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A NEW CLASS OF QUASICYCLIC COMPLEX
VECTOR FUNCTIONAL EQUATIONS

Ice B. RISTESKI

ABSTRACT. For the first time in the literature a quasicyclic complex
vector functional equation is introduced in the present paper. By a ma-
trix method the general quasicyclic complex vector functional equation
is solved, as well as its particular case for n = 3. This case is completely
solved in an explicit form, and for every step of the solution examples
are provided. Using a simple spectral property of compound matrices, a
necessary and sufficient condition for stability of the quasicyclic complex
vector functional equation considered is proved.

1. INTRODUCTION

The rapid development of the functional equations has found wide appli-
cations in the mathematical modelling in many sciences and engineering. A
number of such examples are given in [1, 2]. This has led to considerable
interest in the research of the additive and convex functions defined on linear
spaces with semilinear topologies [4], stability of the functional equations in
the sense of Ulam — Hyers — Rassias in some function spaces [5, 6], probabil-
ity theory [8], stochastic models [9], actuarial mathematics [10], etc. as well
as in many other branches of mathematics. Really, now it is very difficult to
answer the question: where do functional equations not have applications?

The present paper is devoted to the study of a new class of quasicyclic
complex vector functional equations. To the best of our knowledge, up to
now this kind of complex vector functional equations has not been considered
in the theory of functional equations, and we think that it will be of interest
to study. For this reason we carried out our research with the goal to
shed light on this insufficiently studied field of complex vector functional
equations. The results presented here supplement and generalize some of
our previous results [15].

2. PRELIMINARIES

Let A be an n X n complex matrix. Suppose that by elementary transfor-
mations the matrix A is transformed into A = Py DP,, where P; and P, are
regular matrices and D is a diagonal matrix with diagonal entries 0 and 1
such that the number of the units is equal to the rank of the matrix A. The

Mathematics Subject Classification. 39B32, 39B52.
Key words and phrases. Quasicyclic complex vector functional equation.

1
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matrix B = P2_1DP1_ ! satisfies the equality ABA = A. This means that
the matrix equation AX A = A has at least one solution for X.
If A satisfies the identity

A" 4 A o kA= 0,
where k,_1 # 0 and O is the zero n X n matrix, then the matrix
1
kroy

where [ is the unit n x n matrix, is also a solution of the equation AX A = A.
Now we recall the following theorem proved in [11].

Theorem 2.1. If B satisfies the condition ABA = A, then
1° AX=0 <+= X=({[-BA)Q (X andQ arenxm matrices);
2° XA=0 <<= X=QU—-AB) (X and Q are m xn maltrices);
3 AXA=A << X=B+Q—-BAQAB (X and @ aren xn
matrices);
4° AX=A <<— X=I+({I-BAQ;
5° XA=A4A < X=I1+Q(I—-AB).

X =— (AT 4 kA" 3 o ko),

Throughout this paper, V is an n-dimensional complex vector space. The
vectors from V will be denoted by Z; = (zi1,...,2in)’ (1 <i < n), U and
V are substitutional vectors in V, and O = (0,0,...,0)7 is the zero vector
in V.

Let ® denote exterior product in V and let k£ (1 < k < n) be an integer.
With respect to the canonical basis in the k-th exterior product space ®k V,
the k-th additive compound matrix A¥l of A is a linear operator on ®k V
whose definition on a decomposable element Z ® - - - ® Zy, is

k
(2.1) ANZy @ @Zy) =) 71 ® QAZ® - D L.
=1

For any integer i = 1,2,..., (Z), let (i) = (i1,...,1) be the i-th member in
the lexicographic ordering of integer k-tuples such that 1 <i; < -+ < i <
n. Then the (i,7)-th entry of the matrix A* = [g;;] is
(2.2)
Y e e PR if (Z) = (])7

g = 4 (—1)™*5a, if exactly one entry i; of (i) does not occur in

K Jmts (7) and j,, does not occur in (i),
0 if (i) differs from (j) in two or more entries.

As special cases we have Al = A and A" = tr A [7].
Let 0(A) = {\;, 1 <i < n} be the spectrum of A. Then the spectrum of
Al is g (AR = (N, 4+ -+ Ny, 1<y < -+ < <.
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Let |- | denote a vector norm in V™. The Lozinskii measure y on V" with
respect to | - | is defined by

. [T+ pA| -1
2.3 A) = lim —
(2.3) u(A) = lim, P

The Lozinskil measures of A = [a;;]nxn With respect to the three common
norms

Z|oo = suplzl,
7

Zl = ) al,
1/2
Z]y, = (Z |Zi|2>

7

are
poo(A) = sup [Reas+ » lawl |,
v k, ki
(2.4) pi(A) = sup (Reaws + Y law| |,
k i, itk
A+ A*
uo(A) = stab( —; ),
where

stab (A) = max{Re A\, A € 0(A)}

is the stability modulus of the matrix A, and A* denotes the Hermitian
adjoint of A [3, p. 41].
3. SOLUTION OF A QUASICYCLIC FUNCTIONAL EQUATION
Here we will prove the following result.

Theorem 3.1. The quasicyclic complex vector functional equation

E(f)=> aif(ZiZit1, ..., Lizn-1)
i=1

n
(3.1) = Zaif(ziyzia Zii1,...,2in2) (n>1)
i—1

(Zn+i = Zi)
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where a;, a; (1 < i < n) are complex constants, has a solution if the right-
hand side of (3.1) satisfies

g(Zl,ZQ,...,Zn_l) O
g(ZQ,Zg,...,Z ) O
(3.2) [AC + A | ! =1 ..
g(Zn,Zl,...,Zn,g) O
where
ar az ... Qp a1 g ... QOp
an a1 ... QAp—1 an, o1 ... Op_1
A= . 5 A= )
as a3z ... Qi Qg a3 ... Q1

9(Z1,Zs, ..., 20 1) = f(Z1,21,Zs,...,7Z,_1), C is any nonzero nxn cyclic
matriz with complex constant entries satisfying ACA+A = O, O isthenxn
zero matrix and I is the n X n unit matrix.

If the equality (3.2) holds for some C, then the general solution of the
equation (3.1) is given by the following formula

f(Z17Z27"'7Z7’L) h(ZI7ZQ7"'7Zn)
f(Z27Z37"'aZ’R7Z1) B h’(Z27Z37"',ZTL7zl)

f(Zle,---aZn—l) h<Zn7Z17~~~aZn—1)
g(zl,ZQa"'azn—l)

g(Z27Z37"'7Zn
(3.3) —oA | b
g(Znazlv"'aanQ)

where the nonzero n X n cyclic matrix B given by

b1 b by,
bn bl bn—l
B —
by b3 by
satisfies the condition
AB =0

and h is an arbitrary complex vector function V™ — V.
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Proof. By a cyclic permutation of the vectors in (3.1) we get

alf(Zl, Zo, ..., Zn) + agf(ZQ, Zs,...,7,, Zl) + -
+ anf<Zn7 Z17 ce Zn—l)

= oqg(Zl, ZQ, ey Zn—l) + O[QQ(ZQ, Zg, ceey Zn) + -
+ ang(ZTM 217 SR Zn—2)7

a,nf(Z1,Z2,...,Zn)+a1f(Z2,Z3,...,Zn,Z1)-l—"'
+an—1f(znazla---7zn—1)

= ang(Zl, Zs, ..., Zn—l) + alg(Zg, Zs, ..., Zn) =+ ..
+ an_lg(Zn, Z,... ,Zn_g),

aof(Zy1,Zs,...,2y) +asf(Zo,Zs, ..., 2, 2Z1) + - -
+ar1f(Zn, 2y, ..., 2, 1)

= ang(Z1,22,...,2p1) + 39(Z2, 23, ..., Zp) + -+
+a19(Zn,Zy,...,2,2),

i.e., in a matrix form

(3.4) AF = AG,
where
[(Z1,2,...,Z,) 9(Z1,Zs,...,2Zp 1)
f(Zs,Zs,...,2,,7Z 9(Zo,Zs3,...,7Z,
F = ( 2 1) and G = ( 2 )
f(Zn,Zy,..., 2y 1) 9(Zn, 2y, ..., Ly _2)

We suppose that equation (3.4) has a solution F' and C satisfies ACA+ A =
O. Then
O
O
[AC + I|]AG = [AC + I|AF = [ACA+ A|lF = | . |,
O
i.e., equation (3.2) must be satisfied. Conversely, let equation (3.2) hold

for some cyclic matrix C'. Then — C'AG is easily seen to be a solution of
equation (3.4):

A[- CAG] = — [AC + I]AG + IAG = IAG = AG.

Now let us prove that equality (3.3) gives the general solution of the equation
(3.1).
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Let f be a solution of the equation (3.1), which we will write in the form

(3.5) E(f) = L(g).
We denote by fj, the general solution of the equation E(f) = O, and by f,
we denote a particular solution of the equation (3.5).

Then f = f + fp is the general solution of the equation (3.5). Indeed,

E(fn+ fp) = E(fn) + E(fp) = L(g).

On the other hand, let f be an arbitrary solution of the equation (3.5).
Then
E(f = fp) = E(f) — E(fp) = L(g) — L(g9) = O,
i.e., f — fp is a solution of the associated homogeneous equation. So there
exists a specialization f}, of the expression f;, such that

f_fp:f_h, i'e'a f:fh+fp
Thus fr, + fp includes all solutions of the equation (3.5).

The general solution of the homogeneous equation E(f) = O given in a
matrix form is BH, where

WZy,Zs,...,2Z,)

h(z27 Z37 ceey Zn; Zl)
H=| .

h(Z’rLa Z17 SR Zn—l)

and a particular solution of the equation E(f) = L(g) in a matrix form is
— CAG, then F' = BH — CAG includes all solutions of the nonhomogeneous
equation.

On the other hand, every function of the form (3.3) satisfies the functional
equation (3.1). O

4. ANALYSIS OF A PARTICULAR CASE

In this section we will develop Theorem 3.1 in whole for the particular
case n = 3, so that for every step of the solution we will give examples for a
better description of the proof. For this case the quasicyclic complex vector
functional equation (3.1) takes the form

(4.1) a1f(Z1,Z2,23) + azf(Za,Z3,Z1) + a3 f(Z3,Z1,Z2)

= a1f(21,21,Zy) + asf(Z2, 23, Z3) + s f(Z3,Z3, Z1) (f: V° V),
where a;, a; (1 <14 < 3) are complex constants.

For the equation (4.1) we suppose that |a1| + |as| + |as| > 0 and |a| +
laz| + |ag| > 0. In the case a; = ag = a3 = 0 the quasicyclic functional

equation (4.1) transforms into cyclic functional equations whose solution is
given in [11].
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In the solution of the above equation we will use the techniques given in
[11, 12, 13, 14, 16]. If we permute cyclically the vectors in equation (4.1),
we get

(4.2) a1f(Zo,Z3,Zy) + as f(Zs3,Z1,Z2) + a3 f(Z1,Z2,Z3)
= o1f(Zo,Zo,Z3) + avof(Zs,Z3,Z1) + asf(Z1,Z1,Zy),
(4.3) a1f(Z3,21,Z2) + as f(Z1,Z2,Z3) + a3 f(Z2,Z3,Z1)

= o1 f(Zs,Z3,21) + a2 (21,21, Z2) + a3 f(Za, 2o, Zs3).
The determinant for the system of equations (4.1), (4.2) and (4.3) is

ayp az as
A= az aip ag
as as aq
We shall note the identity
1
(44) A= (al + a9 + CL3) [(al — a2)2 + (a2 — CL3)2 + (ag — al)ﬂ.

We may distinguish the following two cases:
1°. Let A # 0. From (4.1), (4.2) and (4.3) we obtain

OqF(Zl, ZQ) + O{QF(ZQ, Z3) + a3F(Z3, Zl) as as
f(Z1,29,Z3) = | anF(Zo,Z3) + aaF(Z3,Z1) + a3F(Z1,Z2) a1 as |,
a1F(Zs,Z1) + aoF(Z1,Z9) + a3F(Ze,Z3) a3 a;

where F : V? — V is defined by F(U,V) = %f(U,U,V).
If we introduce the notation

a; Qo O3 a1 Gy O3 a1 Gy O3
Ar=|a3 a1 a2 |, Ay=]|ax a3 ar |, Az3=|a ax a3 |,
as as aj a; das as as a1 a2

then we can write
(45) f(Zl, 7, Zg) = AlF(Zl, Zg) + AQF(ZQ, Z3) —+ AgF(Zg, Zl)

For (4.5) to be a solution of the equation (4.1), the following condition
must be satisfied:

(46) a1 [(A — AQ)F(Zl, ZQ) — AgF(ZQ, ) AlF(Zl, Zl)}
+ o [(A — AQ)F(ZQ, Zg) A3F(Z3, ZQ) AlF(ZQ, Zz)}
+ a3 [(A — AQ)F(Zg, Zl) A3F(Z1, Zg) AlF(Zg, Z )} 0.
(

By a cyclic permutation of the variables Z1, Zs, Zs in (4.6) we obtain two
new equations. The system of these three equations has a nontrivial solution
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with respect to (A — A2)F(Z;, Zit1) — A3F(Ziv1,2;) — MF (24, Z;), i =
1,2,3 (with the convention Z4 = Z) if the following condition is satisfied:

ap Q2 Qa3
(47) Gy 3 Q1 = 0.
a3 a1 Q2

By virtue of an equality of the type of (4.4) this is true if
ar+at+az=0 or (o —a)?+ (e —a3)*+ (a3 —a1)*=0.

First we will consider the case

(4.8) a1 +og + a3 =0.

Since a1 + az + az # 0 (because of the assumption A # 0 and (4.4)), by
putting into the equation (4.1) Z1 = Zs = Z3 we derive F(Z1,Z,) = O. By
using the last equality, the equation (4.6) for Z3 = Z; becomes

(49) [Oél(A —Ag) —OégAg]F(Zl, ZQ) - [OélAg —Oég(A— Ag)]F(ZQ, Zl) = 0.

If we change the places of Z; and Zs, the equation (4.9) is transformed into
(4.10)

—[OélAg — OéQ(A — AQ)]F(Zl, Z2) + [O{l(A — Ag) — CkQAg]F(ZQ, Zl) = 0.
Let

(of = a3)[(A — Ag)? — AF] #0,

then from (4.9) and (4.10) it follows that F(Z1,Z2) = O and then from
(45) f(Z17 ZZ) Z3) = O

The condition
(4.11) (of — a3)[(A — Ag)? — AF] =0.
implies (A — Ag)? — A2 = 0. In fact, suppose that the last equality is not
true. Now, if we set Z3 = Zy into (4.6), we obtain

(of = af)[(A = Ag)® — Af] = 0.

The last equality, with (4.11), gives a = a2 = a3 which, by virtue of the
assumption (4.8), yields ar; = ay = a3 = 0, which contradicts the hypothesis
|Oé1| + |C¥2| + |043| > 0.

Thus, we have A — Ay = +A3. For the case A — Ay = Ag (# 0), the
equation (4.9) yields

(Oq - ag)Ag[F(Zl, ZQ) - F(ZQ, Zl)] = O,

so that, for a; # ag, we have
(412) F(Zl,ZQ) = G(Zl,ZQ) —I—G(ZQ,Zl),

where G is an arbitrary function V? — V such that G(Z1,Z;) = O.
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If iy = g, then necessarily we must have oy # a3 (because otherwise we
would have a; = as = a3 = 0) and by a procedure analogous to the above
one we obtain (4.12).

Example 4.1. The general solution of the functional equation
f(Z1,25,Z3) — 2f(Z3,Z1,Z2)
= —5f(Z1,21,Zs) + Af(Zo,Z2,Z3) + f(Z3,Z3,7Z1)

is given by the formula

f(Z1,2y,Z3) = G(Z1,Z2) + G(Z2,Z1) — 2G(Z2,Z3)

—2G(Z3,Zo) + G(Zs,Zy) + G(Z1,Z3),
where G is an arbitrary function V2 — V such that G(Z,,Z,) = 0.
Let A — Ay = —A3 (#0), from (4.9) we obtain

(4.13) (a1 + a0)A3[F(Z1,Z9) + F(Z2,Z1)] = O.
For ay + a9 # 0, the general solution of the equation (4.13) is given by
(4.14) F(Z1,7Zs) = G(Z1,Zy) — G(Zo,Z1), G: V> V.

If g +ag = 0, then from (4.8) we deduce oz = 0, and then a1 +a3 = a1 # 0
and we obtain (4.14) by an analogous procedure.

