8), and thus τ ′ ∈ G′

4.
With similar arguments, we can see that if τ(1) ∈ {1, 2, 3, 4} then τ ∈

G4 × G′
4. There are 16 elements of this form.

If τ(1) ∈ {5, 6, 7, 8}, we can see that τ on {1, 2, 3, 4} is represented by
(

1 2 3 4
5 6 7 8

)

,

(

1 2 3 4
6 5 8 7

)

,

(

1 2 3 4
7 8 5 6

)

, or

(

1 2 3 4
8 7 6 5

)

,

and τ on {5, 6, 7, 8} is represented by
(

5 6 7 8
1 2 3 4

)

,

(

5 6 7 8
2 1 4 3

)

,

(

5 6 7 8
3 4 1 2

)

, or

(

5 6 7 8
4 3 2 1

)

.

Hence, CS8
(σ, σ′) has an order at most 32. Since G4 × G′

4 is a subgroup of
CS8

(σ, σ′) and (1 5)(2 6)(3 7)(4 8) ∈ CS8
(σ, σ′), CS8

(σ, σ′) has order 32.
G4 × G′

4 has exactly two cosets in CS8
(σ, σ′), namely, a coset including

(1 5)(2 6)(3 7)(4 8) and itself. Since G4 ×G′
4 is invariant under conjugation

by (1 5)(2 6)(3 7)(4 8), G4 × G′
4 is a normal subgroup of CS8

(σ, σ′).
Case (iv). σ′ = (1 3)(2 4)(5 7)(6 8). Let τ ∈ S8 be an element commuting

with both σ and σ′. We can see then τ ∈ S8 is uniquely determined de-
pending on the value of τ(1) ∈ {1, . . . , 8} by considering conjugates of cycle
components of σ and σ′ by τ . Therefore, CS8

(σ, σ′) has order 8. �

With Lemma 5.2, we can calculate g(S8).

Proposition 5.3. g(S8) = 8.

Proof. We have Table 4 below by Lemma 4.1.
For any gap sequence (σ1, σ2, . . .), we show that ht(|CS8

(σ1)|) ≤ 7 or
ht(|CS8

(σ1, σ2)|) ≤ 6. Then we have the statement by Lemma 2.4.
Suppose ht(|CS8

(σ1)|) > 7. Then the type of σ1 is (21) or (24). If the
type of σ2 is neither (21), (24), nor (22) then ht(|CS8

(σ1, σ2)|) ≤ 6.
If σ2 has type (22) then it is easy to see that CS8

(σ1, σ2) is a proper
subgroup of CS8

(σ2). Hence, ht(|CS8
(σ1, σ2)|) ≤ 6 in this case. Therefore,

the types of σ1 and σ2 are among (21) and (24).
Now, we have only three cases to consider.
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Table 4. Orders of centralizers in S8

type of σ |C(σ)| ht(|C(σ)|)

(21, 16) 25 · 32 · 5 8
(22, 14) 26 · 3 7
(23, 12) 25 · 3 6

(24) 27 · 3 8
(31, 15) 23 · 32 · 5 6

(31, 21, 13) 22 · 32 4
(31, 22, 11) 23 · 3 4

(32, 12) 22 · 32 4
(32, 21) 22 · 32 4
(41, 14) 25 · 3 6

(41, 21, 12) 24 4

type of σ |C(σ)| ht(|C(σ)|)

(41, 22) 25 5
(41, 31, 11) 22 · 3 3

(42) 25 5
(51, 13) 21 · 3 · 5 3

(51, 21, 11) 2 · 5 2
(51, 31) 3 · 5 2
(61, 12) 22 · 3 3
(61, 21) 22 · 3 3
(71, 11) 7 1

(81) 23 3

Case 1. σ1 and σ2 have type (21). If |supp(σ1, σ2)| = 3 then CS8
(σ1, σ2) ∼=

S5. Hence, ht(|CS8
(σ1, σ2)|) = 5. If |supp(σ1, σ2)| = 4 then CS8

(σ1, σ2) ∼=
S2 × S2 × S4. Hence, ht(|CS8

(σ1, σ2)|) = 6.
Case 2. σ1 and σ2 have type (24). In this case, ht(|CS8

(σ1, σ2)|) ≤ 5 by
Lemma 5.2.

Case 3. σ1 has type (21) and σ2 has type (24), or vice versa. The order
of CS8

(σ1, σ2) is a common divisor of 25 · 32 · 5 and 27 · 3, hence a divisor of
25 · 3. Therefore, ht(|CS8

(σ1, σ2)|) ≤ 6. �

Lemma 5.4. Suppose permutations σ, σ ′ ∈ S9 have the same type (24) and
supp(σ, σ′) = {1, . . . , 9}. Then ht(|CS9

(σ, σ′)|) ≤ 5.

Proof. Up to conjugacy, we can assume that σ = (1 2)(3 4)(5 6)(7 8), and
(1 9) is a cycle component of σ′.

