PRIVALOV SPACE ON THE UPPER HALF PLANE

YASUO IIDA

ABSTRACT. In this paper, we shall consider Privalov space $N_0^p(D)$ (p > 1) which consists of holomorphic functions f on the upper half plane $D := \{z \in \mathbb{C} \mid \mathrm{Im} z > 0\}$ such that $(\log^+ |f(z)|)^p$ has a harmonic majorant on D. We shall give some properties of $N_0^p(D)$.

1. INTRODUCTION

Let U and T denote the unit disk and the unit circle in **C**, respectively. For p > 1, Privalov space $N^p(U)$ is the class of all holomorphic functions f on U such that $(\log^+ |f(z)|)^p$ has a harmonic majorant on U. Letting p = 1, we have the Nevanlinna class N(U).

As in [7], for each strongly convex function φ on $(-\infty, \infty)$ we define the Hardy-Orlicz class $H_{\varphi}(U)$ as the space of all holomorphic functions f on U such that $\varphi(\log^+ |f(z)|)$ has a harmonic majorant on U. Recall that a convex function φ is strongly convex if φ is non-negative, non-decreasing and $\varphi(t)/t \to \infty$ as $t \to \infty$. We define $N_*(U) = \bigcup \{H_{\varphi}(U) | \varphi : \text{strongly} \text{ convex} \}$, which is called the Smirnov class.

For $0 < q < \infty$, the space $H_{\varphi}(U)$ with $\varphi(t) = e^{qt}$ coincides with the usual Hardy space $H^q(U)$. For each p > 1, if we define $\varphi_p(t)$ on $(-\infty, \infty)$ by $\varphi_p(t) = t^p$ for $t \ge 0$, and $\varphi_p(t) = 0$ for t < 0, we obtain $N^p(U)$ as a subspace of $N_*(U)$.

It is well-known that $H^q(U) \subset N^p(U) \subset N_*(U) \subset N(U)$ $(0 < q < \infty, p > 1)$. These including relations are proper. $N^p(U)$ was treated by several authors ([2], [5], [7] and [8]). The spaces N(U), $N_*(U)$, $N^p(U)$ and $H^q(U)$ are called *Nevanlinna-type spaces*.

Let $D := \{z \in \mathbb{C} \mid \text{Im} z > 0\}$. We let the Nevanlinna class $N_0(D)$, as Krylov [4] introduced, consist of all holomorphic functions f on D such that $\log^+ |f(z)|$ has a harmonic majorant on D.

Rosenblum and Rovnyak [6] introduced the Hardy-Orlicz and Smirnov classes on D: for each strongly convex function ϕ on $(-\infty, \infty)$, $H_{\phi}(D)$ is the set of all holomorphic functions f on D such that $\phi(\log^+ |f(z)|)$ has a harmonic majorant on D. We define $N_0^*(D) = \bigcup \{H_{\phi}(D) | \phi : \text{strongly} \text{ convex}\}.$

Mathematics Subject Classification. Primary 30H05; Secondary 46E10.

Key words and phrases. Privalov space, Nevanlinna-type spaces, Hardy-Orlicz class.

Y. IIDA

In this paper, we shall define a new class $N_0^p(D)$, analogous to $N^p(U)$; i.e., we denote by $N_0^p(D) (p > 1)$ the set of all holomorphic functions f on D such that $(\log^+ |f(z)|)^p$ has a harmonic majorant on D. First we obtain a factorization theorem for the space $N_0^p(D)$. Moreover, some properties of $N_0^p(D)$ are also given.

2. Preliminaries

Let ν be a real measure on T and $\Psi(z) = (z - i)/(z + i)$ $(z \in \overline{D})$. Then there corresponds a finite real measure μ on \mathbf{R} such that

$$\int_{\mathbf{R}} h(t) d\mu(t) = \int_{T^*} (h \circ \Psi^{-1})(\eta) d\nu(\eta) \quad (h \in C_c(\mathbf{R})),$$

where $T^* = T \setminus \{1\}$. Let $H(w, \eta) = (\eta + w)/(\eta - w)$ $((w, \eta) \in U \times T)$. There holds

(1)
$$\frac{1}{i} \int_{\mathbf{R}} \frac{1+tz}{t-z} d\mu(t) = \int_{T^*} H(\Psi(z), \eta) d\nu(\eta)$$
$$= \int_T H(\Psi(z), \eta) d\nu(\eta) - i\alpha z \quad (z \in D),$$

where $\alpha = -\nu(\{1\})$. We write the Poisson integrals of measures μ on **R** and ν on *T* as follows:

$$\begin{split} P[\mu](z) &= \frac{1}{\pi} \int_{\mathbf{R}} \frac{y}{(x-t)^2 + y^2} \, d\mu(t) \quad (z = x + iy \in D), \\ Q[\nu](w) &= \int_{T} \frac{1 - |w|^2}{|\eta - w|^2} \, d\nu(\eta) \quad (w \in U). \end{split}$$