Example 4.2. The functional equation
f(Z1,Zo,Z3) +2f(Z3,Z1,Z5) = f(Z1,21,Z2) + 2f(Z2,Z2,Z3)
—3f(23,Z3,7Z1)
has the function
f(Z1,29,Z3) = 5G(Z1,Z3) — 5G(Z2,Zy) — AG(Z3, Z3)
+4G(Z3,Z3) — G(Z3,Z1) + G(Z1,Z3),

G : V? 'V, as a general solution.

The condition (4.6), for the case Az = A — Ay = 0, is satisfied for every
function F(Z1,Zsy) with the property F(Z,Z,) = O.

Example 4.3. The general solution of the functional equation
f(Z1,29,Z3) + f(Z3,21,Z3) = f(Z2,Z2,Z3)
— f(Zs3,Z3,7Z,)

is given by
f(217 Z27 Z3) = F(Z17 ZQ) - F(Z27 Z3)7
where F is an arbitrary function V? — V such that F(Z1,Z;) = O.
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If (A — Ag)? # AZ, then, as it was mentioned above, the equations (4.9)
and (4.10) have the trivial solution as the general solution. According to
(4.5) we obtain

f(Zl, ZQ, Zg) = 0.

Example 4.4. The functional equation
[(Z1,29,73) + f(Zo,Z3,Z1) = f(Z1,Z1,Z2) — f(Z3,Z3,Z1)

has f(Z1,Z2,Z3) = O as the unique solution.

Now we suppose that (4.7) is satisfied but (4.8) is not. This means that
(4.15) (o1 — 042)2 + (o — 043)2 + (a3 — a1)2 = 0.
Since oy, g, ag are complex constants, (4.15) does not necessarily imply
a1 = ao = ag. If, however, the constants oy, as, ag satisfy the equality
(4.15) and two of them are equal, then the third one is also equal to the
other two. Now we will consider the case

a1 = g = Q3 7& 0.
It immediately follows that
A = Ay = A3 (#0).

The quasicyclic equation (4.6) implies
(4.16)
(A —A)F(Z1,Zy) — A F(Zo,Zy) — A F(Z1,Z1) = A1P(Zy) — A P(Zy),

where P is an arbitrary function V +— V.
For ay = as = a3 and Zy = Zs = Z3 the equation (4.1) becomes
(&1 +as +as — 30[1)F(Z1, Zl) = 0.

Let a1 + as + ag = 3aq, then 3A; = A and the equality (4.16) takes the
form

2F(Zy,Z5) — F(Zy,Z1) = P(Z1) — P(Z3) + R(Z,),
where R(Zl) = F(Zl, Zl)
By a permutation of the variables Z; and Z- it follows that
— F(Zl, Zg) + 2F<Z2, Zl) = P(ZQ) — P(Zl) + R(Zg)
From the last two equalities we obtain

F(Z1,2) = 3 [P(Z0) ~ P(Z) + 2R(Z1) + R(Z)]

By using the last equality, from (4.5) it follows that

(4.17) (Z1,23,Z3) = Q(Z1) + Q(Z2) + Q(Z3),
where Q(Z1) = A\R(Z,).
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Example 4.5. The general solution of the equation
2f(Z1,22,Z3)+ f(Zo,Z3,7Z1) = f(Z1,21,22)+ f(Zo,Zo,Z3)+ f(Z3,Z3,Z)
is given by the expression (4.17), where @) is an arbitrary function V +— V.

Let a1 4+ as + a3z # 3ay, then F(Zy,Z;) = O and the formula (4.16) yields
(4.18) (A — A1) F(Z1,Zy) — A1 F(Zo,Zy) = A1 P(Zy) — A1 P(Z5).
From the last equality by a permutation of the variables we obtain

— AN F(Z1,Z2) + (A — Ay)F(Zo,Z1) = A1 P(Zy) — A1 P(Zy).

The determinant of the system consisting of the last two equations is A(A —

2A1). If A # 2A, the solution of the last two equations is

F(Zy,Z) = %[P(Zl) — P(Z2)].

Then the equality (4.5) gives
f(Z1,Z49,Z3) = O.
Example 4.6. The functional equation
f(Z1,29,Z3) +2f(Zo,Z3,Z1) — f(Zs3,Z1,Z>)
= f(21,21,Z) + f(Z2,Z2,Z3) + f(Z3,Z3,Z1)

has the general solution f(Z1,Zs,Z3) = O.

Let A = 2Aq, then from (4.18) we obtain

F(Zy,Z3) — P(Z,) = F(Zs,Z,) — P(Z>).

The general solution for the last equation is
(4.19) F(Zy,Zy) = P(Z1)+ G(Z1,Z9) + G(Z2,Z,),

where P: ViV and G : V? + V are arbitrary functions such that

G(Z1,70) = — %P(Zl).

According to the last relation, the equality (4.19) takes the form
F(Zy,Zs) = G(Z1,Z3) + G(Z2,Zy) — 2G(Z1,7Z,)
and the formula (4.5) becomes
(420) f(Zl, 7o, Zg) = G(Zl, ZQ) + G(ZQ, Zl) — QG(Zl, Zl)
+ G(ZQ, Z3) + G(Zg, ZQ) - 2G(Z2, Z2)
-+ G(Zg, Zl) + G(Zl, Z3) — ZG(Zg, Zg),
where we have replaced G(Z1,Z2)A1 by G(Z1,Zs).



12 I. B. RISTESKI

Example 4.7. All solutions of the functional equation
f(Z1,29,Z3) + 2f(Zo,Z3,721) + 3f(Z3,Z1,Z2)
- 3f(Z1,Z1,Z2)—i—3f(Z2,Z2,Z3)—i—3f(Zg,Z3,Z1)

have the form (4.20), where G : V2 — V is an arbitrary function.

Now we suppose that the equality (4.15) is satisfied but the constants
a1, a9, ag are all distinct. This means that at least one of them is not real.
In this case, each one of the three constants can be expressed in terms of
the other two as follows, say,

a3 = [041 + oo £ i(Ozl — 042)\/5]/2.

If we denote by w a primitive third root of 1 (%“/g), the last equality can
be written as

(4.21) aw+ asw? +a3=0, o #+ Q.
In the sequel we will often use the equalities
w3 =1 and w+w+1=0.

So we suppose that (4.21) holds. If we put into equation (4.1) Z1 = Zy = Zs,
we obtain
(a1 + a2 +as — oy —as —a3)F(Z1,Z,) = O.

First we shall consider the case
a1+ az + as #a1+a2—|—a3.

In this case F(Z1,Z,) = O and, as above, from equation (4.6) we deduce
(4.9). The further investigation of this case proceeds completely as above,
so we shall just recall the results.

If (A — A2)2 7é A%, then F(Zl,ZQ) = O and f(Zl,Zg, Z3) = 0.

If A=Ay = A3 # 0, then F(Z,Zs) is given by the equality (4.12), where
G(Zl, Zl) = 0.

If A—Ay=—A3#0, then F(Z1,Zy) is given by the equality (4.14).

If A — Ay = Ag = 0, then equation (4.6) is satisfied by any function
F(Zy,Z5) with the property F(Z1,Z,) = O.

Then in all these cases the general solution f(Z1,Zs,Zs) of the equation
(4.1) can be expressed in terms of F'(Z1,Z) using the equality (4.5).

Example 4.8. The functional equation
[(Z1,25,Z3) + f(Z3,71,Z>)
= iV3f(Z1,Z1,Zs) — iV3f(Za, Z2,Z3) + 3f(Z3,Z3,Z1)
has f(Z1,Z2,Z3) = O as the unique solution.
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Example 4.9. The general solution of the functional equation
f(Z1,Z2,23) + [(Z3,Z3,21) = —*[(Z1,2Z1,Z9) + [(Z3,2Z3,Z1)
is given by the formula
f(Z1,Z9,Z3) = w|G(Z1,Zs)+ G(Zo,Z1)] — w|G(Zs,Z3) + G(Zs,Zs)]
+(2+w)|G(Zs3,Z1) + G(Z1,2Z3)],
where G : V? — V is an arbitrary function satisfying G(Z1,Z1) = O.
Example 4.10. The general solution of the functional equation
f(Z1,Z9,Z3) + (4 — iV/3) [ (23, Z3, %) + [(Z3,Z1,Zo)
= iV3f(Z1,Z1,Z2) — iN3f(Za,Z2,Z3) + 3f(Zs3,Z3,7Z1)
is given by the formula
f(Z1,2,Z3) = (6 — 2iV/3)[G(Z1,Zs) — G(Z2,Z)]
+ (3+5iV3)[G(Z2, Z3) — G(Zs3, Zs)] + 6[G(Z1, Z3) — G(Z3, 7)),
where G : V? — V is an arbitrary function.

Example 4.11. The general solution of the functional equation

f(Z1,29,23) + f(Z2,Z3,Z1)
= —wf(Z1,21,22) + (1 —w)[f(Z2,22,Z3) + [(Z3,Z3,7)
is given by the formula
f(Z1,Z9,Z3) = wF(Z1,Z3) — F(Z2,Z3),
where F': V? — V is an arbitrary function.

Now let us consider the case

(4.22) a1+ as+ a3 =ay +as+az #0.

Then
Ay = (a1 + a2+ a3)(arar + asas + asasz — ajaz — ajaz — azas),
Ag = (a1 + a2+ a3z)(ajas + asas + agay — ajas — ajag — asgas),
As = (a1 + a2+ a3z)(aias + asay + azag — ajas — ajas — agas).

We may notice the relation
(423) A = Al + AQ + Ag.

From the quasicyclic equation (4.6) by virtue of the relations (4.21) and
(4.22) we obtain

(A — A9)F(Zy1,Zs) — AsF(Zo,Z1) — A1F(Z1,Z,) = O.
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In view of (4.23) this equation can be written as
(Al —+ Ag)F(Zl, ZQ) — AgF(ZQ, Zl) = AlR(Zl),

where R(Z1) = F(Z1,Z,). By a permutation of the variables Z; and Zs we
obtain

— AgF(Zl, Z2> + (Al + Ag)F(ZQ, Zl) = AlR(Zg)
The determinant of this system is (A; + 2A3)A;. If it is not zero, then

_ (A1 + Ag)R(Zl) + A3sR(Zs)
F(Z,,Z5) = INEDY .

From (4.5) it follows that
f(Z1,Z2,Z3) = (AT + A1 Az + A3)Q(Z)
+ (A1A9 + A1A3 + AgA3)Q(Z2) + AsAQ(Zs3),
where

_ R(Z,)
Q(Z,) = YN

Example 4.12. The general solution of the equation

f(Z1,29,Z3) + 2f (Z3,Z1,Z2) = iN3f(Z1,Z1, %) — iN3f(Za, Z, Zs3)

+3f(Z3,23,71)
is given by the expression
F(Z1,22,Z3) = (4 = iV3)Q(Z1) + Q(Z2) + (1 - 2iV3)Q(Zs),

where @) is an arbitrary function V +— V.

Let A1 =0, A3 # 0. Then

F(Zy,Zy) = F(Zy,Z,),

thus
F(Z.1,Z5) = G(Z1,Z3) + G(Z3,Zy),

where G is an arbitrary function V2 +— V, and f(Z1,Z>,Zs3) is given by
formula (4.5).

Example 4.13. The general solution of the functional equation

(w—=1)[f(Z1,22,Z3) + f(Z2,Z3,7Z1)]
= — f(Z1,21,22) + wf(Z2,22,7Z3) + (w—1)f(Z3,Z3,7Z1)
is given by the formula
f(Z1,25,Z3) = w|G(Zo,Z3) + G(Z3,Zs)| — G(Z1,Z3) — G(Z3,7Z,),

where G : V? — V is an arbitrary function.
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Now let us consider the case
A1 =A3=0, A=Ay#0.
Now we shall use
Lemma 4.1. Let A # 0. Then the system
(4.24) A1 =0, Ay—A=0, A3=0
implies oy = az, ag = ay, ag = as.
Proof. The system (4.24) can be written in the form

Api(on —ag) + Aia(a2 —ar) + Aiz(az —az) =0
(4.25) A21 (011 — CL3) + A22(Oé2 — CL1) + A23(043 — CLQ)
)

= O’
Azi(ar —a3) + Azz(ag —ay) + Asz(az —az) =0,
where A;; is the cofactor of the element a;; (1 <4, j < 3) of the determinant
A. The system (4.25) is a homogeneous linear system with respect to a; —
as, g —ai, asz — as. Its determinant is A% # 0, so it has only the zero

solution. O
Thus we obtain oy = a3, as = a1, ag = as. So

a; Qo O3
0= Qo 3 O =—A 75 0
a3 a1 Qa2

which is a contradiction.
Now we suppose that Ay = —2A3 # 0. Then

(4.26) F(Z1,Z5) + F(Z3,Z1) = 2R(Z).
By a permutation of the variables Z; and Zs we obtain
(4.27) F(Zs,Z,) + F(Z1,Z2) = 2R(Z3).
From (4.26) and (4.27) we get
R(Z,) = R(Zy) =C.
Thus (4.26) takes on the form
[F(Z1,Z3) - C] + [F(Z2,Z,) - C] = O

which implies that

F(Z1,Z5) = G(Z1,Z2) — G(Z2,Zy) + C,

where G : V2 — V is an arbitrary function and C is an arbitrary constant
vector.
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Now from (4.5) we find
f(Z1,29,Z3) = —2A3(G(Z1,Zs) — G(Z2,Zy))]
+ (A + A3)[G(Z2,Z3) — G(Z3,Zy)]
+ Ag[G(Zg, Zl) — G(Zl, Z3)] +C,
where C is (another) arbitrary constant vector.

Example 4.14. The general solution of the equation

3[f(Z17 Z?a Z3) + f(Z3, Z17 ZQ)]
= (B-w)f(Z1,Z1,Z2) + 3+ 2w)[f(Za,Z2,23) — wf(Z3,Z3,Z)

is given by the formula
f(Z1,29,7Z3) = —2wF(Z1,Z5) + 3+ w)F(Zs,Z3) + wF(Z3,Z1) + C,

where F' : V? — V is an arbitrary function and C € V is an arbitrary
constant vector.

For
a1 G2 Qa3
ay az o |#0,
a3 01 Q2

from (4.5) we obtain
(4.28) (A= A9)F(Z1,Zy) — A3F(Zo,Zy) — A\F(Zy,Z,) = O.

First we suppose that A —A; —As— A3 # 0. In this case by the substitution
Zy = Z, the equation (4.28) reduces to F(Z1,Z1) = O. On the basis of the
last equality, the equation (4.28) becomes

(A — A F(Zy,Z2) — A3F(Zy,Z,) = O.

By the permutation of the variables Z; and Zs, from the above equation it
follows that

— AgF(Zl, ZQ) + (A — AQ)F(ZQ, Zl) = 0.

The system of the last two equations has a nontrivial solution if and only if
the following condition (A — Ag)? = A% is satisfied.
Let A — Ay = A3z (# 0), then we obtain

F(Zl, ZQ) = G(Zl, Zg) + G(Zz, Zl),
where G satisfies G(Z1,7Z,) = O.

Example 4.15. Every solution of the functional equation

f(Z1,25,Z3) + f(Z3,Z21,Z2) = f(Z1,Z21,Z2) + f(Z2,Z2,Z3)
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is given by the function

f(Z1,Z25,Z3) = G(Z1,Z2) + G(Z2,Z1) + 3G(Z2,Z3)
+3G(Z3,Zs) — G(Z3,Z,) — G(Z1,2Z3),

where G is an arbitrary function V? +— V such that G(Z1,Z;) = O.
For the case A — Ay = — A3 (# 0) the general solution is
F(Z1,Z5) = G(Z1,Z5) — G(Z2,Z).
Example 4.16. The functional equation
[(Zo,Z23,721) + f(Z3,21,Zy) = —f(Z1,Z1,Z2) — f(Z2,Z2,Z3)
has the function
f(Z1,25,Z3) = G(Z3,Z1) — G(Z1,Z3)
as the general solution, where G is an arbitrary function V2 — V.

For A — Ay = A3 = 0, the unique condition which must be satisfied by
the function F is F'(Z1,Z,) = O.

Example 4.17. The function
f(Z1,Z9,Z3) = F(Z1,Z>) + F(Z2,Z3) (F(Z1,Z,) = 0O)

is the general solution of the following equation

f(Zs,Z1,Zs) = f(Z1,21,22) + f(Z3,Z3,7Z1).