Let τ be an element of S9 commuting with both σ and σ′. Since 9 is the
only fixed point of σ, τ(9) = 9. Since (1 9)τ = (τ(1), 9) is a cycle component
of σ′, we have τ(1) = 1. Since (1 2)τ = (1, τ(2)) is a cycle component of σ, we
have τ(2) = 2. Thus, τ ∈ S({3, . . . , 8}) and τ commutes with (3 4)(5 6)(7 8).
Hence, CS9

(σ, σ′) is isomorphic to a subgroup of CS6
((1 2)(3 4)(5 6)), which

has order 24 · 3. Therefore, ht(|CS9
(σ, σ′)|) ≤ 5. �

Lemma 5.5. Suppose two permutations σ and σ ′ have the same type (31).
Let I = supp(σ, σ′). If |supp(σ, σ′)| = 3 then CS(I)(σ, σ′) = CS(I)(σ), if
|supp(σ, σ′)| = 4 or 5 then |CS(I)(σ, σ′)| = 1, and if |supp(σ, σ′)| = 6 then

|CS(I)(σ, σ′)| = 9.

Proof. Easy. �
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Lemma 5.6. Suppose two permutations σ and σ ′ have the same type (22)
and σ 6= σ′.

(1) The pair (σ, σ′) is conjugate to a pair of (1 2)(3 4) and one of the fol-
lowing: (i) (1 3)(2 4); (ii) (1 5)(3 4); (iii) (1 5)(2 3); (iv) (1 2)(5 6);
(v) (1 3)(5 6); (vi) (1 5)(2 6); (vii) (1 5)(3 6); (viii) (1 7)(5 6); and
(ix) (5 6)(7 8).

(2) Let I = supp(σ, σ′). Then |CS(I)(σ, σ′)| and the size of supp(σ, σ′)
are given as follows according to cases in (1): (i) 4 (|supp| = 4),
(ii) 2 (|supp| = 5), (iii) 1 (|supp| = 5), (iv) 8 (|supp| = 6), (v)
4 (|supp| = 6), (vi) 4 (|supp| = 6), (vii) 2 (|supp| = 6), (viii) 4
(|supp| = 7), and (ix) 64 (|supp| = 8).

Proof. (1) Up to conjugacy, we can assume that σ = (1 2)(3 4). Suppose
|supp(σ, σ′)| = 4. Then σ′ belong to S4. Since σ′ 6= σ, σ′ = (1 a)(2 b)
where {a, b} = {3, 4}. Since σ is fixed under the conjugation by (3 4), σ is
conjugate to (1 3)(2 4) over (1 2)(3 4). This is (i).

Suppose |supp(σ, σ′)| = 5. We can assume that |supp(σ, σ′)| = {1, . . . , 5}.
Since 5 is moved by σ′, σ′ is conjugate to (1 5)(a b) over σ where a and b
belong to {2, 3, 4}. If (1 5)(a b) fixes 2 then it is (1 5)(3 4). This is (ii). If
it moves 2, then it is conjugate to (1 5)(2 3) over σ. This is (iii).

Suppose |supp(σ, σ′)| = 6. We can assume that |supp(σ, σ′)| = {1, . . . , 6}.
Then 5 and 6 are moved by σ′. Therefore, σ′ = (a b)(5 6) or σ′ = (a 5)(b 6)
for some a and b in {1, 2, 3, 4}. If σ′ = (a b)(5 6) then it is conjugate to
(1 2)(5 6) or (1 3)(5 6) over σ. These are (iv) and (v). If σ ′ = (a 5)(b 6)
then it is conjugate to (1 5)(2 6) or (1 5)(3 6) over σ. These are (vi) and
(vii).

Suppose |supp(σ, σ′)| = 7. We can assume that |supp(σ, σ′)| = {1, . . . , 7}.
Then supp(σ′) = {a, 5, 6, 7} where a is 1, 2, 3 or 4. Therefore σ ′ is conjugate
to (1 7)(5 6) over σ. This is (viii).

If |supp(σ, σ′)| = 8, supp(σ) and supp(σ′) are disjoint. Therefore, σ′ is
conjugate to (5 6)(7 8) over σ. This is (ix).

(2) Let G4, G8, and G′
8 be as in Lemma 5.2. CS(I)(σ, σ′) is isomorphic to

G4 in case (i), and to G8 × G′
8 in case (ix).

Case (ii). σ = (1 2)(3 4) and σ′ = (1 5)(3 4). Let τ be an element of
S5 commuting with both σ and σ′. Since 5 is the only fixed point of σ in
{1, . . . , 5}, τ(5) = 5. Since (1 5)τ = (τ(1) 5) is a cycle component of σ′,
τ(1) = 1. Since (1 2)τ = (1 τ(2)) is a cycle component of σ, τ(2) = 2.
Hence, τ ∈ S({3, 4}). Therefore, CS5

(σ, σ′) = S({3, 4}).
Case (iii). σ = (1 2)(3 4) and σ′ = (1 5)(2 3). Let τ be an element of S5

commuting with both σ and σ′. As in case (ii), starting from τ(5) = 5, we
get τ(i) = i for i = 1, . . . , 5.
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Case (iv). σ = (1 2)(3 4) and σ′ = (1 2)(5 6). Let τ be an element of
S6 commuting with both σ and σ′. On {1, . . . , 6}, fix(σ) = {5, 6}, fix(σ′) =
{3, 4} and they are τ -invariant. Thus, {1, 2} is also τ -invariant. Therefore,

CS6
(σ, σ′) = S2 × S({3, 4}) × S({5, 6}).