Taking the real parts in (1), we have

$$P[\pi(1+t^2)d\mu(t)](z) = Q[\nu](\Psi(z)) + \alpha \cdot \operatorname{Im} z \quad (z \in D).$$

When $f \in L^1(\mathbf{R}, (1+t^2)^{-1}dt)$ and $g \in L^1(T)$, we write P[f] and Q[g] instead of P[f(t)dt] and $Q[g\sigma]$, respectively. If $g \in L^1(T)$, then we have $g \circ \Psi \in L^1(\mathbf{R}, (1+t^2)^{-1}dt)$ and

(2)
$$P[g \circ \Psi](z) = Q[g](\Psi(z)).$$

164

3. Some properties of $N_0(D)$, $N_0^*(D)$ and $N^p(U)$

In this section, we shall summarize some properties of $N_0(D)$, $N_0^*(D)$ and $N^p(U)$ (p > 1). For the following results, the reader refers to [2], [3] and [6].

Recall that an *outer function on* D is of the form

$$d(z) = \exp\left(\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log h(t) dt\right),$$

where $h(t) \ge 0$, $\log h \in L^1\left(\mathbf{R}, \frac{dt}{1+t^2}\right).$

Proposition 3.1. Let $f \in N_0(D)$, $f \neq 0$. Then $f^*(x) = \lim_{z \to x} f(z)$ exists nontangentially a.e. for $x \in \mathbf{R}$.

Proposition 3.2. Let $H^{\infty}(D)$ be the class of all bounded holomorphic functions on D.

(i)
$$N_0(D) = \left\{ \frac{g}{h} : g, h \in H^\infty(D), h \neq 0 \right\}.$$

(ii)
$$N_0^*(D) = \left\{ \frac{g}{h} : g, h \in H^\infty(D), h \text{ is outer} \right\}.$$

Proposition 3.3. Let f be holomorphic on D.

(i) $f \in N_0(D)$ if and only if

$$\sup_{y>0} \int_{\mathbf{R}} \frac{\log^+ |f(x+iy)|}{x^2 + (y+1)^2} \, dx < \infty.$$

(ii) If ϕ is a strongly convex function, then $f \in N_0^*(D)$ if and only if

$$\sup_{y>0} \int_{\mathbf{R}} \frac{\phi(\log^+ |f(x+iy)|)}{x^2 + (y+1)^2} \, dx < \infty.$$

Proposition 3.4. Let p > 1 and f be holomorphic on U. Then the following are equivalent:

(i) $f \in N^p(U)$.

(ii)
$$\sup_{0 < r < 1} \int_0^{2\pi} \left(\log^+ |f(re^{i\theta})| \right)^p d\theta < \infty.$$

(iii) $f \in N(U)$ and the condition

$$\int_{0}^{2\pi} \left(\log^{+} |f^{*}(e^{i\theta})| \right)^{p} d\theta < \infty$$

holds, where $f^*(e^{i\theta}) = \lim_{r \to 1^-} f(re^{i\theta})$ (a.e. $e^{i\theta} \in T$).

Proposition 3.5. Let $f \in N^p(U)$ (p > 1), $f \neq 0$. Then, $\log |f^*| \in L^1(T)$ and $\log(1 + |f^*|) \in L^p(T)$. Furthermore, f can be uniquely factored as follows,

(3)
$$f(z) = aB(z)F(z)S(z) \quad (z \in U),$$

where the factors above have the following properties.

(i) $a \in T$ is a constant.

(ii) $B(z) = z^m \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a_n} z}$ ($z \in U$) is a Blaschke product with respect to the zeros of f.

(iii) $F(z) = \exp\left(\int_T \frac{\zeta + z}{\zeta - z} \log |f^*(\zeta)| d\sigma(\zeta)\right)$, where σ denotes normalized Lebesgue measure on T.

(iv) $S(z) = \exp\left(-\int_T \frac{\zeta + z}{\zeta - z} d\nu(\zeta)\right)$, where ν is a positive singular measure on T.

If f is expressed in the form (3), then $f \in N^p(U)$.

Proposition 3.6. Let $f \in N^p(U)$, p > 1. Then $(\log^+ |f|)^p$ has the least harmonic majorant $Q[(\log^+ |f^*|)^p]$.