The condition (A — Ag)? # A3 gives F(Z1,Z2) = O.

Example 4.18. The functional equation

f(Z1,Z2,Z3) + f(Z2,23,Z1) = f(Z1,7Z1,7Z2)
has the general solution f(Z1,Zs,Z3) = O.

Now we will pass on to the case A — A1 — Ay — A3 = 0. Most of the
arguments after the equality (4.23) apply to this case, so we will just give

the results.
If Al(Al + 2A3) 75 0,

(A1 + Ag)R(Zl) + A3R(Zs)
Al + 2A3 ’

F(Z,,Z,5) =

with the notation R(Z,) = F(Z1,Z,).
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Example 4.19. Every solution of the following functional equation
—2f(Z1,29,Z3) + f(Zo,Z3,Z1) = — f(Z3,Z3,Z1)
is given by the function
f(Z1,Z2,Z3) = 2R(Z1) + R(Z2) + 2R(Z3),
where R is an arbitrary function V — V.
For A; =0, A3 # 0 the solution of equation (4.28) is
F(Z1,Zy) = G(Z1,Z3) + G(Zs,Z,).
Example 4.20. The general solution of the functional equation
f(Z1,29,Z3)+ f(Zo,Z3,Z1) = 2f(Z1,21,23)— f(Zo,Zo,Z3)+ f(Zs,Z3,Z)
is
f(Z1,29,Z3) = 2G(Z1,Z3) + 2G(Z3,Z1) — G(Zo,Z3) — G(Zs,Zs),
where G is an arbitrary function V? — V.
Let A = —2A3 # 0. Then from equation (4.28) we get
F(Z1,Z5) = G(Z1,Z5) — G(Z2,Z1) + C,
where C is a constant complex vector.
Example 4.21. The general solution of the functional equation
f(Z1,Z9,23)+ f(Z3,21,22) = f(Z1,7Z1,Z3)— f(Z2,Z2,Z3)+3f(Z3,2Z3,Z)
is determined by the function
f(Z1,Z9,Z3) = 2G(Z1,Zs) — 2G(Z2,Z1) + G(Z1,Z3) — G(Z3,Z;) + C,

where G is an arbitrary function V2 + V and C € V is an arbitrary constant
vector.

In the case A1 = Ag = 0 the equation (4.28) is satisfied for every function
F: V2 V. In this case by Lemma 4.1 we again obtain a1 = a3, ay =
a1, as = as. So the equation

alf(Z17 Z27 Z3) + a2f(227 Z37 Zl) + CL3f(Z3, Z17 ZQ)
= a3f(Z1,21,2Z3) + a1 f(Z2, 23, Z3) + a2 f(Z3,Z3, Z1)
has the general solution f(Z1,Zs,Zs3) = F(Zs,Z3).

Example 4.22. The general solution of the functional equation

2f(Z1,29,23)+3f(Z2,Z3,Z1) + f(Z3,Z,,Z5)
= f(Z1,2,,Z9)+2f(Z2,Z9,Z3)+ 3f(Z3,Z3,7Z,)
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is
f(Z17 Z27 Z3) = F(Z27 Z3)7

where F is an arbitrary function V? — V.

2°. Let A = 0. Then from (4.4) it follows that

a1 +az+az3 =0 or (a1 —a2)2—|—(a2 —CL3)2—|—(CL3—CL1)2 =0.
First we will consider the case a; = a2 = a3. From (4.1) and (4.2) we obtain
(4.29) (Ozl — Ozg)F(Zl, Zg) + (062 — Ozl)F(ZQ, Zg) + (063 — OZQ)F(Zg, Zl) =0

with the notation f(Z1,7Z1,Zs) = F(Z1,Z2). If oy = as = ag, then the
condition (4.29) is satisfied for every function F. For the case a1 = ag =
as (# 0), equation (4.1) takes the form

a1f(Z1,2Z2,23) — a1 f(Z1,7Z1,Z>)
+ alf(z27Z37Z1) _alf(227z27z3)
(4.30) + a1f(Z3,21,Z2) — o1 f(Z3,23,Z,) = O.

This quasicyclic equation has the general solution
o
(4.31) f(Z1,Z5,Z3) = a—llF(Zl, Zy)+U(Z1,Z9,Z3) —U(Zo,Z3,7Z1)

with the notation f(Z1,7Z1,Zs) = F(Z1,Z5).
By the substitution of (4.31) into (4.30) we obtain

F(Z1,Z5) — %F(thl) —U(Z1,Z21,Z2) + U(Z1,Z2,7Zy)
+ F(Zy,Z3) — Z—iF(Zg,Zg) —U(Zo,Z5,Z3) + U(Za,Z3,7Z5)
v F(Zs3,Z) — z—iF(zg,zg) —U(Zs3,Z3,21) + U(Zs,Z1,Z3) = O.
This quasicyclic equation has the general solution
F(Z,,Z5) = %F(Zl’ Z,)4+U(Z1,2,,Z9)—U(Z1,Z2,Z1) + R(Zy) — R(Z>),

where R is an arbitrary function V — V.
By using the last equality, for a; = ay, the equality (4.31) becomes
(4.32) f(Z1,29,Z3) = U(Z1,Z3,2Z3) — U(Z2,Z3,7)
+ U(Zlazlaz2) —U(Zl,Z2,21)+S(Z1) _R(Z2)7
where S: V +— V is such that F(Z1,Z,) = S(Z1) — R(Z,).
Example 4.23. Every solution of the functional equation

f(Z21,22,Z3) + f(Zo,Z23,721) + f(Z3,Z:1,Z5)
= f(Z1,Z1,Z2) + f(Zo,Z2,Z3) + f(Z3,Z3,Z1)
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is given by the function (4.32).

For ay # ay, from (4.1) there follows that F(Zy,Z1) = O. According to
the last identity, the equality (4.31) is transformed into

f(Zb Z27 Z3) — U(Z17 Z27 Z3) - U(Z27Z37 Zl)
«
+ a_ll[U(Zl’ Z,,7Z9) —U(Z1,Z2,7,)) + R(Z1) — R(Zy).

Example 4.24. The functional equation
2f(Z1,29,Z3) + 2f(Za,Z3,Z1) + 2f(Z3,Z1,Zs)
= f(Z1,21,22) + f(Z2,22,Z3) + [(Z3,Z3,Z1)
has the general solution
f(Z1,Z9,Z3) =U(Z1,Zo,23) — U(Za,Z3,7Z1)
+ %[U(Zla Z1,Z3) —U(Z1,Z2,71)] + R(Z1) — R(Z2).
Now we will suppose that the parameters a; (1 <1 < 3) are not all equal.

Let a1 # as. According to the equality (4.29) for Zs = A (a constant
complex vector) we obtain

(4.33) F(Z1,Z) = K(Z1) + H(Z>),
where we used the notations
K(Z1) = - B CpA,Z)), H(Zs)=— 2" F(Z,,A).

a1 — Q3 a1 — Q3

If we substitute F'(Z1,Zs) given by the expression (4.33) into (4.29), and if
we set Z1 = U, Zy = Z3z = B (a constant complex vector) and if, on the
other hand, we set Z1 = Z3 = B, Z> = U, we obtain respectively

(4.34) (o1 —a3)[K(U) = K(B)] + (a3 — a2)[H(U) - H(B)] = O,
(4.35) (a2 — a1)[K(U) — K(B)] + (a1 — a3)[H(U) — H(B)] = O.

The determinant of this system is

ar—az azg—ag | _ 1 B 9 B 5 B )

If it is not 0, then from (4.34) and (4.35) we find K(U) = K(B) and
H(U) = H(B), hence

(4.36) F(Z,,Zy) =M (a constant complex vector).
Now the equation (4.1) becomes

(4.37)  f(Z1,Z2,Z3) — N + f(Zs,Z3,Z1) — N + f(Z3,Z1,Z5) — N = O,
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where
N Yzt as,
3&1
The general solution of the cyclic functional equation (4.37) is
(4.38) f(Z1,29,Z3) = p(Z1,Z2,Z3) — p(Z2,Z3,Z1) + N.

From (4.36) and (4.38) we find
M = F(Z1,Zs) = p(Z1,Z1,Z5) — p(Z1,Z5,7Z1) + N.
If we put into the last equality Zo = Z;, then M = N. This is possible if
a1 + ag + ag = 3aq or N = 0.
Moreover,
(4.39) p(Z1,Z1,Z9) — p(Z1,Z2,Z1) = O.
Now we shall use
Lemma 4.2. Let f(Z1,Z2,Z3) be a function of the form
f(Z1,29,Z3) = p(Z1,22,Z3) — p(Z2,2Z3,7Z,)
such that f(Z1,21,Z9) = O. Then
f(Z1,29,Z3) = U(Z1,22,Z3) — U(Z2,Z1,Z3)
(4.40) —U(Zy,Z3,7Z1) +U(Z1,Z3,Zs),
where U : V3V is an arbitrary function.

Proof. Let p(Z1,%Z,Zs3) satisfy equation (4.39). We are looking for
p(Z1,Z9,7Z3) in the form

p(Z1,Z2,Z3) = kiq(Z1,Zy,Z3) + koq(Z1,Z3,Z2) + k3q(Z2,Z1,Z3)
+ k4Q(Z27 Z37 Zl) + k5Q(Z37 Z17 ZZ) + kﬁq(zfiv Z27 Z1)7

where ¢ : V3 — V and k; (1 < i < 6) are complex constants. By a
substitution into (4.39) we find

ks = k1 — ko + k3, ke =ks— k1 + ko.
Thus
f(Z1,25,Z3) = klq(Z2,Z1,Z3) — q(Z1,Z, Z3))
—lq(Z1,2Z3,Z2) — q(Z2,73,71)]
+ (6 —k)|a(Z3, Z2,Z1) — q(Z3,Z1, L)),

where k, ¢ are complex constants (k = ks — ko, £ = kg — k1).
If we denote

U(Z17 ZQ; Z3) - KQ(ZZa Z37 Zl) + kQ(Z37 217 Z2)7
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we obtain (4.40). Conversely, each function of the form (4.40) satisfies
f(Z1,Z1,Z5) = O for arbitrary U : V3 — V. Moreover, f(Z1,Z2,73)
satisfies

f(Zb Z27 Z3) + f(Z27 Z3> Zl) + f(Z37 Z17 Z2) = 0.
We note that the representation (4.40) can be obtained just by putting
P(Z1,29,Z3) = U(Z1,2Z2,7Z3) — U(Z2,71,Z3). O
Thus the general solution of equation (4.1) in this case is given by
f(Z1,29,Z3) = U(Z1,22,Z3) — U(Z2,Z1,Z3)
(4.41) —U(Za,Z3,7Z,) +U(Z1,Z3,Z2) + N,

where U is an arbitrary function V3 — ¥ and N is a constant vector in V,
N =0 if a1 + as + ag # 3a;.

Example 4.25. The function (4.40) is the general solution of the functional
equation

J(Z1,29,Z3)+ f(Zo,Z3,Z1)+ f(Z3,21,22) = f(Z1,21,Z2) — f(Z2,Zo,7Z3).

Example 4.26. The function (4.41) is the general solution of the functional
equation

f(Z1,22,73) + f(Z2,73,Z1) + f(Z3,Z1,Z3)
= f(Z1,21,29) +3f(Z2,22,Z3) — f(Z3,Z3,Z1).

If the determinant of the system (4.34), (4.35) is 0, then ay, s, ag are
distinct complex constants related by the equality (4.21). In this case the
relation (4.33) can be written in the form

F(Z1,Z) = (a3 — a1) K(Z1) + (a2 — 1) K(Zo),
where G : V +— V is an arbitrary function. Then (4.1) takes on the form

a1(f(Z1,Z2,Z3) + f(Zo,Z3,71) + f(Z3,71,Z>))
— (f — a23)[K(Z1) + K(Z2) + K(Z3)] = O.

If
(4.42) af = azas,
then the functional equation becomes
f(Z1,29,Z3) + f(Z2,23,Z1) + f(Z3,Z1,Z2) = O
and its general solution is

f(Zla ZQ; Z3) - p(217 Z27 Z3) _p(227 Z37 Zl)
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We have
F(ZDZQ) :p(Z17Z17Z2) _p(ZhZQle)
= (043 — Oél)K(Zl) + (042 — Oél)K(ZQ).

For Zo = Z; we obtain

(443) 0= (0[2 + a3 — 2&1)K(Z1)
If we suppose that
Qo + Qs
a1 = s
2

this equality, together with (4.42), implies that oy = @y = a3 which is a
contradiction. So aip 4+ a3 —2a; # 0 and (4.43) implies that K(Z;) = O, i.e.,
F(Z1,Z3) = O. By virtue of Lemma 4.2 the general solution of equation
(4.1) is given by (4.40), where U : V3 + V is an arbitrary function.

Example 4.27. The general solution of the equation
f(Z1,22,Z3) + f(Za,Z3,Z1) + f(Z3,Z1,Z2)

1+iv3 1—iV3
= — f(Z1,21,Z2) + 5 5

f(Z9,Z9,Z3) +

f(Z3,23,Z)

is given by (4.40), where U is an arbitrary function.

Now we suppose that the condition (4.42) is not satisfied. The function

a? — o

9(Z1,22,Z3) = f(Z1,Z9,Z3) - 1a—123K(Z1)
satisfies the cyclic equation
(4.44) 9(Z1,Z2,Z3) + g(Z2,Z3,71) + 9(Z3,Z1,Z2) = O.
Moreover,

Qi — aoa
9(Z1,21,23) = F(Z1,Z) — — o K (Zy)
a? — asa
= (as— 1)K (Z1) + (g — 1)K (Z3) — 1T“K(Z1)

Since g(Z1,Z1,7Z1) = O, we obtain
(4.45) (a2 + ag — 2ap — s _a1a2a3) K(Z,)=0

First let us suppose that

2 _
(4.46) N T 9 = a9 + a3z — 204.

ai
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Then (4.45) is satisfied for an arbitrary function K : V +— V. Now we have
(4.47) 9(Z1,Z1,Zy) = (2 — 1) [ K (Z2) — K(Z1)].
If H: V— Vis an arbitrary function, then

9(Z1,2Z2,Z3) = H(Zy) — H(Z2) + (02 — a1)[K(Z3) — K(Zy)]

is a solution of (4.44) satisfying (4.47).
The general solution of (4.44) satisfying (4.47) is

9(Z1,Z9,23) =U(Z1,2Z2,Z3) — U(Zo,Z1,2Z3) — U(Za,Z3,Z1)
+ U(Zl,Z?,,ZQ) + H(Zl) — H(Zg)
+ (a2 — a1)[K(Z3) — K(Z41)],

where U : V3 V is an arbitrary function.
We note that

U(Z1,22,Z3) —U(Za,Z21,Z3) — U(Za,Z3,Z1) +U(Z1,Z3,Z5)
+ H(Zy) — H(Z3)
= U(Z1,Z9,73) — U(Zy, 21, Z3) — U(Zo,Z3,71) + U(Z1,Z3,Zs),

where

U(Z1,25,Z3) =U(Z1,Zo,7Z3) + %H(Zﬂ.
Thus the general solution of (4.1) in this case is
f(Z1,22,23) = U(Zy,23,2Z3) — U(Z3,21,Z3) — U(Z3,2Z3,Z4)
+U(Z1,Z3,Z5) + (a3 — a1)K(Z1) + (g — 1)K (Z3).
Example 4.28. The general solution of the equation
f(Z1,22,23) + f(Z2,23,71) + f(Z3,Z1,Zs)
= ~iV3f(Z1,21,22) + iV3f (22,22, Z3) — 3f(Z3,Z3,Z1)
is given by the formula
f(Z1,29,Z3) =U(Z1,Z,Z3) — U(Zo,Z1,Z3) — U(Zs,Z3,Z)
+U(Z1,2Z3,Z2) + (V3 — 3)K(Z1) + 2ivV3K (Z3),
where K : ViV and U : V3 — V are arbitrary functions.

Now we suppose that (4.46) is not satisfied. Then (4.45) implies K(Z;) =
O. In this case (4.40) is the general solution of equation (4.1).