Case (v). σ = (1 2)(3 4) and σ′ = (1 3)(5 6). Let τ be an element of S6

commuting with both σ and σ′. supp(σ) ∩ supp(σ′) = {1, 3} is τ -invariant.
If τ(1) = 1, considering conjugates by τ of cycle components of σ and σ ′,
we have τ(i) = i for i = 1, . . . , 4 and {5, 6} is τ -invariant. If τ(1) = 3, we
have τ = (1 3)(2 4)τ ′ with τ ′ ∈ S({5, 6}). Therefore, CS6

(σ, σ′) has order 4.
Case (vi). σ = (1 2)(3 4) and σ′ = (1 5)(2 6). Let τ be an element of

S6 commuting with both σ and σ′. fix(σ) = {5, 6} and fix(σ′) = {3, 4} are
τ -invariant. Since (1 5)τ and (2 6)τ are cycle components of σ′, τ on {1, 2}
is uniquely determined by τ on {5, 6}. Therefore, CS6

(σ, σ′) has order 4.
Case (vii). σ = (1 2)(3 4) and σ′ = (1 5)(3 6). Let τ be an element

of S6 commuting with both σ and σ′. supp(σ) ∩ supp(σ′) = {1, 3} is τ -
invariant. If τ(1) = 1 then τ is the identity on {1, . . . , 6}. If τ(1) = 3 then
τ = (1 3)(2 4)(5 6). Therefore, CS6

(σ, σ′) has order 2.
Case (viii). σ = (1 2)(3 4) and σ′ = (1 7)(5 6). Let τ be an element of

S6 commuting with both σ and σ′. supp(σ)∩ supp(σ′) = {1} is τ -invariant.
Thus, τ(1) = 1. Then we can show that τ(2) = 2 and τ(7) = 7. Therefore,
CS7

(σ, σ′) = S({3, 4}) × S({5, 6}). �

Lemma 5.7. If σ, σ′ ∈ S9 have types (24) and (22) respectively then

ht(|CS9
(σ, σ′)|) ≤ 6; ht(|CA9

(σ, σ′)|) ≤ 5.

In particular, if σ, σ′ ∈ A8 then ht(|CA8
(σ, σ′)|) ≤ 4 or CA8

(σ, σ′) is conju-
gate to (G8 × G′

8) ∩ A8. Here, G8 and G′
8 are as in Lemma 5.2.

Proof. Up to conjugacy, we can assume that σ = (1 2)(3 4)(5 6)(7 8).
Suppose 9 is not a fixed point of σ′. Up to conjugacy, we can also assume

that (1 9) is a cycle component of σ′. By the same argument as that for
Lemma 5.4, ht(|CS9

(σ, σ′)|) ≤ 5 in this case.
Now, suppose 9 is a fixed point of σ′. Then we can easily see that σ′ is

conjugate to one of the following over σ: (i) (1 2)(3 4); (ii) (1 3)(2 4); (iii)
(1 2)(3 5); (iv) (1 3)(2 5); and (v) (1 3)(5 7).

Case (i). σ′ = (1 2)(3 4). In this case, CS9
(σ, σ′) = G8 × G′

8, and thus
|CS9

(σ, σ′)| = 26. Since G8 × G′
8 contains a transposition, CA9

(σ, σ′) =
(G8 × G′

8) ∩ A8 has order 25.
Case (ii). σ′ = (1 3)(2 4). In this case, CS9

(σ, σ′) = G4 × G′
8 has order

25.
Case (iii). σ′ = (1 2)(3 5). Let τ be an element of CS9

(σ, σ′). Since
(1 2) is the only cycle component common to σ and σ ′, (1 2)τ = (1 2).
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Then (3 5)τ = (3 5) by σ′τ = σ′. Since {3, 5} is τ -invariant and (3 4)τ and
(5 6)τ are cycle components of σ, {4 6} is also τ -invariant. Hence {7, 8} is
τ -invariant. Therefore,

CS9
(σ, σ′) ⊂ S2 × S({3, 5}) × S({4, 6}) × S({7, 8})

and in fact, both sides are equal for Case (iii).
Case (iv). σ′ = (1 3)(2 5). Let τ be an element of CS9

(σ, σ′).
If τ(3) = 1 then τ(4) = 2 since στ = σ. But in this case, 4 is a fixed point

of σ′ but τ(4) = 2 is not. Hence, τ and σ′ are not commuting.
If τ(3) = 2 then τ(1) = 5 and τ(2) = 6 since σ ′τ = σ′ and στ = σ. But

in this case, τ(2) = 6 is a fixed point of σ ′ but 2 = τ−1(6) is not. Hence, τ
and σ′ are not commuting.

If τ(3) = 3 then τ(1) = 1, τ(2) = 2, τ(4) = 4, τ(5) = 5, and τ(6) = 6.
Hence τ ∈ CS({7,8})((7 8)) in this case. There are 2 such τ ’s.

If τ(3) = 5 then τ(1) = 2, τ(2) = 1, τ(4) = 6, τ(5) = 3, and τ(6) = 4.
Hence τ |{7,8} belongs to CS({7,8})((7 8)) in this case. There are 2 such τ ’s.

Therefore, |CS9
(σ, σ′)| = 22 for Case (iv).

Case (v). σ′ = (1 3)(5 7). Let τ be an element of CS9
(σ, σ′). Then

{1, 3, 5, 7} is τ -invariant and there are 8 possibilities for τ on {1, 3, 5, 7}
corresponding to the elements of G8. Since σ = (1 2)(3 4)(5 6)(7 8),
τ on {2, 4, 6, 8} is uniquely determined by τ on {1, 3, 5, 7}. Therefore,
CS9

(σ, σ′) ∼= G8 for Case (v). �

Lemma 5.8. If σ, σ′ ∈ A9 have types (24) and (31) respectively then

ht(|CA9
(σ, σ′)|) ≤ 4.