4. A factorization theorem for the space $N_0^p(D)$

Theorem 4.1. Let p > 1. $f \in N_0^p(D)$, $f \neq 0$, is factorized in the form

(4)
$$f(z) = ae^{i\alpha z}b(z)d(z)g(z) \quad (z \in D)$$

with the following properties.

(i)
$$a \in T, \alpha \ge 0.$$

(ii) b(z) is the Blaschke product with respect to the zeros of f.

 $\begin{array}{ll} \text{(iii)} \quad d(z) = \exp\left(\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log h(t) \, dt\right), \ where \ h(t) \geq 0 \,, \ \log h \in \\ L^1(\mathbf{R} \,, \, (1+t^2)^{-1} dt) \ and \ \log^+ h \in L^p(\mathbf{R} \,, \, (1+t^2)^{-1} dt). \end{array}$

(iv) $g(z) = \exp\left(-\frac{1}{i}\int_{\mathbf{R}}\frac{1+tz}{t-z}\,d\mu(t)\right)$, where μ is a finite real measure

on **R**, singular with respect to Lebesgue measure.

If f is expressed in the form (4), then $f \in N_0^p(D)$.

Proof. Suppose $f \in N_0^p(D)$, $f \neq 0$. Then $f \circ \Psi^{-1} \in N^p(U)$, and Proposition 3.5 implies $(f \circ \Psi^{-1})(w) = aB(w)F(w)S(w)$ $(w \in U)$. In the factorization $f(z) = aB(\Psi(z))F(\Psi(z))S(\Psi(z))$ $(z \in D)$, $b(z) := B(\Psi(z))$ is the Blaschke product formed from the zeros of f, and the change of the variables $\eta = \Psi(t)$ $(t \in \mathbf{R})$ shows that

$$d(z) := F(\Psi(z)) = \exp\left(\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log|f^*(t)| \, dt\right).$$

This is of the form (iii). Since $\log |(f \circ \Psi^{-1})^*| \in L^1(T)$, we have $\log |f^*| \in L^1(\mathbf{R}, (1+t^2)^{-1}dt)$ by (2). Next $\log^+ |f(\Psi^{-1}(\eta))| \in L^p(T)$ implies $\log^+ |f^*| \in L^p(\mathbf{R}, (1+t^2)^{-1}dt)$. Setting $\alpha = \nu\{1\}$, we have $S(\Psi(z)) = g(z)e^{i\alpha z}$, where g is of the form (iv).

Suppose, conversely, that f is of the form (4). Then

$$|f(z)| = |e^{i\alpha z}||b(z)|\exp(P[\log h - \pi(1+t^2)d\mu(t)](z)) \le \exp(P[\log h](z)).$$

Since $\log^+ |(f \circ \Psi^{-1})(w)| \leq Q[\log^+ |(h \circ \Psi^{-1})|](w)$, we have $f \circ \Psi^{-1} \in N^p(U)$. Letting $y \to 0^+$ in |f(x+iy)|, we have $|f^*(x)| = h(x)$ a.e. for $x \in \mathbf{R}$. Furthermore, $(\log^+ |f \circ \Psi^{-1}|)^p$ has the least harmonic majorant $v' = Q[(\log^+ |(f \circ \Psi^{-1})^*|)^p]$ by Proposition 3.6, hence $v := v' \circ \Psi$ is the least harmonic majorant of $(\log^+ |f|)^p$; i.e., $(\log^+ |f(z)|)^p \leq P[(\log^+ |f^*|)^p](z)$. Integrating the both sides, we have $f \in N_0^p(D)$.

5. Some theorems for the space $N_0^p(D)$

In this section, we prove some theorems for the space $N_0^p(D)$.

Theorem 5.1. Let f be holomorphic on D. Then, for p > 1,

$$N_0^p(D) = \left\{ \frac{k_1}{k_2} : k_1, \, k_2 \in H^\infty(D), \, k_2 \text{ is invertible in } N_0^p(D) \right\}.$$

Proof. Let $f \in N_0^p(D)$. Then $f(z) = ae^{i\alpha z}b(z)d(z)g(z) \ (z \in D)$ by Theorem 4.1. Now d takes the form

$$d(z) = \exp\left(\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log|f^*(t)| \, dt\right) = \frac{d_1(z)}{d_2(z)},$$

where

$$d_1(z) = \exp\left(-\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log^-|f^*(t)| \, dt\right)$$

and

$$d_2(z) = \exp\left(-\frac{1}{\pi i} \int_{\mathbf{R}} \frac{1+tz}{t-z} \frac{1}{1+t^2} \log^+ |f^*(t)| \, dt\right).$$

Y. IIDA

We note that d_1 and d_2 both belong to $H^{\infty}(D)$ and are outer functions on D. Moreover, we find d_2 , $1/d_2 \in N_0^p(D)$. Therefore we have $f = ae^{i\alpha z}bdg = ae^{i\alpha z}bd_1g/d_2$, where $k_1 := ae^{i\alpha z}bd_1g$ and $k_2 := d_2$ are both in $H^{\infty}(D)$ and k_2 is invertible in $N_0^p(D)$.