Example 4.29. The general solution of the equation
2f(Z1,22,2Z3) + 2f(Z2,Z3,Z1) + 2f(Z3,Z1,Z2)
= —iV3f(Z1,Z1,Z2) +iV3[(Z2, Z2,Z3) — 3 (Z3,Z3,Z1)
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is given by the formula

f(Z1,29,23) =U(Zy1,22,Z3) —U(Z2,Z,,Z3)
- U(ZQ7 Z37 Zl) + U(217 Z37 Z2)7

where U : V3 — V is an arbitrary function.
Now we will consider the case
(4.48) (a1 — az)? + (ag — az)® + (a3 — a1)* # 0.
Thus we have
(4.49) ai +az +az = 0.
If we suppose that a} = a3 = a3, by virtue of (4.49) we obtain
a? = agaz, a3 =aaz, ai=aias

which contradicts (4.48). So we may suppose that, for instance, a3 # a3 (in
particular, a; # as). The equation (4.1) can be written as

(450) a1 [f(Z17 Z27 Z3) - f(Z37 Z17 ZZ)] - a2[f(z37 Z17 Z2) - f(Z27 Z37 Zl)]
= OqF(Zl, Z2) -+ CYQF(ZQ, Zg) -+ Ong(Zg, Zl),

where f(Z1,Z1,7Z9) = F(Z1,Zs). Also from (4.2) and (4.3) it follows that

(4.51) a1[f(Zo,Z3,Z1) — f(Z1,22,Z3)] — a2|f(Z1,Z2,Z3) — f(Z3,Z1,Z5)]
=1 F(Zo,Z3) + aoF(Z3,Z1) + asF(Z1,Z5),

(4.52) a1[f(Z3,Z1,22) — f(Z2,23,71)]) — a2|f(Z2,Z3,Z1) — f(Z1,Z2,Z3)]
=1 F(Z3,Z1) + aoF(Z1,Z5) + a3F(Zs, Z3).

By addition of (4.50), (4.51) and (4.52) we obtain
(o1 + ag + a3)[F(Z1,2s) + F(Zo,Z3) + F(Z3,Z1)] = O.
For a1 + as + ag # 0, the following condition must be satisfied
F(Z,,Z9) + F(Zs,Z3) + F(Z3,Z,) = O.
This cyclic functional equation has the general solution
(4.53) F(Z1,22) = P(Z1) — P(Zy),

where P is an arbitrary function V +— V.
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From the equations (4.50), (4.51) and (4.52), if we take into account
(4.53), we get

f(Z3,2,,Z5)

a? i 2 {a3[a1 P(Z1) + o P(Zs) + a3 P(Z3)]
+ a3[asP(Zy) + a1 P(Zs) + aa P(Z3)]

+ arazlaz P(Zy) + a3P(Z2) + oy P(Z3)]}

+

1
= f(Z1,22,Z3) + i {a}[c1 P(Z2) + aaP(Z3) + a3 P(Z1)]
1 Y2

+ a3lasP(Zy) + a1 P(Z3) + asP(Zy)]
+ CL16L2[O&2P(ZQ> + OégP(Zg) -+ Oélp(Z1>]} .

The last equation has the general solution

(454) f(Zl, Zg, Zg) -+ % {CL% [OQP(ZQ) + OdQP(Zg) + OZ3P(Z1)]
ay —

+ a3lasP(Zy) + oy P(Zs3) + ayP(Zy)]
+ Cblaz[OéQP(ZQ) + Ong(Zg) + a1P(Z1)]}
=p(Z1,29,Z3) +p(Z2,Z3,71) + p(Z3,71,Z5),

where p is an arbitrary function V3 — V.
By virtue of (4.53) f(Z1,Z1,Z2) = P(Zy) — P(Z2), then from (4.54) it
follows that

(4.55) P(Zl) — P(Zg) + ﬁ {a%[(al + Oég)P(Zl) + OéQP(ZQ)]

=+ a%[(ag =+ ag)P(Zl) + OélP(ZQ)] + alag[(al =+ ag)P(Zl) + 043P(Z2)]}
=p(Z1,21,Z3) + p(Z1,22,Z1) + p(Za,Z1,71).

For Zo = Z; this equality takes the form

a1 + oo + as
13—a3(a% + a2+ aras)P(Zy) = 3p(Z1,7Z1,Z1),

ay — ag
which implies

3(&1 — CLQ)
PlZy) = ———p(Z1,71,7Z,).
( 1) a1+a2+a3p( 1, 41, 1)
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Now from (4.54) we find the general solution in the form

(456) f<Z17 Z27 Z3) = p<Z17 Z27 Z3) + p(z27 Z37 Zl) + p(Z37 Z17 Z2)
3
(a% + a% + 04@2)(0(1 —+ a9 + ag)

x {ailoap(Za, Zs, Zo) + aop(Zs, Zs, Z3) + asp(Zi, Z1, Zy)]
+ajlonp(Zs, Z3, Z3) + cop(Za, Z1, Zy) + asp(Za, Z, Zo))
+araz|or1p(Zy, 21, Zn) + cop(Za, Zo, Zo) + a3p(Zs3, Zs, Z3)]}

where p: V3 +— V must satisfy the following condition derived from (4.55):
3(@1 — ag)
o] +ag + a3

(4.57) (p(Z1,21,7,) — p(Z2,Z2,7Z5)]

3
(a% + a% + araz)(a1 + as + ag

+ aop(Za, Za, Z2))

+a3[(o2 + as)p(Z1,Z1,Zy) + arp(Za, Zy, Zo))]

+araz[(or + 2)p(Z1, Z1,Z1) + azp(Zao, 2o, Zs)]}

=p(Z1,21,Zs) + p(Z1,22,71) + p(Z2,Z1,2Z).
It is easily seen that (4.57) is an equation of the form
(4.58) p(Z1,Z1,Z2) + p(Z1,Z2,Z1) + p(Z2,Z1,Z1)

= B =p(Z1,21,2:) +vp(Z2, 22, Zy),

where the complex constant v is given by

) {af[(cr + a3)p(Z1,Z1,Z)

B 3(a; — a9) 3(a%a2 + a%oq + ajaz03)
ar+ast+asz (@ +a3+aja)(o + s+ ag)

Lemma 4.3. Let f(Z1,Z2,Z3) be a function of the form

(4.59) f(Z1,22,Z3) = p(Z1,Z2,Z3) + p(Zo,Z3,Z1) + p(Z3,Z1,Z>)

such that f(Z1,21,Zs) = O. Then

(4.60) f(Z1,Z,2Z3) = U(Z1,Z2,Z3)+U(Zo,Z3,Z1)+U(Z3,Z1,7Z5)
— U(Z2,21,Z3) —U(Zy1,Z3,Z5) — U(Z3,Z2,7Z,),

where U : V3 +— V is an arbitrary function.

Proof. We are looking for a function of the form

p(Z1,Zy,Z3) = k19(Z1,Z2,Z3) + koq(Zo,Z3,Z1) + k3q(Zs3,Z1,Z>)
+kaq(Zo,Z1,Z3) + ksq(Z1,Z3,Z2) + keq(Z3,Z2,7Z1),
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where k; (1 < i < 6) are complex constants, satisfying
(4.61) P(Z1,21,Z3) + p(Z1,22,74) + p(Z2,Z1,Z1) = O
for any function ¢ : V3 + V. By a substitution into (4.61) we find
ki + ko + ks = kg + ks + kg.
Thus
f(Z1,22,Z3) = (k1 + k2 + k3)[q(Z1, Za, Z3) + q(Za, 23,71 ) + q(Z3, 721, Zo))
- (kl + k2 + ]{fg)[Q(Zg, Zl; Z3) + Q(Zlv Z37 ZQ) + Q(Z37 Z27 Zl)]
If we put
U(Z17 Z27 Z3) - (kl + k2 + k3)Q(Zl7 Z27 Z3)7

we obtain the representation (4.60).

We note that the representation (4.60) can be obtained from (4.59) by
putting

P(Z1,Z9,Z3) = U(Zy,2Z2,23) — U(Z2,21,Z3). O

Let us suppose that p(Z1,Z1,Z1) = S(Z1) # O. The equation

P(Z1,21,Z2) + p(Z1,Z2,Z1) + p(Z2,Z1,Z1) = (3 —7)S(Z1) +vS(Z2)
has a nonconstant solution of the form

p(Z1,2Z2,Z3) = S(Zy)
or, more generally,
p(Zl, Zs, Zg) = mls(Zl) + mQS(ZQ) + (1 —mq — MQ>S(Z3)
only if v = 1. Indeed, we have
(v = DIS(Z1) — S(Z2)] = O.

On the other hand, any S(Z;) = A, where A is a constant vector, satisfies
the last equality.
Let us put
p(Zl, ZQ, Zg) = ﬁ(Zl, ZQ, Z3) + S(Zl)
Then p(Z1,Z2,7Z3) satisfies an equation of the form (4.61) and we have
proved

Corollary 4.4. Let f(Z1,Z2,Z3) be a function of the form (4.59) such that
p(Z1,2Z9,7Z3) satisfies (4.58). Then

f(Zy,29,Z3) = U(Z1,Z9,Z3)+U(Zo,Z3,Z,) + U(Z3,Z1,Zs)
- U(Z27 Z17 Z3) - U(Z17 Z37 ZQ) - U(Z37 Zl) ZQ)
+S(Z1) + S(Zs) + S(Z3),

where U = V3 +— V is an arbitrary function and S is an arbitrary function
V=V fory=1, 85 is equal to a constant vector A €V otherwise.
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Thus from (4.56) we find that f(Z1,Zs,Z3) is given by (4.60) if v # 1,
f(Z1,22,Z3) = 5(Z1) + 5(Z2) + 5(Z3)

3 2
— S(Z S(Z S(Z
(a? + a2 + araz2) (a1 + ag + as) {al[ag (Z1) + a15(Z2) + a25(Zs))

+ a3l S(Zy) + a3S(Zo) + a1 S(Z3)]

+ ar1az][a1S(Zy) + a2S(Z2) + a3S(Zs3)]}

+ U(Z1,Z9,Z3) + U(Zy,Z3,Z1) + U(Z3,Z1,Zs)
— U(Zo,21,Z3) —U(Z1,Z3,Z9) — U(Z3,Z2,7Z1).

Example 4.30. The general solution of the functional equation
f(Z1,Z9,Z3) — f(Z2,23,Z1) = f(Z1,71,7Z2)
is given by (4.60).
Example 4.31. The functional equation
f(Z1,22,Z3) — f(Z2,Z3,Z1) = 3f(Z1,%1,%Zs)
has the general solution
f(Z1,2Z2,Z3) = 25(Z1) — S(Z2) — S(Z3)
+ U(Z1,Z9,Z3)+U(Zo,Z3,Z1) + U(Z3,Z1,Z5)
— U(Z9,Z21,Z3) —U(Z1,2Z3,Z5) —U(Zs3,Z5,7Z,),
where S: ViV and U : V3 V are arbitrary functions.

Now we pass on to the case a1 + ag + a3 = 0. Then from (4.50), (4.51)
and (4.52) we obtain

(4.62) f(Z3,Z1,Zs) — {af[an F(Z3,Z1) — aoF (Zs, Z3)]

3 3
ay — ag

+ a%[alF(Zl, ZQ) - CMQF(Z;),, Zl)] + alag[alF(Zg, Z3) - OéQF(Zl, Zg)]}

1
= f(Zy,2Z,Z3) — - {a3[a1 F(Z1,Z2) — asF(Z3,Z1)]
1 Y2

+ a%[Ole(ZQ, Zg) — O[QF(Zl, Zg)] + CL1CL2[OélF(Zg, Zl) — (XQF(ZQ, Zg)]} .

The general solution of the equation (4.62) is given by the formula

(4.63) f(Z1,22,Z3) = —
ai; —

+ &%[O[lF(ZQ, Zg) — OéQF(Zl, Zz)] + ai1ao [OqF(Zg, Zl) — O[QF(Z2, Zg)]}
+ q(Z17 ZQ) Z3) + Q(Z27 Z37 Zl) + Q(Zg, Zla Z2)7

where ¢ : V3 — V is an arbitrary function.

1
—a?) {a%[alF(Zl, ZQ) — OéQF(Zg, Zl)]
2
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From the equality (4.63) we obtain

1
(4.64) F(Z1,Z2) = g {a3[01 F(Z1,Z1) — aoF(Zo, Z1))
1 %2

+ a%[alF(Zl, Zg) — OéQF(Zl, Zl)] + alag[alF(Zg, Zl) — OégF(Zl, Zg)]}
+q(Z1,21,Z2) + (21,29, 71) + q(Z2,Z1,Zy).
For Zy = Z; (4.64) yields

a1 — a2

(465) F(Zl,Zl) = F(Zl,Zl) —|—3q(Z1,Z1,Z1).

a1 — az
If ;1 — g = a1 — a9, then q(Z1,21,7Z,) = O and F(Z1,Z1) = P(Z;), where
P is an arbitrary function V — V. Now we have
(4.66)
ai(a1 —a1)
a% + a% + aja

az(a1 — ay)
a% + a% + ajag

F(Zl, ZQ) +

F(Z27 Zl)

o ap(ar + az) —HL%P(
a% +a§ + ajag

71)+q(Z1,21,22) + q(Z1,22,71) + q(Z2,71,Z).

First we consider the particular case oy = a; (then as = a9, ag = ag =
—(a1 + az)). Now

F(Z1,Z3) = P(Z1) + q(Z1,21,Z2) + q(Z1,Z2,Z1) + q(Z2,71,7).
Thus we find that the functional equation

a1f(Zy1,29,Z3) + a2 f(Zo,Zs3,Z1) — (a1 + a2) f(Z3,Z1,Z>)
= a1f(Z1,Z1,Z2) 4+ asf(Zo,Zo,Z3) — (a1 + a2) f(Z3,Z3,Z,)

has the general solution

f(Z1,Z5,Z3) = P(Z1)+q(Z1,Z21,Z) + q(Z1,Z2,71) + q(Z2,Z1,7Z;)
+q(Z1,29,Z3) + q(Zo,Z3,7Z1) + q(Z3,Z1,Z>),

where P : V +— V is an arbitrary function and ¢ : V3 — V is an arbitrary
function satisfying ¢(Z1,Z,Z,) = O.

Now we consider equation (4.66) in the general case. By a permutation
of the variables Z; and Z, we derive the equation

(4.67)
ai(a] —a as(1 — a
21( ! y F(Z1,Zs) + |1+ 22( - L
ay + a5 + ajaz ay + a5 + aja

ai(a; +az) + a3
= ég(i 2 j)a 2P(Zs) + q(Z2,Z2,21) + q(Z2,Z1,Z2) + q(Z1,Zs, Zo).
1 2 142

F(Z3,Zy)
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The determinant of the system (4.66), (4.67) is

(a% + a1 + CLQOQ)(QCL% + CL% —a1oq + CLQCMl)
(af + a3 + a1az)? '
If this expression is not 0, then the solution of this system is

F(Zy,Z) = (af + a3 + aza1)P(Zy1) — ai (o — a1)P(Zo)

(4.68)

2a3 + a3 — a1 + ason
a% + a% + ajasz
(a2 + a1 + azay) (2042 + a3 — ajaq + agay)
x {(a + a3 + agon)[q(Z1, Z1, Za) + q(Z1,Z2, Z1) + q(Z2, 21, Zy))]
—ai(on — a1)[q(Z2,Z2,Z1) + q(Z2,Z1,Z2) + q(Z1,Z2,Z2)]} .
Example 4.32. The general solution of the equation
2f(Z1,2o,23) + f(Zo,Z3,21) — 3f(Z3,Z1,Z>)
= f(Z1,21,Z3) — f(Z3,Z3,7)

is given by the formula

f(Z1,29,Z3) = %[4F(Z1,Z2)+F(Z2,Zs)+2F(Z3,Z1)]

+Q(Z1, Z27 Z3) + q(Z27 Z37 Zl) + q(Z37 Z17 Z2)7

where

F(Z1,Z,) = %[3P(Z1) + P(Zs)]

7
+ E{?)[Q(Zl» Z1,25)+q(Z1,22,71) + q(Z2,Z1,Zy))
+ ¢(Z2,29,71) + q(Z2,Z1,Z5) + q(Z1,Z2,Z5)},

P is an arbitrary function V ~— V and ¢ is an arbitrary function V3 — V
satisfying ¢(Z1,Z1,Z,) = O.

Now let us suppose that the expression (4.68) is 0. First let
a% + ai(ag + CLQ) = 0.