Proof. By Lemma 4.1, |CS9
(σ)| = 27 ·3 and |CS9

(σ′)| = 24 ·33 ·5. Therefore,
|CS9

(σ, σ′)| is a divisor of 24 · 3. Since |supp(σ′)| = 3, there is a cycle
component (a b) of σ such that a, b 6∈ supp(σ ′). Therefore, |CA9

(σ, σ′)| is a
divisor of 23 · 3. �

Lemma 5.9. Suppose two permutations σ and σ ′ have types (22) and (31)
respectively, and let I = supp(σ, σ′). Then CS(I)(σ, σ′) has order 1 if |I| = 4,
at most 2 if |I| = 5 or 6, and 24 if |I| = 7.

Proof. Suppose |I| = 4. CS(I)(σ) ∼= G8 has order 8 and CS(I)(σ
′) ∼= A3 has

order 3. Therefore, CS(I)(σ, σ′) has order 1.
Suppose |I| = 5. CS(I)(σ) ∼= G8 has order 8 and CS(I)(σ

′) ∼= A3 × S2 has
order 3 · 2. Therefore, CS(I)(σ, σ′) has order at most 2.

Suppose |I| = 6. CS(I)(σ) ∼= G8×S2 has order 8·2 and CS(I)(σ
′) ∼= A3×S3

has order 3 · 3!. Therefore, CS(I)(σ, σ′) has order at most 2.
Suppose |I| = 7. Then supp(σ) and supp(σ ′) have an empty intersection.

Therefore, CS(I)(σ, σ′) ∼= G8 × A3 and it has order 24. �
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Lemma 5.10. Suppose (σ1, σ2, σ3) is a gap sequence in A9, σ1 and σ2 belong
to S4 and have the same type (22). If σ3 ∈ S9 has type (22), (31), or (24)
then ht(|CA9

(σ1, σ2, σ3)|) ≤ 4.

Proof. We have CS4
(σ1, σ2) = G4 where G is as in Lemma 5.1. We consider

two cases.
Case 1. σ3 has type (22) or (31).
Suppose the size of supp(σ1, σ2, σ3) is k. Note that 4 ≤ k ≤ 9. Up to

conjugacy, we can assume that supp(σ1, σ2, σ3) = {1, . . . , k}. Then

CS9
(σ1, σ2, σ3) ⊂ CSk

(σ1, σ2, σ3) × S({k + 1, . . . , 9})

and
CSk

(σ1, σ2, σ3) ⊂ G4 × S({5, . . . , k}).

Hence,

CS9
(σ1, σ2, σ3) ⊂ G4 × S({5, . . . , k}) × S({k + 1, . . . , 9}).

Suppose k = 4. If σ3 has type (22) then σ3 ∈ G4. Hence, (σ1, σ2, σ3) is
not a gap sequence in S9. Thus, σ3 must have type (31). In this case, σ3

commutes with no elements in G4 other than the identity. Hence

CA9
(σ1, σ2, σ3) = A({5, . . . , 9})

and it has order 5!/2 with ht(5!/2) = 4.
If k = 5 then σ3 commutes with no non-trivial elements in G4. Therefore,

CA9
(σ1, σ2, σ3) is A({6, . . . , 9}) which has oder 4!/2 with ht(4!/2) = 3.

If k = 6 then

CS9
(σ1, σ2, σ3) ⊂ G4 × S({5, 6}) × S({7, 8, 9})

and If k = 7 then

CS9
(σ1, σ2, σ3) ⊂ G4 × S({5, 6, 7}) × S({8, 9}).

In either case, CS9
(σ1, σ2, σ3) contains an odd permutation, and therefore

CA9
(σ1, σ2, σ3) has an order dividing 4 ·3! ·2/2. Thus the height of the order

is at most 4.
Suppose k = 8. Then σ3 has type (22).

CS9
(σ1, σ2, σ3) = G4 × G′

8

and thus
CA9

(σ1, σ2, σ3) = G4 × G′
4,

which has order 16 with ht(16) = 4.

Case 2. σ3 has type (24). supp(σ1, σ2, σ3) has 8 or 9 elements.
Suppose it has 9 elements. Then σ3 has a unique fixed point i ∈ {1, . . . , 4}.

Let
τ ∈ CS9

(σ1, σ2) = G4 × S({5, . . . , 9}).
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If τ |{1,...,4} ∈ G4 is not identity then τ and σ3 are not commuting because i
is a fixed point of σ3 while τ(i) is not. Hence, CS9

(σ1, σ2, σ3) is a subgroup
of S({5, . . . , 9}). Thus CA9

(σ1, σ2, σ3) is a proper subgroup of S({5, . . . , 9}).
Therefore, CA9

(σ1, σ2, σ3) has an order of height at most 4.
Finally, suppose supp(σ1, σ2, σ3) has 8 elements. Up to conjugacy, we can

assume that this support is {1, . . . , 8}. Then CS9
(σ1, σ2, σ3) is a subgroup

of G4×S({5, . . . , 8}). Since σ3 has type (24), it has a cycle component (a b)
belonging to S({5, . . . , 8}). Choose c ∈ {5, . . . , 8} − {a, b}. Then (a c) ∈
S({5, . . . , 8}) but (a c) does not commute with σ3. Hence, CS9

(σ1, σ2, σ3)
is a proper subgroup of G4 × S({5, . . . , 8}). Also, CS9

(σ1, σ2, σ3) contains
(a, b). Thus, CA9

(σ1, σ2, σ3) is a proper subgroup of CS9
(σ1, σ2, σ3). Since

G4 × S({5, . . . , 8}) has an order of height 6, CA9
(σ1, σ2, σ3) has an order of

height at most 4. �

Proposition 5.11. g(A9) = 7.