On the other hand, let $f = k_1/k_2$, where $k_1, k_2 \in H^{\infty}(D)$ and k_2 is invertible in $N_0^p(D)$. Since $N_0^p(D)$ is an algebra, it follows that $f \in N_0^p(D)$.

Theorem 5.2. Let f be holomorphic on D. Then, for p > 1, $f \in N_0^p(D)$ if and only if

$$\sup_{y>0} \int_{\mathbf{R}} \frac{(\log^+ |f(x+iy)|)^p}{x^2 + (y+1)^2} \, dx < \infty$$

Proof. $(\log^+ |f(x+iy)|)^p$ is non-negative and subharmonic on D. Therefore we prove the result by the theorem of Flett and Kuran [6, p.89].

Theorem 5.3. Let $f(z) \in N_0(D)$ and p > 1. Then f belongs to $N_0^p(D)$ if and only if

(5)
$$\frac{1}{\pi} \int_{\mathbf{R}} \frac{(\log^+ |f^*(x)|)^p}{1+x^2} \, dx < \infty.$$

Proof. The function f(z) is in $N_0^p(D)$ if and only if $F(z) = f(\Psi^{-1}(z))$ is in $N^p(U)$. By Proposition 3.4, this is the case if and only if

$$\int_{0}^{2\pi} (\log^+ |f^*(e^{i\theta})|)^p \, d\theta < \infty.$$

This is the same as condition (5).

Theorem 5.4. Let
$$p > 1$$
. If $f \in N_0^p(D)$, then
$$\lim_{y \to 0^+} \int_{\mathbf{R}} \left| \log^+ |f(x+iy)| - \log^+ |f^*(x)| \right|^p \, dx = 0.$$

Proof. Let $f \in N_0^p(D)$. Then $F(z) = f(\Psi^{-1}(z))$ belongs to $N^p(U)$. By [7, Proposition 4.1], we have $(\log^+ |f(z)|)^p \ge P[(\log^+ |f^*|)^p](z)$. Integrating the both sides, it follows that

$$\int_{\mathbf{R}} \left(\log^+ |f(x+iy)| \right)^p \, dx \ge \int_{\mathbf{R}} \left(\log^+ |f^*(x)| \right)^p \, dx.$$

Using Fatou's lemma, we obtain

$$\lim_{y \to 0^+} \int_{\mathbf{R}} \left(\log^+ |f(x+iy)| \right)^p \, dx = \int_{\mathbf{R}} \left(\log^+ |f^*(x)| \right)^p \, dx.$$

Applying [1, Lemma 1, p.21], we have the desired result.

168

Acknowledgement

The author is supported by the Grant from Keiryokai Research Foundation No.91.

References

- [1] P. L. Duren, *Theory of* H^p spaces. Academic Press, New York-San Francisco-London, 1970.
- [2] C. M. Eoff, A representation of N_{α}^+ as a union of weighted Hardy spaces. Complex Variables **23** (1993), 189-199.
- [3] Y. Iida, Nevanlinna-type spaces on the upper half plane. Nihonkai Math. J. **12** (2001), 113-121.
- [4] V. I. Krylov, On functions regular in a half-plane. Mat. Sb. 6 (1939), no.48, 95-138; Amer. Math. Soc. Transl. 32 (1963), no.2, 37-81.
- [5] N. Mochizuki, Nevanlinna and Smirnov classes on the upper half plane. Hokkaido Math. J. 20 (1991), 609-620.
- [6] M. Rosenblum and J. Rovnyak, *Topics in Hardy Classes and Uni*valent Functions, Birkhäuser Verlag, Basel-Boston-Berlin, 1994.
- M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions. Ann. Polon. Math. 35 (1977), 139-158.
- [8] A. V. Subbotin, Functional properties of Privalov spaces of holomorphic functions of several variables. Mat. Zametki 65 (1999), no.2, 280-288 (Russian); Math. Notes 65 (1999), no.1-2, 230-237.

DEPARTMENT OF MATHEMATICS SCHOOL OF LIBERAL ARTS AND SCIENCES IWATE MEDICAL UNIVERSITY MORIOKA, 020-0015 JAPAN *e-mail address*: yiida@iwate-med.ac.jp URL: http://eagle-mcr.iwate-med.ac.jp/iida/iida.html

(Received June 9, 2006)