If a1 + a9 = 0, then a; = as = ag = 0 which is a contradiction. Thus

a3 af
a1 = — ’ Qg = — .
ai +a a1+ a2

Now (4.63) takes the form

F(Zs,7 F(Zo.7Z
f(Zl,Zz,Zg):al (Z3,71) + axF (Z2,Z3)
a1 + a9

+ q(Z1,Z9,Z3) + q(Z2,Z3,71) + q(Z3,Z,1,Z5),
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while (4.66) becomes
ay

ai + ag

(4.69) +4(Z2,Z21,Zy).

[F(Zh Z2) - F(Z2> Zl)] — Q(217 Zla Z2) + Q(Zla Z27 Zl)

Equation (4.69) implies

0(Z1,721,25)+ q(Z1,Z5,71) + q(Z2,Z,,Z,) = O
and

F(Zy,Zy) — F(Z3,Z,) = O,
1.€.,
Q(Z17 Z27 Z3) + Q(Z27 Z37 Zl) + Q(Z?n Z17 Z2)

- U(Z17Z27Z3> +U(Z27Z37Z1) +U(Z37Z17Z2)

— U(Z3,2,,Z3) —U(Zy1,Z3,Z5) — U(Z3,Z>,7Z,),
where U : V3 — V is an arbitrary function, and

F(Z17 Z2) - G(Z17 Z2) + G(Z27 Z1)7

where G : V2 — V is an arbitrary function.
Thus the general solution of the functional equation

a1f(Z1,22,Z3) + axf(Zo,Z3,Z1) — (a1 + a2) f(Z3, Z1,Z>)
2 2 2, 2

a a
=——2—f(Z1,21,Z5) — L f(Zo,Z2,Z3) +

ay + a ai + az ap + az
is given by the formula

a1lG(Z1,Z3) + G(Z3,Z1)] + a2|G(Za, Z3) + G(Z3, 1)

Z.7-.7 =
.f( 1, &2, 3) a1+a2
+ U(Z1,22,23)+U(Z2,23,Z,) +U(Z3,Z1,Z5)
— U(Z3,21,Z3) —U(Z1,23,23) —U(Z3,Z2,7Z,).
Next we suppose that
2a3 + a2 — (a1 — az)ay = 0.

Since a1 # as, we have

2a% + a3 a3 + 2ajas
g =——"= =
a; — ag ap — az
Now (4.63) takes the form
1
f(Z17 Z27 Z3) = [2&1F(Z1, Z2) - CL1F(Z3, Zl) - CLQF(ZQa Z3)]

a1 — ag
+ @(Z1,Z9,7Z3) + q(Z2,Z3,Z1) + q(Z3,Z1,7Z>),
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while (4.66) becomes

a

(4.70)

[F(Zl, ZQ) —+ F(ZQ, Zl) — 2F(Z1, Zl)]
ayp — az

= ¢(Z1,721,Z3) +q(Z1,Z2,Z:) + q¢(Z2,7Z:,7Z,).
Equation (4.70) implies
0(Z1,721,25)+ q(Z1,Z5,71) + q(Z2,Z2,,Z:1) = O
and
F(Zl, Zg) + F(ZQ, Zl) — 2F(Z1, Zl) = O,
1.€.,
0(Z1,29,23) + q(Z2,Z3,71) + q(Z3,7Z1,Zo)
— U(Z17Z2>Z3) +U(Zzaz3azl) +U(Z37Z17Z2)
- U(Z27Z17Z3) - U(Z17Z37Z2) _U(Z37Z27Z1)7
where U : V3 V is an arbitrary function, and
F(Z1,Z5) = G(Z1,Z2) — G(Z2,Z7) + C,

where G : V? +— V is an arbitrary function and C € V is an arbitrary
constant vector.
Thus the general solution of the functional equation

a1f(Z1,Zy,Z23) + as f(Z2,Z3,Z1) — (a1 + a2) f(Zs3,Z1,Zs)
2a2 + a3
— 172f(zla Zl; ZQ) +
a; — a a1 — ao
_ 3a2 + 2ajas + agf
a1 — am

2
2
wf(Zg,Zg,Zg)

(Z3,Z3,Z,)

is given by the formula

f(Zl, ZQ, Zg) = a1 — ag {20,1[G(Zl, Zg) — G(ZQ, Zl)]

+a1(G(Z1,Z3) — G(Z3,Z1)]
— a2(G(Z2,Z3) — G(Z3,7Z3)]} +C
+ U(Z17 Z27 Z3) + U(Z27 Z37 Zl) + U(Z37 Z17 Z2)
- U<Z27 Z17 Z3) - U(Zl, Z37 Z2) - U<Z37 Z27 Zl)
Now let ¢1=02 = v # 1. Then from (4.65) we find

3
(471) F(Zl,Zl) = ﬁq(zl,zl,zl).
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Now we have

az(a1 —a ai(a1 —a
22( 12 17) F(Z1,Zs) + 21( 12 17)
aj + a3 + ajag aj + a3 + ajag
_ 3loa(ar +az) + a3y
(a2 + a3 + araz)(1—7)

+q(Z1,22,721) + q(Z2,Z1,Z,).

(4.72) 1+

F(Z3,Z,)

(Z1,21,Z1) + q(Z1,Z,,7Z5)

By a permutation of the variables Z; and Zs we derive the equation

az(Oq - a1’Y)
a% + a% + aras

ai(oq —ary)
ai + a3 + araz
3[ai (a1 + az) + a3yl
= Zo,75,75) + q(Zy,Z5,7Z
(a%—ka%—l—alag)(l—y)Q( 2, L2, Z2) + (22, 22, Zy)

+ Q(Z27 Zla Z2) + Q(Zla Z27 ZZ)

(4.73) F(Z,,Zy) + |1+ F(Zy,Zy)

The determinant of the system (4.72), (4.73) is

[(af + a1a2)(1 — ) + a3 + (a1 + ag)]
(a + a3 + ayap)?
(4.74) X [a%(l +79) + araz(l —7) + ag — (a1 — ag)ay).

If this expression is not 0, then

F(Z1,Z5)

_ 3[a1 (a1 + az) + a3
[(af + a1a2)(1 — ) + a3 + (a1 + az)aq]
1

: [a1(1 +7) + ar1az(1 — ) + a3 — (a1 — ag)oy]
x {[a] + a3 + a1a2(1 — ) + asen]q(Z1, Z1, Z1)
— a1(ar — a17)q(Z2, 22, Z2)}
a% + a% + aja9

_|_
[(a3 + ara2)(1 — ) + a3 + (a1 + a2)ou]
1

@B 7) +araa(l—7) + af — (a1 — az)on]
X {[a% + ag + araz(l — ) + asaq]
X [q(Z1,21,Z2) + q(Z1,22,71) + q(Z2,Z1,7Z1))
— ar(ar — a17)[q(Za, Z2, Z1) + q(Z2,Z1,Z2) + q(Z1,Z2,Z5)]} .
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Example 4.33. The general solution of the equation

2f(Z17 Z27 Z3) + f(Z27 Z37 Zl) - 3f(Z3, Z17 ZZ)
=2f(Z1,721,22) — 2f(Z3,Z3,7Z1)

is given by the formula

1
f(Z1,29,Z3) = ?[SF(Zl, Zo) + 2F(Zo,Z3) + 4F (Z3,Z1))
+ Q(Zl, Z27 Z3) + Q(Z27 Z37 Zl) + Q<Z37 Z17 Z2)7
where
8
F(Z,,Zy) = §[5Q(Z1,Z1,Z1) +4¢(Z2,Z5,7Z,)]

+ 3{5[(1(21, Z,,75) + q(Z1,29,71) + q(Z2,Z1, 7))
+4(q(Z2,Z2,Z1) + q(Z2,Z1,Z2) + q(Z1,Z2,Zo)]}
and ¢ is an arbitrary function V3 — V.
Now let us suppose that the expression (4.74) is 0. First let
(a? + ajaz)(1 — ) + a3 + (a1 + az)ag = 0.
Then

a3 + (af + a1a2)(1 —7) af + (a3 + araz)(1 — )

a1 = — a9 = —
a1 + ag ’

Now (4.63) takes the form

ai + ag

a1F(Zs,Zy) + axF(Za,Z3)
al + as
+ Q(Zl,ZQ,Z3)+CI(Z2,Z3,Z1)+Q(Z3,Z1,Z2),

while (4.72) becomes

f(Z1,Z2,Z3) = (v—1)F(Z1,Zs) +

ai
a1 + as

[F(Z1,22) — F(Z2,Zy)]

= q(Z1,21,23) + q(Z1,22,Z1) + q(Z2,Z1,71) — 39(Z1,Z1,Zy).

The last equation implies
Q(Z1,Z2,Z3) + q(Z2,723,Z1) + q(Z3,Z1,Z5)

= U(Z1,22,23)+U(Zy,Z3,Z,) +U(Z3,Z1,Z5)

- U(Z27 217 Z3) - U(217 Z37 ZQ) - (Z37 Z27 Zl)

+ P(Zy) + P(Z3) + P(Z3

)
_|_
F(Z1,Z5) = G(Zi1,Z) +G(Z2,Z;) — 2 “QP(zn

Y
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where U : V33—V, G: V?+— Vand P: V — V are arbitrary functions.
The condition (4.71) yields

2G(Z1,Z,) = (al ta2 3 > P(Z1).

ai I—~

Example 4.34. The general solution of the equation
6f(Z1,2o,23)+3f(Zo,23,Z1) —9f(Z3,Z1,7Z5)
= 5f(Z1,21,Zs) — f(Zo,Zo,Z3) — Af(Zs3,2Z3,Z1)
is given by the formula
f(Z1,22,73) = G(Z1,Z2) + G(Z2,7Z)

3 2G(20,2:) + G(2, Zs) + G(Zs, Zo)
—2G(Zo,Zs) + 2G(Z1,Z3) + 2G(Z3,Z1))
+ U(Z1,29,Z3) + U(Zo,Z3,Z1) + U(Z3,7Z1,7Z5)
—U(Zo,21,Z3) —U(Z1,23,Z5) — U(Z3,Z2,7Z,),
where G : V2V and U : V3 — V are arbitrary functions.
Next we suppose that
a?(1+7) + aras(l — ) + a3 — (ay — az)ay = 0.

In this case we have

_ a3 +af(1+9) +aras(l —7) _af +a3(1 —9) +aras(l +)
al — a ’ alr — a9 '
Now (4.63) takes the form
f(Z17Z27Z3)
1

— {lar(1+~) + ac(1—7)]|F(Z1,Zs) — a1 F(Z3,2Z1) — axF(Zy,Z3)}

+ q(Z1,Z2,Z3) + q(Z2,Z3,71) + q(Z3,71,Z>),
while (4.72) becomes

ai 3 (1—|—7

F(Z,,7Z F(Zsy,7Z Z,,2,,7Z
(P02 + P20 2] = (0 00 (21,20, 2)

+ q(Z1,21,Z2) + q(Z1,Z2,Z,) + q(Z2,Z,,7Z,).

3 1+
( 7a1 +a2> # —1,

al — ao 1—’)/

It

1.€.,
(2+v)ar + (1 —v)ag #0,
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as above we find that

Q(Z1,2Z2,73) + q(Z2,723,Z1) + q(Z3,Z1,Z3)
U(Z1,Z2,Z3)+U(Zo,Z3,Z1) + U(Z3,Z1,7Z5)
U(Zo,Z1,Z3) —U(Z1,Z3,Z5) — U(Z3,Z5,7Zy),
F(Z1,Z5) = G(Z1,Z3) — G(Z2,Z)

and

1

f(Z1,Z2,Z3) -
a1 — a9

+ U(Z17 Z27 Z3) + U(Z27 Z37 Zl) + U(Z37 Z17 Z2)
—U(Zo,Z1,Z3) —U(Z1,Z3,Z) —U(Z3,Z2,Z,),

where G : V2V and U : V3 — V are arbitrary functions.

Example 4.35. The general solution of the equation

2f(Z1,29,Z3) + f(Z2,Z3,21) — 3f(Z3,Z1,Z5)
= 11f(Z1,21,Z2) +9f(Z2,Z2,Z3) — 20f(Z3,Z3,7Z)

is given by the formula
f(Z1,22,73) = 5(G(Z1,Z2) — G(Za,Z1)]
+ 2[G(Z1,Z3) — G(Z3,Z1)) — G(Z2,Z3) + G(Zs3, Z2)

+ U(Z1,22,Z3) +U(Z27Z37Z1) +U(Z33Z17Z2)
- U(Z27Z17Z3) _U(Zl7237z2) - U(Z37227Z1)7

where G : V2V and U : V3 — V are arbitrary functions.

If, however,
(2+7)a1 + (1 —7)az =0,
then

4(Z1,29,Z3) + q(Zo,Z3,7Z1) + q(Z3,7Z1,Zs)
= U(Z1,Z9,Z3) +U(Zo,Z3,Z1) + U(Z3,Z1,7Z5)
U(Z2,21,23) —U(Z1,Z3,Z3) — U(Z3,2Z3,7y)
+a1[P(Zy) + P(Zs) + P(Z3)],
F(Z1,Zy) = G(Z1,Zy) — G(Zs,Z1) + (a1 — a2)P(Zy),

37

{lar(1 +7) + a2(1 — V)] [G(Z1, Z2) — G(Z2, Z1)))
+ a1lG(Z1,Z3) — G(Z3,Z1)] — a2|G(Z2, Z3) — G(Z3,Z2)]}



38 I. B. RISTESKI

where P: V=V and U : V3 — V are arbitrary functions, and
f(Z17 Z27 Z3)
= {al[ Zl,Zg)—I—G(ZQ,Zl)—{—G(Zl,Zg) —G(Z3,Z1)]

T a1 —ay
—a2(G(Z2,Z3) — G(Z3,Z2)]} + (a1 — a2) P(Z2)
+U(Zy,Z9,Z3) +U(Zo,Z3,Z,) + U(Z3,Z1,Zs)

- U(Z27 217 Z3) - U(217 Z37 ZQ) - U(Z37 Z27 Zl)

Example 4.36. The general solution of the functional equation
2f(Z1,29,Z3) + f(Zo,Z3,Z1) — 3f(Z3,Z1,Z>)
= —3f(Z1,21,23) +2f(Z2,22,Z3) + f(Z3,73,71)
is given by the formula
f(Z1,29,Z3) = —2G(Z1,Z2)+2G(Z2,Z1)+ 2G(Z1,Z3) — 2G(Z3,Z)
— G(Zo,Z3) + G(Zs,Zs) + P(Zs)
+ U(Z1,Z2,Z3)+U(Zs,Z3,Z1) + U(Z3,Z1,7Z5)
— U(Z9,Z21,Z3) —U(Z1,Z3,Z5) — U(Zs3,Z5,7Z),
where U: V3V, G: V2V and P: Vs V are arbitrary functions.
Finally we consider the case when
(a1 — a2)* + (a2 — a3)* + (a3 — a1)> =0

and the complex constants aq, ao, ag are all distinct. This means that ajw+
asw? + a3z = 0 and equation (4.1) can be written as

(4.75)

ar[f(Z1, 2o, Z3)—wf(Zs,Z1,Zs)] — w?as|f(Zs, 21, Zo) —wf(Zo, Z3,Z1)]
= o F(Zy,Zy) + a3 F(Zo,Z3) + asF(Z3,Z1),

where f(Z1,Z1,2Z2) = F(Z1,Z2). Also from (4.2) and (4.3) it follows that

(4.76)

ar[f(Zo, Z3,Z1) —wf(Zy, 2o, Z3)] — w?as|f(Zy, 2o, Z3) —wf(Zs, Ly, Zs)]
= o F(Zo,Z3) + ayF(Zs3,Z1) + asF(Z1,Z),

(4.77)
CL1[f(Z3, Z1, ZQ)—wf(ZQ, Zg, Zl)] — w a9 [f(ZQ, Z3, ) wf(Zl, ZQ, Zg)]
= OqF(Zg, Zl) -+ O./QF(ZI, ZQ) —+ Ong(ZQ, Z3)

From (4.75), (4.76) and (4.77) we obtain
(1w + aow? + a3) [F(Z1,Zs) + w?F(Z2, Z3) + wF(Z3,Z1)] = O.
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First let us suppose that ajw + asw? + a3 # 0. Then the following condition
must be satisfied

F(Zy,Zs) + w*F(Za,Z3) + wF(Z3,Z1) = O.
This cyclic functional equation has the general solution
(4.78) F(Z1,Z2) = Q(Z1) — w*Q(Zo),
where (Q is an arbitrary function V — V.