Proof. Let (σ1, σ2, σ3, . . .) be a gap sequence in A9. We show that

ht(|CA9
(σ1)|) ≤ 6, ht(|CA9

(σ1, σ2)|) ≤ 5, or ht(|CA9
(σ1, σ2, σ3)|) ≤ 4

holds. Then we have the statement by Lemma 2.4 and Theorem 3.2 (3).
By Table 3 in the proof of Proposition 4.6, for non-trivial element σ ∈ A9,

ht(|CA9
(σ)|) = 7 if σ has type (22), (31), or (24), and ht(|CA9

(σ)|) ≤ 4
otherwise. Therefore, if σ1, σ2, or σ3 has a type other than (22), (31), and
(24) then ht(|CA9

(σ1, σ2, σ3)|) ≤ 4.
We can assume that the types of σ1, σ2, and σ3 are among (22), (31), and

(24). We consider cases according to the types of σ1 and σ2.
Case 1. σ1 and σ2 have type (24). In this case, ht(|CA9

(σ1, σ2)|) ≤ 5 by
Lemmas 5.2 and 5.4.

Case 2. σ1 and σ2 have type (31). Let I = supp(σ1, σ2). By Lemma 5.5,
3 < |I| ≤ 6. Let J = {1, . . . , 9} − I. If |I| = 4 then

CS9
(σ1, σ2) = CS(I)(σ1, σ2) × S(J) = S(J) ∼= S5

by Lemma 5.5. Therefore, ht(|CA9
(σ1, σ2)|) = ht(5!/2) = 4.

Similarly, if |I| = 5 then CS9
(σ1, σ2) = S(J) ∼= S4 and hence

ht(|CA9
(σ1, σ2)|) = ht(4!/2) = 3.

If |I| = 6 then CS9
(σ1, σ2) is conjugate to

A3 × A({4, 5, 6}) × S({7, 8, 9})

and hence ht(|CA9
(σ1, σ2)|) = ht(9 · 3!/2) = 3.

Case 3. σ1 has type (24) and σ2 has type (22), or vice versa. In this case,
ht(|CA9

(σ1, σ2)|) ≤ 5 by Lemma 5.7.
Case 4. σ1 has type (24) and σ2 has type (31), or vice versa. In this case,

ht(|CA9
(σ1, σ2)|) ≤ 4 by Lemma 5.8.
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Case 5. σ1 has type (22) and σ2 has type (31), or vice versa. By Lemma
5.9, if |supp(σ1, σ2)| = 4 then |CA9

(σ1, σ2)| = 5!, if |supp(σ1, σ2)| = 5 then
|CA9

(σ1, σ2)| = 2 · 4!, if |supp(σ1, σ2)| = 6 then |CA9
(σ1, σ2)| = 2 · 3!, and if

|supp(σ1, σ2)| = 7 then |CA9
(σ1, σ2)| = 24 · 2. Hence, ht(|CA9

(σ1, σ2)|) ≤ 5.
Case 6. σ1 and σ2 have type (22). Let I = supp(σ1, σ2). If |I| = 5 then

CS9
(σ1, σ2) ∼= CS(I)(σ1, σ2) × S4. Hence, ht(|CA9

(σ1, σ2)|) ≤ 4 by Lemma
5.6. Similarly, if |I| > 6 then ht(|CA9

(σ1, σ2)|) ≤ 5.
If |I| = 4 then ht(|CA9

(σ1, σ2, σ3)|) ≤ 4 by Lemma 5.10. �

Proposition 5.12. g(A6) = g(A7) = 4.

Proof. Let G4 and G8 be as in Lemma 5.1.
Let (σ1, σ2, σ3, . . .) be a gap sequence in A7. We show that

ht(|CA7
(σ1, σ2)|) ≤ 2, or ht(|CA7

(σ1, σ2, σ3)|) ≤ 1.

Then we have the statement by Lemma 2.4 and Theorem 3.2 (2).

Claim 1. CA7
(σ1, σ2) has an order of height at most 2, or, is conjugate to

G4 × A({5, 6, 7}).

By looking at the types of even permutations in Table 2 in the proof of
Proposition 4.5, CA7

(σ1, σ2) has an order of height at most 2 if the type of
σ1 or σ2 is neither (22) nor (31). We have 3 cases to consider.

Case 1. σ1 has type (22) and σ2 has type (31), or vice versa. Let I =
supp(σ1, σ2). Then CS7

(σ1, σ2) is isomorphic to

CS(I)(σ1, σ2) × S7−|I|.

If |I| < 7, then we can show that the latter group has an order of height at
most 2 by Lemma 5.9.

Suppose |I| = 7. Then σ1 and σ2 have disjoint supports. Hence CS7
(σ1, σ2)

is conjugate to G8 × A({5, 6, 7}). Therefore, CA7
(σ1, σ2) is conjugate to

G4 × A({5, 6, 7}).
Case 2. σ1 and σ2 have type (31). Let I = supp(σ1, σ2). If the supports

of σ1 and σ2 are the same then (σ1, σ2) cannot be a gap sequence. So, |I| is
4, 5, or 6. Considering the cases according to |I|, we can easily check that
ht(|CA7

(σ1, σ2)|) ≤ 2.
Case 3. σ1 and σ2 have type (22). Let I = supp(σ1, σ2). If |I| = 4

then CS7
(σ1, σ2) is conjugate to G4 ×S({5, 6, 7}). Since G4 consists of even

permutations, CA7
(σ1, σ2) is conjugate to G4 × A({5, 6, 7}). If |I| > 4, we

can check that ht(|CA7
(σ1, σ2)|) ≤ 2 using Lemma 5.6. Claim 1 is proved.

Claim 2. Suppose (σ1, σ2, σ3) is a gap sequence in A7 and CA7
(σ1, σ2) =

G4 × A({5, 6, 7}). Then ht(|CA7
(σ1, σ2, σ3)|) ≤ 1.

If σ3 6∈ S4 × S({5, 6, 7}), we can easily check that CA7
(σ1, σ2, σ3) is a

trivial group.
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Suppose σ3 = ττ ′ where τ ∈ S4 and τ ′ ∈ S({5, 6, 7}). Then

CA7
(σ1, σ2, σ3) = CG4

(τ) × CA({5,6,7})(τ
′).

Since σ3 ∈ A7, τ and τ ′ are both even, or both odd.
If τ and τ ′ are odd, then CA({5,6,7})(τ

′) is trivial, and CG4
(τ) is trivial or

has order 2. Hence, CA7
(σ1, σ2, σ3) is trivial or a group of order 2.

If τ and τ ′ are even, then CA({5,6,7})(τ
′) is A({5, 6, 7}), and CG4

(τ) is G4

or trivial. Hence, CA7
(σ1, σ2, σ3) is A({5, 6, 7}), which has order 3. �

Lemma 5.13. Suppose H is a subgroup of a direct product G × G′ and
H0 = H∩G′. Then for any g1, g2 ∈ G, g1g

′
1H0 = g2g

′
2H0 for some g′1, g

′
2 ∈ G′

implies g1 = g2. Therefore, if H is finite then

|H| = |H0| · |{g ∈ G : gg′ ∈ H for some g′ ∈ G′}|.

Proof. Suppose g1, g2 ∈ G, g1g
′
1H0 = g2g

′
2H0 for some g′1, g

′
2 ∈ G′. Then

g1
−1g2g

′
1
−1g′2 ∈ H0 ⊂ G′. Hence g1

−1g2 ∈ G′, and thus g1
−1g2 ∈ G ∩ G′.

Therefore, g1
−1g2 is the identity. �

Proposition 5.14. g(A8) = 6.

Proof. Let G4, G′
4, G8, G′

8, and G32 be as in Lemma 5.2.
Suppose (σ1, σ2, σ3, σ4, . . .) is a gap sequence in A8.
We prove the statement by a sequence of claims. Here is an outline of

the proof. In Claim 1, we prove that CA8
(σ1, σ2) has an order of height at

most 4 or is conjugate to one of few groups. If CA8
(σ1, σ2) is one of these

groups, we show that CA8
(σ1, σ2, σ3) has an order of height at most 3 or it is

conjugate to G4 ×G′
4 in Claims 3 to 5. Finally, if CA8

(σ1, σ2, σ3) = G4 ×G′
4

then CA8
(σ1, σ2, σ3, σ4) has an order of height at most 2 by Claim 2.

We show Claim 2 before Claim 3 because we need it also in the proof of
Claim 3.

Claim 1. CA8
(σ1, σ2) has an order of height at most 4, or, is conjugate to

(G8 × G′
8) ∩ A8, G32, or G4 × A({5, . . . , 8}).

If the type of σ ∈ S8 is not (71), we can easily check that CS8
(σ) contains

an odd permutation. Therefore, by Table 4 in the proof of Proposition 5.3,
if the type of σ1 is neither (22) nor (24) then CA8

(σ1) has an order of height
at most 5, and hence CA8

(σ1, σ2) has an order of height at most 4.
Suppose that the type of σ1 is (22) or (24). If the type of σ2 is neither

(22), (24) nor (31) then ht(|CA8
(σ2)|) ≤ 4 by Table 4. Again by Table 4,

|CA8
(σ1)| = 2i · 3 with i = 5 or 6, if σ2 has type (31) then

|CA8
(σ2)| = 22 · 32 · 5

and hence |CA8
(σ1, σ2)| is a divisor of 22 · 3.

Now, we can assume that the types of σ1 and σ2 are among (22) and (24).
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Suppose that the types of σ1 and σ2 are (22) and (24) respectively, or vice
versa. By Lemma 5.7, ht(|CA8

(σ1, σ2)|) ≤ 4 or CA8
(σ1, σ2) is conjugate to

(G8 × G′
8) ∩ A8.

Suppose that the types of σ1 and σ2 are (24). By Lemma 5.2,

ht(|CA8
(σ1, σ2)|) ≤ 4

or CA8
(σ1, σ2) is conjugate to G32.

Suppose that the types of σ1 and σ2 are (22). If 5 ≤ |supp(σ1, σ2)| ≤
7 then ht(|CA8

(σ1, σ2)|) ≤ 3 by Lemma 5.6. If |supp(σ1, σ2)| = 4 then
CA8

(σ1, σ2) is conjugate to G4 × A({5, 6, 7, 8}). If |supp(σ1, σ2)| = 8 then
CA8

(σ1, σ2) is conjugate to (G8 × G′
8) ∩ A8. Claim 1 is proved.