Let us suppose that a3 # a3. Then from (4.75), (4.76) and (4.77), if we
take into account (4.78), we find that the function

g(Zh Z27 Z3)

wQ

= f(Z1,22,Z3) + R {a[01Q(Z2) + a2Q(Z3) + a3Q(Z1)]
10y

+waj [a1Q(Z3) + a2Q(Z1) + a3Q(Zs)]

+ w?ara2 [01Q(Z1) + a2Q(Z2) + a3Q(Z3)] }
satisfies the cyclic equation

9(Z1,29,Z3) — wg(Zs,Z1,Z5) = O.

The last equation has the general solution

9(Z1,23,Z3) = p(Z1,Z2, Z3) + w’p(Za, Zs, 1) + wp(Zs, Z1, Zs),
1.€.,

w2

(4.79)  f(Z1,22,Z3) + d—ad {a3[e1Q(Zs) + 2Q(Z3) + a3Q(Z1)]

+ wa% [alQ(Zg) + @Q(Zy) + 043Q(Z2)}
+ w?a1a2[01Q(Z1) + 02Q(Z2) + a3Q(Z3)] }
=p(Z1,29,7Z3) + w2p(22, Z3,7y) +wp(Z3,Z1,Z3),

where p is an arbitrary function V3 — V.
By virtue of (4.78)

f(Zh Zl7 ZQ) = Q(Zl) - wQQ(ZQ)a
then from (4.79) it follows that

w2
(4.80) Q(Z1) — w*Q(Zs) + o | {ai[(a1 + a3)Q(Z1) + 2Q(Z2)]

+ wa% [(ag + a3)Q(Z1) + OélQ(Z2)}
+ wlaraz (a1 + a2)Q(Z1) + a3Q(Z2)] }
= p(Z1,Z1,Zs) + 0?p(Z1, Z2, Zn) + wp(Zo2, Z1, Zn).
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For Zo = Z this equality takes the form
2

w
1—w? + 72(041 + a9 + 043) Q(Zl) =0
a1 — weas

which implies that

[(w—1)(a; — w?ag) + ai + ay + a3] Q(Z;) = 0.
If

(w—1)(a1 — w?az) + a1 + g + ag # 0,

i.e., a1 +ag+as # aj + oz + as, then Q(Z1) = O and (4.79) takes the form
(4.81)  f(Z1,2Z2,Z3) = p(Z1,Z2, Z3) + w’p(Z, Z3, Z1) + wp(Zs3, Z1, Zs),
where p : V3 — V must satisfy the condition
(4.82) P(Z1, 21, Z2) + wW?p(Z1, Z, Z) +wp(Za, Z1,Zy) = O.
Now we apply

Lemma 4.5. Let f(Z1,Z2,7Z3) be given by the equality (4.81), where p :
V3 V satisfies (4.82). Then

(4.83) p(Z1,29,Z3) = U(Z1,Z2,Z3) — w*U(Zy,Z3,Z,),
where U : V3V is an arbitrary function, and f(Z1,Zo,Z3) = O.

Proof. We are looking for a function p in the form
p(Z1,Z2,Z3) = kiq(Z1,Zy,Z3) + koq(Zo,Z3,Z1) + k3q(Z3,Z:1,7Z3)
+ kuq(Zo,Z1,Z3) + ksq(Z1,Z3,Z2) + keq(Z3,Z2,7Z,),

where k; (1 < i < 6) are complex constants, satisfying (4.82) for an arbitrary
function ¢ : V3 + V. By a substitution into (4.82) we obtain

k3 = —wk1 - w2]€2, k6 = —w2k4 — wk5.
By putting
U(Z1,Z2,73) = koq(Zo,Z3,Z1) — wk1q(Z3,Z1,Z3)
+ k4Q(Z27Z17Z3) —wk5q(Z3,Z2,Z1)

we obtain the representation (4.83). Now from (4.81) it is easy to see that
f(Zl,ZQ,Zg) =0. [

Example 4.37. The general solution of the equation

f(Z1,22,23) — f(Z2,2Z3,21) — iV'3f(Z3,71,Z5)
= o1 f(Z1,21,Z2) + cof(Zo,Zo,Z3) + a3 f(Z3,Z3,7Z),
where a1 +ag + a3 # —iv3 and aqw + avw? +ag # 0, is f(Zy,Z2,Z3) = O.
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Next we suppose that
(w—1)(a; —w?as) + a1 + ag + ag = 0.
In this case the equality (4.78) can be written in the form
(4.84) Y[Q(Z1)—Q(Z2)] = p(Z1,Z1, Zo) +w’p(Z1, Zy, Zy)+wp(Za, Z1, T,

where

3 3
ay — as

o (1 ettt S
If v = 0, we have as above
p(zl, ZQ, Z3) = U(Zl, ZQ, Zg) — sz(Z2’ Z3, Zl)

and (4.79) takes on the form
2

[(Z1,2,Z3) = — ﬁ {a}[1Q(Z2) + a2Q(Z3) + asQ(Z1)]
17— a3

+ wa3[1Q(Z3) + a2Q(Z1) + a3Q(Z2)]
+ w?aras [ Q(Z1) + a2Q(Zo) + a3Q(Z3)] } -
Example 4.38. The general solution of the functional equation
f(Z2,23,2) — w* f(Zs3, 21, Zs)
= —wf(Z1,21,22) + Bf(Z2,Z,Z3) + (1 = B) f(Z3, Z3, Z1),
where (3 is an arbitrary constant, is
(21,2, 23) = BQ(Z1) + (1 — B)Q(Z2) — w*Q(Zs),
where () is an arbitrary function V — V.
If v # 0, then the general solution of (4.84) is
P(Z1,29,73) = U(Zy, 2y, Z3) — w’U(Zs, Z3,Z1) — vQ(Z3)
and (4.80) takes on the form
f(Z1,22,23) = —wQ(Z1) — Q(Z3) — w*Q(Z3)
— ﬁ {[a%(ag — apw?) — a3(a; — aw) — ajasw(as — alw)} Q(Zy)
+ [a%(al — ow) + CL%UJ(Oég —aqw) — araz(ag — 012002)} Q(Zz)} :
Example 4.39. The general solution of the functional equation
f(Z1,Z2,Z3) — f(Z2,Z3,Z1) — iV3f(Z3,Z1,Z2) = —iV/3f(Z3,Z3,Z1)
is given by the formula
(21,22, 23) = (5 — iV3)Q(Z1) + (iV3 — )Q(Z2) +2(1 +iV3)Q(Z3),

where ) : V +— V is an arbitrary function.
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Now let us consider the case a3 = a3. This is possible if one of the

following three equalities holds: as = a1, ag = ajw or as = ajw?.

By assumption the coefficients a1, as, a3 are all distinct. We suppose that
as = ajw, then az = ajw?. Now the equations (4.1) and (4.2) can be written
as

ar[f(Z1,2Z2,Z3) + wf(Zo, L3, Z1) + w’ f(Z3,Z1, Z2)]
=a1F(Z1,Z5) + aoF(Zs,Z3) + a3F(Zs,Z4),
a1[w’ f(Z1,2Z2,Z3) + f(Z2,Z3,Z1) + wf(Z3, 21, Zy)]
=a1F(Za,Z3) + aoF(Zs3,Z1) + asF(Z1,Zs).

From these two equalities we derive

(4.85)
(Oq — w2oz3)F(Z1, Z2) + (042 — w2a1)F(Z2, Zg) + (Oé3 — w2a2)F<Z3, Z1> = Q0.

According to (4.78) we have
F(Z1,Z3) = Q(Z1) — w*Q(Z2).

We substitute this into (4.84) and obtain as = ayw?, a3z = ajw (otherwise
Q(Z;) = O). Thus (4.1) by virtue of (4.78) implies

(486) f(Z17 Z27 Z3) + Wf(ZQ, Z37 Zl) + W2f(Z3, Z17 ZQ) — O
The general solution of this equation is
(4.87) f(Z1,Z5,23) = p(Z1,Z3,Z3) — wp(Z2,Z3, 7).

Now we will use

Lemma 4.6. Let the function f(Z1,7Zs,Zs3) given by (4.87) satisfy
f(Zl,Zl,ZQ) = 0. Then

(4.88)  f(Z1,Z2,23) =U(Z1,2Z2,Z3) + U(Zo,Z3,Z1) + U(Z3,Z1,Z>)
—U(Za,721,Z3) — U(Z1,Z3,7Z2) — U(Z3,%Z2,7,),
where U : V3V is an arbitrary function.

Proof. We are looking for a function of the form

P(Z1,22,Z3) = kiq(Z1,Z2,Z3) + koq(Z2,Z3,71) + k3q(Zs3,Z, Zs2)
+  kaq(Za, Z1,Z3) + k5q(Z1,Z3, Zo) + keq(Zs3, Z2,Zy),
where k; (1 <i < 6) are complex constants, satisfying the equality
(4.89) p(Z1,Z1,Z2) — wp(Z1,Z2,Z1) = O
for an arbitrary function ¢ : V3 +— V. By a substitution into (4.89) we find
ks = —wky — w?ke, ks = —ky +wi(ka +ka), ke = w(ki +ky) — ko
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and

f(Z1,Z9,Z3) = (ko —wk1)|q(Z1,2Z2,Z3)+ q(Z2,Z3,Z1) + q(Z3,Z1,Z5)]
— (ko —wk1)[q(Z2,Z1,Z3) + q(Z1,Z3,Z5) + q(Zs3, 2o, Z1)).

We obtain the representation (4.88) by putting
U(Z1,Z9,Z3) = (ko — wk1)q(Z1,7Z45,Z3). 0
The general solution of equation (4.86) satisfying the condition (4.78) is
(4.90) f(Z1,29,Z3) = Q(Z1) — w*Q(Z3)

+ U(Z1,29,Z3) +U(Z2,Z3,7Z,) + U(Z3,Z1,7Z5)
- U(Z27 Zl7 Z3) - U(Z17 Z37 ZQ) - U(Z37 Z27 Zl)

Thus the general solution of the equation

01(f (21,22, Zs) + wf (Z2, L, Zn) + w* [ (23, L1, Zo)]
= al[f(zl, Z17 ZQ) + w2f(Z2, Z27 Z3) + wf(z?n Z37 Zl)]
is given by the formula (4.90), where Q : V +— V and U : V3~ V are

arbitrary functions.
On the other hand, the general solution of the equation

a1(f (21,22, Z3) + wf(Zo,Z3,Z1) + w’ f(Z3,Z1,Z2))]

= o1 f(Z1,21,22) + a2 f(Z2,22,Z3) + a3f(Z3,Z3,Z,1),
is given by the formula (4.88) when ajw + asw? 4+ a3 # 0 and at least one
of the equalities g = ajw? and a3 = aqw is not satisfied.

Next we suppose that as = ajw?, then a3 = —2a;w. Now the equations

(4.1) and (4.2) can be written as

al[f(Z17 Z27 Z3) + w2f(z27 Z37 Zl) - 2wf(z37 Zla ZQ)]

= OélF(Zl, ZQ) + OézF(ZQ, Zg) + OégF(Zg, Zl),

ar[—2wf(Z1, 29, Z3) + [(Za,Z3,Z1) + 0’ f(Z3,Z1,Zo)]

= O[3F(Z1, Zg) + OélF(ZQ, Zg) + OéQF(Zg, Zl)

From these two equations, by virtue of (4.78), we obtain

3a1f(Z1,Z2, Z3) + w* [(a1 — w?a3)Q(Zs)

+ (a2 — w?oq)Q(Z3) + (a3 — w’a2)Q(Zy)]
= w {3a1f Z3,7,75) +w [(041 —w OKB)Q(Zl)

+ (2 — w?0n)Q(Z2) + (o3 — W a2)Q(Z3)] } -
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The general solution of this functional equation is
(4.91) 3a1f(Z1,Zo, Z3) + w? [(al — w?a3)Q(Zs)
+ (ag — w?1)Q(Z3) + (a3 — w?a2)Q(Z1)]
= p(Z1,22,Z3) + w’p(Z3, Z3, Z1) + wp(Zs, Z1, Zy),
where p is an arbitrary function V3 — V. It must satisfy the relation
(4.92) 3a1[Q(Z1) — w?Q(Z2)] + w? [(1 — w?a3)Q(Z1)
+ (a2 = w?a1)Q(Zs) + (a3 — w?a2)Q(Z1)]
= p(Z1,21,Z) + w?*p(Z1,Zs,Z1) + wp(Zs, Z1, Zy).
For Zo = Z this equality takes the form
(1 —w?) [3a1 + w?(e1 + a2 + a3)] Q(Z1) = O.
If 3a; + w?(a1 + ag + a3) # 0, then Q(Z1) = O and (4.91) takes the form
3a1f(Z1,22,Z3) = p(Z1,Z2,Z3) + w’p(Z2,Z3, Z1) + wp(Zs, Z1, Zo),

where p : V3 +— V must satisfy the condition (4.82). Thus again
p(Z1,Z2,Z3) is given by (4.83) and f(Z1,Z92,Z3) = O. So the general
solution of the equation

ar[f(Z1,Za,Z3) + w? f(Za, Z3, Z1) — 2w f(Z3,Z1,Zo)]
= o1 f(Z1,21,Zs) + oo f(Zo,Zo,Z3) + a3 f(Z3,Z3,7Z1),
where a1 + ag + a3 # — 3aw, is f(Z1,2s,Z3) = O.

Now suppose that 3aiw + a1 + ag + a3 = 0. In this case the equality
(4.91) can be written in the form (4.84), where

v =wBaiw + a1 — asw).
If v = 0, we have as above
p(Z1,Z2,23) = U(Z1,Z2,2Z3) — w*U(Zs,Z3,Z1)

and (4.91) takes the form

(4.93) f(Z1,Z9,73) = Q(Z2) — w*Q(Z3).
Thus the general solution of the equation

a1[f(Z1,Z2,Z3) + w’ f(Z2,23,21) — 2wf(Zs3, Z1, Z2))
= (8= 3m)wf(Z1,21,Zo) + Bf (22,22, Zs) + w5 f (L3, Z3, Z),

where [ is a complex constant, is given by the formula (4.93), where @ :
V +—V is an arbitrary function.
If v # 0, then as above

p(Z1,Z2,23) = U(Z1,Z2,Z3) — w*U(Za,Zs3,Z1) — vQ(Z3)
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and (4.91) takes on the form
f(Z1,22,Z3) = — [wQ(Z1) + Q(Zs) + w*Q(Z3)]

+ [(— a1 + 200w — ang)Q(Zl) + (- 20qw? + g + a3w)Q(Za)] .

3aq
Example 4.40. The general solution of the functional equation
f(Z1,Z9,23) + w? f(Zo,Z3,Z1) — 2wf(Zs3, Z1, Z2)
= Wwf(Z1,21,22)+ f(Zo,Z9,Z3) — (1 +4w)f(Z3,Z3,Z1)
is given by the formula
(21,22, Zs) = (1 = w)Q(Z1) + wQ(Z2) — w*Q(Zs3),
where @) : V — V is an arbitrary function.

Now we pass on to the case ajw + asw? + a3 = 0. We suppose that
a3 # a3. Then from (4.75), (4.76) and (4.77) we obtain that the function

g(Z17 Z27 ZS)

1
= f(Zl, ZQ, Z3) — m {a%[alF(Zl, ZQ) — OZQWQF(Z?,, Zl)]
1 %2

+ wa3[a1 F(Zs, Zs) — asw?F(Zy, Zo)]
+ wiaras|on F(Z3, Z1) — aow? F(Zo, Z3)]}
satisfies the cyclic equation
9(Z1,22,Z3) —wyg(Z3,2:,2,) = O.
Since the general solution of this equation is
9(Z1,Z2,Z3) = p(Z1, Ly, Z3) + w’p(Za, L3, Z) + wp(Zs, L1, Zs),

we obtain

(494) f(Zl, ZQ, Z3) = 3 [(G%Ckl — CL%O{g)F(Zl, ZQ)

+ wag(agoq — alag)F(Zg, Z3) + wzal(azozl — alag)F(Zg, Zl)}
+ p(Z1,Z5,Z3) + w?p(Zo, Z3, Z1) + wp(Zs, Z1, Zo),

where p: V3 — V is an arbitrary function.

From the equality (4.94) we obtain
1
3 3 [(a%al — CL%O&Q)F(Z;[, Z1>

3
ay — ap

+ WQQ(GQOél — alag)F(Zl, ZQ) + w2a1(a2041 — alag)F(Zg, Zl)}
+ p(Z1,21,2Z5) + w*p(Z1,Z2,71) + wp(Za, Z1,Z1).