Claim 2. Let σ4 ∈ A8. If CG4×G′

4
(σ4) is a proper subgroup of G4 × G′

4

then ht(|CG4×G′

4
(σ4)|) ≤ 2.

Assume that σ4 6∈ S4 × S({5, 6, 7, 8}). Then CG4×G′

4
(σ3) ∩ G′

4 is triv-

ial. By Lemma 5.13, |CG4×G′

4
(σ4)| is at most |G4| · 1 = 4. Therefore,

ht(|CG4×G′

4
(σ4)|) ≤ 2.

Assume that σ4 ∈ S4 × S({5, 6, 7, 8}). Let σ4 = ττ ′ with τ ∈ S4 and
τ ′ ∈ S({5, 6, 7, 8}). Then CG4×G′

4
(σ4) = CG4

(τ) × CG′

4
(τ ′). Since σ4 is an

even permutation, τ and τ ′ are both even, or both odd. Suppose that τ and
τ ′ are odd. Then CG4

(τ) is a proper subgroup of G4 and CG′

4
(τ ′) is a proper

subgroup of G′
4. Therefore, ht(|CG4×G′

4
(σ4)|) ≤ 2.

Suppose τ and τ ′ are even. Then CG4
(τ) is G4 or trivial and CG′

4
(τ ′) is

G′
4 or trivial. Therefore, If CG4×G′

4
(σ4) is a proper subgroup of G4 × G′

4

then ht(|CG4×G′

4
(σ4)|) ≤ 2. Claim 2 is proved.

Claim 3. Let σ3 ∈ A8. If CG32
(σ3) is a proper subgroup of G32 then

ht(|CG32
(σ3)|) ≤ 3 or CG32

(σ3) = G4 × G′
4.

G4 × G′
4 ⊂ S4 × S({5, 6, 7, 8}) is a normal subgroup of G32 of index 2 by

Lemma 5.2 (3). Hence, the product of any two elements in G32 − (G4 ×G′
4)

belongs to G4 ×G′
4. Therefore CG32

(σ3)∩ (G4 ×G′
4) has an index at most 2

in CG32
(σ3). Since CG32

(σ3)∩ (G4 ×G′
4) = CG4×G′

4
(σ3), it is G4 ×G′

4 or has

an order of height at most 2 by Claim 2. Therefore, if CG32
(σ3) is a proper

subgroup of G32 then it is G4 × G′
4 or it has an order of height at most 3.

Claim 3 is proved.

Claim 4. Let H = (G8 × G′
8) ∩ A8, and σ3 ∈ A8. If CH(σ3) is a proper

subgroup of H then ht(|CH(σ3)|) ≤ 3 or CH(σ3) = G4 × G′
4.

We consider CG8×G′

8
(σ3).
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Case 1. σ3 6∈ S4 × S({5, 6, 7, 8}). CG8×G′

8
(σ3) ∩ G′

8 is trivial or consists

of the identity and one 2-cycle since G′
8 consists of the identity, two 2-cycles

(5 6), (7 8), and five permutations with support {5, . . . , 8}.
We count the number of τ1 ∈ G8 such that τ1τ2 ∈ CG8×G′

8
(σ3) for some

τ2 ∈ G′
8 and then use Lemma 5.13.

Up to conjugacy, we can also assume that σ3(1) = 5.
Subcase 1a. σ3 maps {1, 2, 3, 4} to {5, 6, 7, 8}. In this case, CG8×G′

8
(σ3)∩

G′
8 is trivial and therefore |CG8×G′

8
(σ3)| ≤ |G8| = 8 by Lemma 5.13.

Subcase 1b. σ3 commutes with (1 3 2 4)τ ′ or (1 4 2 3)τ ′ for some τ ′ in
G′

8.
Suppose σ3 commutes with (1 3 2 4)τ ′ for some τ ′ ∈ G′

8. Then

(1 3 2 4)σ3τ ′σ3 = (1 3 2 4)τ ′.

Since σ3(1) = 5, (1 3 2 4)σ3 is a cycle component of τ ′, and hence σ3 maps
{1, . . . , 4} to {5, . . . , 8}. This is Subcase 1a.

If σ3 commutes with (1 4 2 3)τ ′ for some τ ′ ∈ G′
8, the same argument

reduces the situation to Subcase 1a.
Subcase 1c. σ3 commutes with (1 3)(2 4)τ ′ or (1 4)(2 3)τ ′ for some

τ ′ ∈ G′
8.

Suppose σ3 commutes with (1 3)(2 4)τ ′ for some τ ′ ∈ G′
8. In this

case, (1 3)σ3 = (5 σ3(3)) is a cycle component of τ ′. Hence, σ3({1, 3}) ⊂
{5, . . . , 8}. By Subcase 1a, we can assume that σ3({2, 4}) 6⊂ {5, . . . , 8}. Since
(2 4)σ3 is a cycle component of (1 3)(2 4)τ ′, we have σ3({2, 4}) ⊂ {1, . . . , 4}.
Therefore, if τ1τ2 ∈ CG8×G′

8
(σ3) with τ1 ∈ G8 and τ2 ∈ G′

8 then 2-cycles

(1 2), (3 4), and (1 4) cannot be a cycle component of τ1. Hence, τ1 can
be the identity or (1 3)(2 4). By Lemma 5.13, CG8×G′

8
(σ3) has order 2 or

4 = 22.
If σ3 commutes with (1 4)(2 3)τ ′ for some τ ′ ∈ G′

8, a similar argument
shows that the same statement holds.

Subcase 1d. None of the subcases above hold. In this case, there are
at most 4 possibilities for τ1 ∈ G8 such that τ1τ2 ∈ CG8×G′

8
(σ3) for some

τ2 ∈ G′
8. Therefore, CG8×G′

8
(σ3) has an order at most 8 = 23.

Case 2. σ3 ∈ S4 × S({5, 6, 7, 8}). Let σ3 = ττ ′ with τ ∈ S4 and τ ′ ∈
S({5, 6, 7, 8}). Then CG8×G′

8
(σ3) = CG8

(τ) × CG′

8
(τ ′). Since σ3 is an even

permutation, τ and τ ′ are both even, or both odd.
Suppose τ and τ ′ are odd. Then CG8

(τ) is a proper subgroup of G8

containing an odd permutation and CG′

8
(τ ′) is a proper subgroup of G′

8 con-

taining an odd permutation. Therefore, CG8×G′

8
(σ3) contains an odd permu-

tation and its order is a divisor of 16. Therefore, CH(σ3) = CG8×G′

8
(σ3)∩A8

has an order dividing 8.
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Suppose τ and τ ′ are even. Then CG8
(τ) is G8, G4 or trivial, and CG′

8
(τ ′)

is G′
8, G′

4 or trivial. Therefore, if CG8×G′

8
(σ3) is a proper subset of G8 ×G′

8

then CG8×G′

8
(σ3) has an order dividing 8 or it is G8×G′

4, G4×G′
8, or G4×G′

4.

Therefore, ht(|CH(σ3)|) ≤ 3 or CH(σ3) = CG8×G′

8
(σ3)∩A8 = G4×G′

4. Claim
4 is proved.

Claim 5. Let H = G4 × A({5, 6, 7, 8}) ⊂ A8 and σ3 ∈ A8. If CH(σ3) is a
proper subgroup of H then ht(|CH(σ3)|) ≤ 3 or CH(σ3) = G4 × G′

4.

Assume that σ3 6∈ S4 × S({5, 6, 7, 8}). Then CH(σ3) ∩ A({5, 6, 7, 8}) is
isomorphic to A3 or trivial. By Lemma 5.13, |CH(σ3)| is at most |G4|·|A3| =
12. Therefore, ht(|CH(σ3)|) ≤ 3.

Assume that σ3 ∈ S4 × S({5, 6, 7, 8}). Let σ3 = ττ ′ with τ ∈ S4 and
τ ′ ∈ S({5, 6, 7, 8}). Then CH(σ3) = CG4

(τ) × CA({5,...,8})(τ
′). Since σ3 is an

even permutation, τ and τ ′ are both even, or both odd.
Suppose τ and τ ′ are odd. Then CG4

(τ) is a proper subgroup of G4 and
CA({5,...,8})(τ

′) is a proper subgroup of A({5, . . . , 8}). Therefore, ht(|CH(σ3)|)
≤ 3.

Suppose τ and τ ′ are even. Then CG4
(τ) is G4 or trivial; CA({5,...,8})(τ

′)
is A({5, . . . , 8}), G′

4, or a subgroup of A({5, . . . , 8}) conjugate to A3. There-
fore, ht(|CH(σ3)|) ≤ 3 or CH(σ3) = G4 × G′

4. Claim 5 is proved. �

6. Possible Gap Numbers

Lemma 6.1. g(G × G′) = g(G) + g(G′).

Proof. It is straight forward to show that g(G × G′) ≥ g(G) + g(G′).
We show that g(G×G′) ≤ g(G)+ g(G′). For any a, b ∈ G and a′, b′ ∈ G′,

aa′ and bb′ are commuting if and only if a and b are commuting and a′ and
b′ are commuting.

Suppose (a1a
′
1, . . . aka

′
k) is a gap sequence in G × G′ with a witness

(b1b
′
1, . . . bkb

′
k) in G × G′, where the ai’s and bi’s are in G and the a′

i’s
and the b′i’s are in G′.

Let {i : aibi 6= biai} = {i1, . . . , il} where i1 < · · · < il and let {1, . . . , k}−
{i1, . . . , il} = {j1, . . . , jm} where j1 < · · · < jm. Then (ai1 , . . . , ail) is a gap
sequence for G with a witness (bi1 , . . . , bil) in G and (a′j1 , . . . , a

′
jm

) is a gap

sequence for G′ with a witness (b′j1 , . . . , b
′
jm

) in G′. Therefore, k = l + m ≤

g(G) + g(G′). �

As a corollary, we get the following theorem:

Theorem 6.2. For any natural number n 6= 1, 3, 5 there is a group G such
that n = g(G). G can be finite or infinite.
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Proof. If H is an abelian group then g(H) = 0. We have g(S3) = 2 and
g(A9) = 7. Therefore we have the statement by Lemma 6.1. �

We still do not know whether a group G with g(G) = 5 exists.
Finally, we give some questions. Is it true that g(Sn) = n for any n ≥ 8?

Is it true that g(An) = n−2 for any n ≥ 8? Is it true that g(An) = g(Sn)−2
for any n ≥ 3?

We can see that g(Sn+k) ≥ g(Sn) + k for k = 4 and for any k ≥ 8.
Therefore, if we can find infinitely many n’s such that g(Sn) = n then
g(Sn) = n for any n ≥ 8.
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