(4.95)  F(Zy,Z3) =
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For Zy = Z; (4.95) yields

a — apw?

(4.96) F(Z1,Z,) = F(Z1,Z4).

a1 — asw?
First we consider the case

a1 — a2w2 = al — ang,

then F(Z1,Z1) = Q(Z1), where @ is an arbitrary function V +— V. Now we
have

(4.97)

2

wai(ag —ay)
2,2 2 F(Z1,29) + 2,2 2
ajw* + ajasw + aj ajw* + ajasw + a;

wasg (o — ay)

1+ F(Z27Z1)

aw(aiw + az) + a3
= Z 7,,7,,7Z
P T e + @2 Q(Z1) + p(Z1,Z4,Zs)
+w?p(Z1,Zs, Z1) + wp(Za, Zn, Zn).
First we consider the particular case a; = a1 (then ay = as, ag = a3 =
—(a1w + asw?)). Now

F(Z1,Z9) = Q(Z1) + p(Z1,Z1,Z3) + °p(Z1, 2o, Z1) + wp(Zo, Z1, Zy).
Thus we find that the functional equation
a1 f(Z1,Z2,Z3) + az f(Za, Z3,Z1) — (a1w + axw?) f (Z3, Z1, Zs)
= a1f(Z1,21,22) + as f(Z2,22,7Z3) — (1w + aow®) f(Z3, Z3, Z1)
has the general solution
f(Z1,2,Z3) = Q(Z1) + p(Z1, 21, Z3) + w’p(Z1,Z2,Z1) + wp(Zo, 21, Zy)
+ p(Z1, Zo, Z3) + wp(Zs, Z3, L) + wp(Zs, Z1, L),
where Q : V+— V and p: V3 — V are arbitrary functions.
Now we consider equation (4.97) in the general case. By a permutation

of the variables Z; and Z> we derive the equation

wiay (1 —aq)

wag (o — ay)

(4.98)

F(Zl,Z2)+ 1+

F(Z27 Zl)

ajw? + ajasw + a3 atw? + ajasw + a3

arw(aiw + az) + a3
. Zo) + p(Zp. Zr. Z
a3w? + ayasw + a3 QZ2) +p(Z2, 22, %)
+w?p(Z, Z1, Za) + wp(Zy, Zo, Zo).

The determinant of the system (4.97), (4.98) is

[a% + aw(ag + alw)][Qa%wQ + a% + aw(as — a1w)]
(a3w? + ayasw + a3)?

(4.99)
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If this expression is not 0, then the solution of this system is

(a3w? + a3 + aza1w)Q(Z1) — w?ai (a1 — a1)Q(Zo)
2a2w? + a3 + cqw(ag — ayw)
a%wz + ajaow + a%

[a% + cqw(as + alw)][Qa%wQ + a% + aqw(ay — ajw)]

F(Z,,Z5) =

47

X {(G%WQ + a% + CLQCYlW)[p(Zl; 217 ZQ) + wzp(227 Zl, ZQ) + WP(ZQa Z17 Zl)]
— war (a1 — a1)[p(Z2, Za, Zn) + w?p(Za, 21, Zo) + wp(Z1, Zo, L))} .

Example 4.41. The general solution of the equation

2f(Z1,Z2,Z3) — 2f(Z2,Z3,Z1) — 2iV/3f(Z3, Z1, Zo)
= (1 —iV3)f(Z1,21,Zs) — (1 +iV3)f(Z3,Z3,Z1)

is given by the formula
f(Z1,Z5,Z3)
= i [(1 —iV3)F(Z1,Zs) + (1 +iV3)F(Zs, Z3) + 2F (Zs, zl)]
+ p(Z1, 23, Z3) + w’p(Za, Z3, Z1) + wp(Zs3, Z1, Zo),

where

F(Z1,22) = (3 —iV3)Q(Z1) + 2Q(Z2)
(34 iV3)[p(Z1,Z1,Z2) + w’p(Z1, 23, Z1) + wp(Za, Z1, 7))

_|._
+ (1 +iV3)[p(Za, Z2,Z1) + w’p(Za, Z1, L) + wp(Z, Zo, L)),

Q: V—Vandp: V3 —V are arbitrary functions and w = —1+sz/§
Now let us suppose that the expression (4.99) is 0. First let
a3 4+ cqw(ag + ajw) = 0.

If as + aiw = 0, then a1 = as = a3 = 0 which is a contradiction. Thus

a%uﬂ a%wQ
o] = — ) Qg = — .
as + aw as + aw

Now (4.94) takes the form

F(Zs,7Z F(Zs3,7Z
f(Zl,Zz,Zg) _ a ( 25 3) + ajw ( 3 1)
as + ajw

+ p(Z1,Zo,Z3) + w’p(Za, Z3,Z1) + wp(Z3,Z1, Zs),
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while (4.97) becomes
a1w 0
Y (F(2y, %) — F(Z2, %) = p(Z1, 21,7 7 7.7
a2+a1w[ ( L 2) ( 2 1)] p( 1,41, 2)+u) Z)( 1,49, 1)
—|—wp(Z2,Z1,Z1).

The last equation implies
p(Z17Z2aZ3) — U(Z17Z27Z3) _WZU(Z27Z37Z1) _CLlP(Zl)a
F(Zl,ZQ) = G(Zl,ZQ) —I—G(ZQ,Zl) + (CL2 —I—CLlw)P(Zl),

where P: V=V, G:V?—Vand U: V3 — V are arbitrary functions.
Thus the general solution of the functional equation

alf(Z17 ZQ; Z3) + an(Z27 Z37 Zl) - (alw + CLQWQ)]C(Z?” Zl7 Z2)

2 9 9 9
asw atw
=——= f(Z1,Z1,2o) — ———— (2o, Z>. 7
a2+a1wf( 1,21,7Zs) a2+a1wf( 2, 2o, Z3)
2., 2
a; + ajw
= — {(Zs.Z35.7Z
a2+a1wf( 3 43 1)

is given by the formula

9(Z1,Z,Z5) — as|G(Za,Z3) + G(Zs3,Z2)] + a1w|G(Z3,Z1) + G(Z1,Z3)]

as + a1w
— alP(Zl) + (CL2 — a1w2)P(Z2).
Next we suppose that
2a3w? + a3 — ajw(ajw — az) = 0.

Since a3 # a3, we have

B 203w + a3w? B a3w? + 2a1aow
ap = ———, Qg = .
alw — ag a1w — a2
Now (4.94) takes the form
1
f(Zl, ZQ, Z3) = m [2a1wF(Z1, Zg) — ale(Zg, Zl) — CLQF(ZQ, Zg)]

+p(Z1,Za, Z3) + w*p(Za, Z3, Z1) + wp(Zs3, Z1, Zs),

while (4.97) becomes
ﬁ [F(Zy,Z2) + F(Zo,Z1) — 2F(Z1,7,))
= p(Z1,Z1,Z9) + w’p(Z1,Z9,71) + wp(Zo, Z1,Z).
The last equation implies
p(Z1,29,2Z3) = U(Zy,Zy,2Z3) — w*U(Zy,Z3,Z1) + a1 P(Z,),

F(Zl, ZQ) = G(Zl, Zg) — G(ZQ, Zl) + (&1&) — CLQ)P(Zl),
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where P: V=V, G:V?2— Vand U : V3 — V are arbitrary functions.
Thus the general solution of the functional equation

a1 f(Z1,Zo, Z3) + asf(Zo, Z3,Z1) — (a1w + asw?) f(Z3, %1, Zo)
202w + a2w?
= 27 $(Z,,7,,Z>)
a1w — ag

a%wz + 2a1a9w

f(Z27 Z27 Z3)
a1w — a9

B a2(w? — 1) + 2a1as + a3

a1w — az

f(Z3,23,Z,)
is given by the formula

f(Z1,Z5,Z3)
1
= m {2@1W[G(Z1, Zg) — G(ZQ, Zl)]

+ alw[G(Zl, Zg) — G(Zg, Zlﬂ — a9 [G(ZQ, Zg) — G(Zg, ZQ)]}
+ a1 (1 + 2w)P(Zy) + (a1w? — az)P(Zs).

Now let 3‘1:—2‘22522 =y # 1. Then from (4.96) we find F(Z1,Z;) = O. Now
we have

(4.100)
was(a1 —a w?ai(ag —a
1+ 2 22( - 1’}/) 2] F(Z17Z2)+ 2 21( - 17)2F(Z2,Z1)
ajw® + arasw + as ajw® + araow + aj

= p(Z1,Z1,Zs) + w’p(Z1,Z2, Z1) + wp(Za, Z1, Z1).
By a permutation of the variables Z; and Zs we derive the equation

(4.101)

w?ay(ag — ary)

a?w? + ajasw + a}
= p(Zo, 2o, Z1) +w?p(Zo, Z1, Zo) + wp(Z, Zo, Zo).

F(Z1,Zy) + ll + 2wa2(a1 — ) F(Z3,7,)

a3w? + ajasw + a}

The determinant of the system (4.100), (4.101) is

(1— 7)(a%w2 + ajaw) + a% + waq (aqw + ag)
(a%wz + ajaow + a%)2

x [(1+ Yaiw? 4+ (1 — y)arasw + a3 — waq (a1w — az)].

(4.102)
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If this expression is not 0, then the solution of this system is

2 2 2
ajw’ + arasw + aj

(1- 7)(a%w2 + araow) + a% + wag(ajw + a2)
-1

F(Z4,Z,) =

x [(1+7)aiw?® + (1 — y)araow + a3 — war (a1w — as)]
X {[alw + (1—9)aiagw + a3 + agalw}
x [p(Z1,21,Z2) + w’p(Z1, Z2, Z1) + wp(Za, 21, Zy)]
—w?ar(on — a17)[p(Z2, Za, Z1) + w’p(Za, Z1, L) + wp(Zy, Zo, Z)] } .
Example 4.42. The general solution of the equation
f(Z1,Z3,23) — f(Zo,Z3,21) — iv/3f(Z3, 21, L)
= (1—iV3)f(Z1,21,Z2) — (1 +iV3)f(Z3, Z3,Zy)
is given by the formula
f(Z17 Z27 Z3)
1
=3 [(1 —iV3)F(Z1,22) + (1 +iV3)F(Zy, Z3) + 2F (Zs, Zl)]
+p(Z1,Z2,Z3) + w*p(Z2, Z3, Zy) + wp(Zs, Z1, Zs),

where
z\f
F(Z,,Zy) = (p(Z1,Z1,Zs) + w?’p(Z1,Z2,Z1) + wp(Za, Zy1, Z1))]
2\/_ -3
G (p(Za, Zo, Z1) + w’p(Zo, Ly, Zo) + wp(Z1, L, Zs))],

—1+4V3
—5=.

p: V3 — Vis an arbitrary function and w =
Now let us suppose that the expression (4.102) is 0. First let
(1 —y)(atw? + ajasw) + a3 + way(ajw + ag) = 0.
Then
a2w? + (1 — v)(a3w + aras) = — a2w? 4+ (1 — ) (a3 + alagw)-

] = —
a1w + as ’ a1w + as

Now (4.94) takes the form
ale(Zg, Zl) + CIQF(ZQ, Z3)

a1w + as
+ p(Z1,2Z2,Z3) + w’p(Za, Z3,Z1) + wp(Z3, Z1, Zs),

f(Z1,22,Z3) = (v—1)F(Z1,Z2)+




QUASICYCLIC COMPLEX VECTOR FUNCTIONAL EQUATIONS 51

while (4.100) becomes

a1w

—— [F(Z1.,7) — F(Zs.71)] = p(Z1.71.7Z 20(Z1. 7. 7
alw—|—a2[(1’ 2) (22, 1)} p(Z1,21,Z3) +w'p(Zy,Z2,7Z1)

+ WP(ZQa Zla Zl)
As in the case v = 1, the last equation implies

p(Z1,29,Z3) = U(Z1,Z2,Z3) — w*U(Zo,Z3,Z1) — a1 P(Zy),
F(Zl, Zg) = G(Zl, Zg) + G(ZQ, Zl) —+ (alw + CLQ)P(Zl),

but the functions G : V2 V and P: V s V satisfy the relation
2G(Z1, Zl) =+ (alw —+ ag)P(Zl) = 0.
Thus the general solution of the equation

a1f(Z1,Z2,Z3) + asf(Zo, Z3,Z1) — (a1w + asw?) f(Z3, Z1, Zo)

(1-9)(akw + arap) + aju?

= — 71.71.7
a1w + ag f( 1, 41, 2)
2 2 2
ajw” + (1—7)(a3 + a1a9w)
— Z->.75.7
41w + as f(Zy,Z5,7Z3)
a%—f—a%uﬂ

+ (1 = ) (a1w + agw?) + [(Z3,Z3,Z)

a1w + as

is given by the formula
f(Zh Z27 Z3) - (,-)/ - ]-) [G(Zla ZZ) + G(Z27 Zl)}

1
P {a10[G(Z1,Z3) + C(Z3,Z1)] + a2[G(Z, Z3) + G(Z3, Zo)]

+ Q[al — (v —D(aw+ ag)]G(Zl, Z1)+ 2(a1w? — a2)G (2, Zg)} .
Next we suppose that
(1 +v)atw? + (1 — y)arasw + a3 — way (ajw — as) = 0.
In this case we have

o — a3w? + (1 + y)ajw + (1 — y)aiaz
1= 1w — as ’
atw? + (1 —7)a3 + (1 + v)ajasw

a1w — a9

a9 =
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Now (4.94) takes the form

f(Z1,Z9,Z3)
= ﬁ {[Q+y)arw+ (1 = )ax| F(Z1,Z2) — arwF(Z3,Zy)
— ayF(Zo, Z3)} + p(Z1, Za, Z3) + w?p(Za, Z3, Z1) + wp(Zs3, Z1, Zs),
while (4.100) becomes
a1w
P [F(Zl, Zy) + F(Zo, Zl)]
= p(Z1,Z1,Zs) + w’p(Z1,Z2, Z1) + wp(Za, L1, Z1).
As above we obtain
p(Z1,Z2,23) = U(Z1,Z2,Z3) — w*U(Z2,Z3,%1),
F(Z1,Zy) = G(Z1,Z>) — G(Z2,Zy).
Thus the general solution of the equation
a1 f(Z1,22,Zs3) + az f(Za,Zs, Zy) — (a1w + apw®) f(Zs3, Z1, Zo)
(14 7)ajw + (1 — y)aras + a3w?

— f(ZthZZ)

a1w — ag
2,2 2
+(1+ +(1—

4+ a1w ( 7)@1&2&) ( F)/)a? f(ZQ,ZQ,Zg)

a1w — an
a2(1 — vw?) + ajasw? + v(w — D] + a2(w + yw?
T 1( Y ) 1 2[a1w j(a2 )] 2( i )f(ZS,Z3,Z]_)

is given by the formula

[(Z1,Z5,Z3)
— —alwl_ as { [(1 + 'Y)Cllw + (1 — 'y)ag} [G(Zl, Z2) — G(ZQ, Zl)]

+aw [G(Z1,23) — G(Z3,Z1)] — a2 |G(Z2,Z3) — G(Z3,Z2)] }

where G : V2 V is an arbitrary function.

Now we suppose that a‘z’ = a%. As above, this is possible if as = ajw or
as = a1w2.

First let us suppose that ay = ajw, then a3 = ajw?. The equality (4.84)
still holds. By virtue of ajw + asw? + ag = 0 it takes the form
(4.103)
(20[1 —H,UOQ)F(ZI, Z2)+(a2—w2a1)F(Zg, Zg)—(wal —|—2w2a2)F(Z3, Zl) = 0.

If g = qw (and a3 = a1w2), this equation has the nontrivial solution

(4.104) F(Z1,Z2) = P(Z1) — wP(Zy),



QUASICYCLIC COMPLEX VECTOR FUNCTIONAL EQUATIONS 53

where P : Vi V is an arbitrary function. Then equation (4.1) implies
f(Z1,2,23) + wf(Zo, Z3,Z1) + w* f(Z3,Z1,Zs) = O.

According to Lemma 4.6, the general solution of this equation satisfying the
condition (4.104) is
(4105) f(Zl, ZQ, Zg) = P(Zg) - wP(Zg)

+ U(Z17Z27Z3) +U(Z2,Z3,Z1) +U(Z37Z17Z2)

- U(Z27Z1>Z3) - U(Zl,Zg,Zg) _U(Z37Z27Z1)-

Thus the general solution of the equation

ar[f(Z1,Za, Z3) + wf(Za, Z3,Z1) + w* [ (23,71, Zs)]
= [f(Z1,21,Zs) + wf(Zs, 2y, Z3) + w* f(Z3, Z3, Z1)]
is given by the formula (4.105), where P : V +— V and U : V3 +— V are

arbitrary functions.
On the other hand, if as # ajw, then the general solution of equation

(4.103) is
F(Z1,Z;) = O. The general solution of the equation (4.86) satisfying
f(Zl, Zl, Zg) =0is given by (488)
Thus the general solution of the equation
a1[f(Z1,2Z2,2Z3) + wf(Za, Z3,Z1) + w* [ (Z3,Z1,Zs)]
= a1 f(Z1,Z1,Z2) + a2 f (Z2,Z2,Z3) — (01w + cow?) f(Z3, Z3, Z1),
where as # ajw, is given by (4.88).
Next we suppose that as = ajw?, then a3 = —2a;w. Now the equations
(4.1) and (4.2) can be written as
a1 [f(Z1,2Z9,Z3) + W’ f(Z2,Z3,Z1) — 2w f(Z3, Z1,Zo)]
= a1F(Z1,2s) + aaF(Za, Z3) — (1w + aow?) F(Z3,Z),
a1 [_ 2Wf(Z1, Z27 Z3) + f(227 Z3a Zl) + wa(Z37 Z17 ZQ)}
= — (oqw + ()é2w2)F(Z1, Zg) + OélF(ZQ, Zg) + OQF(Zg, Zl).

From these two equations we obtain

(4.106)
3a1f(Z1, 22, Z3) + (20q0w* + 2) F(Z2, Z3) + (a1w + 200w”) F(Z3, Z1)
= w [3a1f(Z3, 21, Zs) + (2000° + ag) F(Z1, Zo)
+ (0qw + 200w?)F(Zs, Zg)} )
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The general solution of this functional equation is

(4.107)
3a1f(Z1, 7o, Z3) + (20[1(4}2 -+ OAQ)F(ZQ, Zg) + (qu + 2042(,4)2)17(23, Zl)

= p(21,Zs,Z3) + w*p(Z2, Z3, Zn) + wp(Z3, 21, Zo),
where p: V3 — V is an arbitrary function. It must satisfy the relation

(4.108)  (3a1 + 20qw? + ) F(Z1,Zso) + (oqw + 200w F(Zo, Zy)
= p(Z1,Z1,Z2) + w’p(Z1,Z9,Z1) +wp(Zo,Z1,Zy).
For Zo = Z this equality takes the form
[3a1 + (2w* + w)aq + (1 + 2w*) ] F(Z1,Z1) = O.
If
3a1 + (2w? + w)a + (1 + 2w?)ay # 0,
then F(Z1,Z1) = O. Further on, if
3a1 + 201w% + s # aqjw + 2agw2,
from equation (4.108) we find
F(Z1,Z5) =0, p(Z1,Z2,23) =U(Z1,Z3,Z3) — w*U(Zs,Z3,7Z1)
and f(Z1,Z2,Z3) = O.
Example 4.43. The general solution of the equation
f(Z1,Z9,23) + W’ f(Z2,Z3,7) — 2wf(Z3,Z1,Zs)
= Wf(Z1,21,Zs) + f(Z2,Zp, Zy) — 2° (L3, L3, L)
is f(Z1,29,Z3) = O.

If

3a1 + 20z1w2 + g = vqw + 20z2w2,

then from (4.108) we find
F(Z1,Zy) = G(Z1,Z5) — G(Z2,Z1),
p(Z1,22,2Z3) = U(Zy,Zs,Z3) — w?U(Z2,Z3,7Z1)
and
f(Zl, Zo, Zg) = (alw + 2012(,02) [G(Zl, Z3) — G(Zg, Zl)}
+ (3a1 — aqw — 200w?)[G(Z2, Z3) — G(Z3,Z>)],

where G : V? — V is an arbitrary function.
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Example 4.44. The general solution of the equation
(W? = 1) f(Z1,Z9,Z3) + (w — W) f(Zo,Z3,Z1) + 2(w — 1) f(Zs3,Z1, Zs)
= wf(Z1,21,Zs) + f(Z2,Z,Z3) — 2" [ (Z3, Z3, Z1)

is given by the formula

f(Z1,29,Z3) = w?[G(Z1,Z3) — G(Z3,Z1)] — G(Z2, Z3) + G(Z3, Zo).

Now we suppose that

3a1 + (2w 4+ w)ay + (1 + 2w?)az = 0.

In this case the equality (4.108) can be written in the form

’y[F(Zl, Zy)—F(Zs, Zl)} =p(Z1,7Z,4, Z2)+w2p(Z1, Zo,71)+wp(Zs,Z1,7Z),
where v = — aqw — 2a0w?.
Ifvy=0,ie, a; =—2aw, ag = aj, we have as above
p(Z1,%2,73) = U(Z1,%2,Z3) — w*U(Za,Z3,Z1).
Thus the general solution of the functional equation
f(Z1,Z9,Z3) + w?f(Za,Z3,Z1) — 2wf(Z3, Z1,Z2)

= —20f(Z1,21,Zs) + [(Z2,Z, Z3) + w* [ (23, Z3,Z1)

is given by the formula
f(Zy1,29,Z3) = F(Zs,Z3),

where F : V2 V is an arbitrary function.

If v # 0, then
F(Z1,Zy) = G(Zy,Z3)+ G(Z3,Z1) —wP(Zy),
p(Z1,Z2,23) = U(Z1,Z0,Z3) — w°U(Zo, Z3,7Z,) +yP(Z)
and
[(Z1,Z,Z3)

= G(Z1,Z3) + G(Z3,Zy) + (? - 1) (G(Z2,Z3) + G(Z3,Zs)]

+ P(Zy) — (1 + %w) P(Zs),

where G : V2 V and P: Vs V are arbitrary functions.

Example 4.45. The general solution of the equation
f(Z1,29,23) + * [ (23, Z3,Z1) — 2w [ (Z3, 21, Zo)
= W f(Z1,21,Z2) — 2wf(Z2,Z2,Z3) + f(Z3,Z3,7Z1)
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is given by the formula
f(Zl, ZQ, Z3) = G(Zl, Z3) + G(Zg, Zl) + P(Zl) + w2P(Z2).

5. STABILITY CRITERIA

In this section we will derive a necessary and sufficient condition for the
stability of the quasicyclic complex vector functional equation (3.1), i.e., its
matrix form (3.4) using a simple spectral property of compound matrices.

Let det A # 0, then relation (3.4) takes the form
(5.1) F=A"1AG = SG,
where S is also a cyclic complex matrix.

Definition 5.1. The quasicyclic complex vector functional equation (5.1)
is stable if stab(S) < 0.

Proposition 5.2. For any cyclic matriz S € V it holds
(5.2) stab(S) = inf{u(S), p is a Lozinskit measure on V"}.

Proof. The relation (5.2) obviously holds for diagonizable matrices in
view of

(5.3) pr(S) = u(TST™1) (T is an invertible matrix)

and the first two relations in (2.4). Furthermore, the infimum in (5.2) can be
achieved if S is diagonizable. The general case can be shown based on this
observation, the fact that S can be approximated by diagonizable matrices
in V and the continuity of pu(-), which is implied by the property

[u(A) — u(B)| < |A - BJ. O
Remark 5.3. From the above proof it follows that
stab(S) = inf{ o (TST™ 1), T is invertible}.
The same relation holds if u is replaced by p.

Corollary 5.4. Let S € V. Then stab(Re S) < 0 <= pu(Re S) < 0 for
some Lozinskit measure o on V".

Theorem 5.5. For stab(Re S) < 0 it is sufficient and necessary that
stab(Re SP) < 0 and (—1)" det(Re S) > 0.

Proof. By the spectral property of SI? the condition stab(Re S1) < 0
implies that at most one eigenvalue of S can have a nonnegative real part.
We may thus suppose that all eigenvalues are real. It is then simple to see
that the existence of one and only one nonnegative eigenvalue is precluded
by the condition (—1)" det(Re S) > 0. O

Theorem 5.5 and Corollary 5.4 lead to the following result.
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Theorem 5.6. Suppose that (—1)" det(Re S) > 0. Then S is stable if and

n

only if w(Re S < 0 for some Lozinskii measure p on VN, N = (2)

Theorem 5.7. If stab(Re S(Z(3)) < 0 for 3 € (a,b), then (a,b) contains
no Hopf bifurcation points of S(f3).

Proof. Let B — S(B) € V be a function that is continuous for § €
(a,b). A point By € (a,b) is said to be a Hopf bifurcation point for S(()
is S(pB) is stable for 8 < [y, and there exists a pair of complex eigenvalues
ReA(B) £ iIm A(B) of S(B) such that Re A(8) > 0, while the rest of the
eigenvalues of S(f) have nonzero real parts for 5 > (3y. From the proof of
Theorem 5.5 we see that stab(Re S1?) < 0 precludes the existence of a pair
of eigenvalues of S having positive real parts. O

Let S and P be n x n complex cyclic matrices. A subspace €2 € V is
invariant under S if S(Q) C Q. S is said to be stable with respect to an

invariant subspace € if the restriction of S to 2, § N Q — () is stable.
Let the matrix P be such that rank P =7 (0 <r <n —1) and
(5.4) PS = 0.

Then Ker P = {Z € V, PZ = 0} satisfies S(V) C Ker P. In particular,
Ker P is an (n — r)-dimensional invariant space of S. It is of interest to
study the stability of S with respect to Ker P when (5.4) holds.

Lemma 5.8. Let Q C V be a subspace such that S(V) C Q and dim Q =
k <mn. Then 0 is an eigenvalue of S, and there exist n — k null eigenvectors
that do not belong to ().

Proof. Let W be the quotient space V/Q. Then V Z Q@ W and S(W) =
{0} since S(V) C Q. This establishes the lemma. O

Theorem 5.9. Suppose that P and S satisfy (5.4) and rank P = r (0 <
r <n—1). Then for S to be stable with respect to Ker P, it is necessary
and sufficient that

1°.  stab(ReSI"2) <0, and

2°.  limsup sign[det Re(el 4+ §)] = (—1)"".

e—0t

Proof. Let \; (1 <7 < n—r) be eigenvalues of S . By Lemma 5.8,

Ker P
the eigenvalues of S can be written as
)\17A27"'7>"n—7“707"'707
N—_——
s
and thus {N\; +\;, 1 < i < j < n—r} C o(SIH) by the spectral
property of additive compound matrices discussed in §2. It follows that
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stab(Re S['*2]) < 0 precludes the possibility of more than one \; (1 < i <
n — r) having nonnegative real parts. For ¢ > 0 sufficiently small

sign [det Re(el + 5)] = sign(e" Ay -+ Ap—yr).

The theorem can be proved using the same arguments as in the proof of
Theorem 5.5. U

Remark 5.10. If r = n in (5.4), then P is of full rank and hence S = O. If
r = n — 1, then Ker P is of dimension 1 and thus the eigenvalues of S are \;
and 0 of multiplicity n—1. From the above proof, we know that Theorem 5.9
still holds in this case, if condition 1° is replaced by tr(Re S) < 0.

Corollary 5.11. Suppose that S and Py satisfy
(5.5) P S =3P

and rank Py =7 (0 < r <mn—1). Thus S is stable with respect to Ker Py if
and only if the following conditions hold:

1°.  stab(ReSI'*2) < (r +2)8, and

2°.  (signB)"(—=1)"""det(Re S) > 0.

Proof. Let the matrix P; be such that rank P, =7 (0 <7 <n — 1) and
(5.5) holds for some scalar 5 # 0. Then Ker P; is an invariant subspace
of S. Noting that (5.5) is equivalent to P;(S — 8I) = O, one can apply
Theorem 5.9 to S — 31 and obtain the proof. O

6. REMARKS

1°. Actually, the quasicyclic complex vector functional equation has broken
cyclicity and therefore it is not possible to find its reproductive solution.
2°. The quasicyclic complex vector functional equation solved here as a par-
ticular case for n = 3 has strong modifying properties. During the solution
of the equation we always took into account a cyclic permutation of two vec-
tors in its right-hand side, such that the equation preserves quasicyclicity.
In the opposite case, for another kind of cyclic permutation of the vectors,
the equation transforms into a semicyclic or noncyclic functional equation
which needs to be solved over again. This shows that a quasicyclic func-
tional equation changes its stucture so that it goes over from one to another
class, i.e., it appears in different modifications, and accordingly we adapt
the method for its solution.

3°. According to the above description, by the same procedure which is
proposed in this paper it is possible to solve the following complex vector
functional equations

(6.1) a1f(Z1,22,73) + azf(Zo,Z3,Z1) + a3 f(Z3,7Z1,Zs)
= anf(Z1,21,23) + ciof(Zo,Zo,Z1) + c13f(Z3,Z3,Z>),



(6.3)

(6.6)

(6.7)
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+ + + 4+ + +

alf(zh Z27 Z3) + CLQf(ZQ, Z37 Zl) + CL3f(Z3, Z17 Z2)

a1 f(Z1,Z2,Zy) + coaf(Zo, Z3,Zs) + a3 f(Z3,Z:1,Z3),

a1f(Zy1,29,Z3) + a2 f(Zo,Zs3,Z1) + a3 f(Zs3,Z1,Zs)

as1 f(Z1,Z3,21) + asaf(Zo, 2y, Zo) + ass f(Zs, Zo, Z3),

a1f(Z1,29,Z3) + a2 f(Zo,Z3,Z1) + a3 f(Zs3,Z1,Zs)

an f(Ze,Z1,Zy) + asaf(Z3, Lo, Zo) + au3 f(Z1,Zs3,Z3),

a1f(Z1,2Z2,Z3) + asf(Zo,Z3,Z1) + a3 f(Z3,7Z,,Zs)

as1 f(Z3,Z1,Zy) + asa f(Zy, 2o, Zo) + a3 f(Zo, Z3, Z3),

a1f(Z1,2Z2,Z3) + asf(Zo,Z3,Z1) + a3 f(Z3,7Z,,Zs)

ae1 f(Z1,21,Z1) + a2 f(Zo, 2o, Zs) + a3 f(Z3,Z3,Z3),

a1f(Zy,22,23) + azf(Zo,Z3,7Z1) + a3 f(Z3,Z1,Z>)

a11f(Z1,21,2y) + ar2f(Zo, Lo, Z3) + a3 f(Z3, 23,724
a1 f(Z1,21,23) + oz f(Zo, Lo, Z1) + a3 f
31 f(Z1,22,721) + asa f(Zo, Z3, Zo) + azs f
ag f(Z1,23,721) + cus f(Zo, 21, 7o) + a3 f
as1f(Z2,21,71) + asa f(Z3, Lo, Zo) + as3 f
a1 f(Z3,21,21) + 62 f(Z1, 2o, Zo) + a3 f
ar f(Z1,2y,72y) + ara f(Zo, Lo, Zo) + a3 f

~— ~— ' —— v v
N N /N /N /SN /N
S N N N N

where a;, a;; are complex constants.
4°. The above functional equations are not more than different modifications
of the quasicyclic functional equation considered.

59
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7. SOME OPEN RESEARCH PROBLEMS

By virtue of the results obtained here, we naturally come to the idea of
formation of new general classes of quasicyclic functional equations whose
solution will be of interest. In this direction, we will give the following
general quasicyclic complex vector functional equations, with the same no-
tations used in this article and Z,,4; = Z; (only in 1-2), with an intention
to be considered as open problems:

k
1) Zaif(zi,zi—l—l;--- i+p— 1 ZO&ZCZ lf 79 Z?"'aZiaZi-i-l)a

(p<n<2p—1,k:§n),
where C is a cyclic operator such that
Cf(Z1,2s,...,2,) = f(Za,Zs,...,2,,7Zy).

k
(2) Zaif(xiaxi—i—l, oy Xigp-1, Y, Y, Y1)
i—1

k
= (X, Xy, X X, Y, Y, YY)
=1
(k<n;p<n,qg<n),
where C is as above.

(3) (—1)"an+1f(zl,Z2,...,Z ) — anyof(Zo,Zs, ..., 2y, Zpn 1)
+ Z V) a;f(Zy, 2o, ...\ Zi + Dy, Zpi1)
= (—1) an+1f( ity Zng1) — angaf(Za, ... Zy)
+ zn:(—ni“aici—lf(zi, Ziy...,Zi,Ziy1),
where C is as above.
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