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HIGHER WEIGHTS OF CODES FROM PROJECTIVE

PLANES AND BIPLANES

Steven T. DOUGHERTY and Reshma RAMADURAI

Abstract. We study the higher weights of codes formed from planes

and biplanes. We relate the higher weights of the Hull and the code

of a plane and biplane. We determine all higher weight enumerators of

planes and biplanes of order less or equal to 4.

1. Introduction

Some of the most interesting open questions in combinatorics are about

the existence and classification of projective planes and biplanes. Codes have

often been useful in examining these questions. For example, the proof of

the non-existence of the plane of order 10 consisted primarily in showing its

corresponding code does not exist [6]. Central to this proof was determining

the weight enumerator of the putative code’s extension to a self-dual code.

In this work we shall study the codes formed from designs by examining their

higher weights. We do this so that the structure of the code of the design

can be better understood which would aid in the classification of planes and

biplanes.

A projective plane Π is (P,L, I), where P is a set of points, L is a set

of lines, and I ⊆ P × L, such that through any two points in P there is a

unique line; any two lines in L meet in a unique point; and there exists at

least 4 points, no 3 collinear.

It follows immediately that |P| = |L| = n2 + n + 1 and that there are

n+1 points on a line and n+1 lines through a point. The number n is said

to be the order of the plane.

A biplane Π = (P,L, I), where P is a set of points, L is a set of lines,

and I ⊆ P × L, such that through any two points in P there are two lines

and any two lines in L meet exactly twice. It follows immediately that

|P| = |L| = n2+3n+4
2 and that there are n+2 points on a line and n+2 lines

through a point. The number n is said to be the order of the biplane.
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A linear code is a subspace of F
n
p , where Fp is a field with p elements. We

attach the standard inner product: [v, w] =
∑

viwi, and for a code C define

C⊥ = {v ∈ F
n
p | [v, w] = 0 ∀w ∈ C}. As usual, if C ⊆ C⊥ we say that C

is self-orthogonal, and if C = C⊥ then C is self-dual. The Hamming weight

enumerator of a code C is HC(x, y) =
∑

c∈C xn−wt(c)ywt(c), where wt(c) is

the number of the non-zero coordinates in c. Often we set x = 1 and simply

write HC(y).

Let D ⊆ F
n
p be a linear subspace, then ||D|| = |Supp(D)|, where Supp(D)

= {i | ∃v ∈ D, vi 6= 0}. For a linear code C we define dr(C) = min{||D|| |

D ⊆ C, dim(D) = r}. The minimum Hamming weight of a code C is d1(C).

We know that di < dj when i < j (Proposition 3.1 in [7]).

We define the higher weight spectrum as Ar
i = |{D ⊆ C | dim(D) =

r, ||D|| = i}|. This naturally allows us to define the higher weight enumer-

ators by W r(C; y) = W r(C) =
∑

Ar
i y

i. It is immediate that if C is a code

with dimension k over Fp then W r(C; 1) = (pk−1)(pk−p)...(pk−pr−1)
(pr−1)(pr−p)...(pr−pr−1)

.

We use throughout that |Supp(〈v, w〉)| = wt(v) + wt(w) − |v ∧ w|, where

|v ∧ w| is the number of coordinates where v and w and are both non-zero.

There exists MacWilliams type identities for higher weight enumerators,

see [3], [7], namely

(1)

s
∑

r=0

[s]rW
r(C⊥; y) = p−sk(1 + (ps − 1)y)n

s
∑

r=0

W r(C;
1 − y

1 + (ps − 1)y
)

where the code has dimension k in F
n
p , and [s]r =

∏r−1
j=0(p

s − pj).

2. Codes of Planes and Biplanes

For a line L, we define the characteristic function of the line by

(2) vL(q) =

{

1 if q is incident with L

0 if q is not incident with L

where q is a point in the design. We denote by vL the vector in F
|P|
p that

corresponds to the characteristic function of the line.

The code of the design Π over Fp is defined by Cp(Π) = 〈vL | L ∈ L〉.

The Hull of a design is defined as Hullp(Π) = Cp(Π) ∩ Cp(Π)⊥. It is a self-

orthogonal code.

As usual we study those codes over Fp where p is a prime that divides the

order of the design. The following result is well known, see [1] for the result
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for projective planes. We prove a similar result for biplanes. Throughout

we denote the all one vector by 1.

Theorem 2.1. Let Π be a projective plane, then Hullp(Π) is of codimension

1 in Cp(Π), Cp(Π) = 〈Hullp(Π),1〉 and Hullp(Π) = 〈vL − vM | L,M ∈ L〉.

If p sharply divides n, then Hullp(Π) = Cp(Π)⊥.

Theorem 2.2. Let Π be a biplane of order n, with p an odd prime dividing

n, then Hullp(Π) = 〈vL − vM | L,M ∈ L〉, and Hullp(Π) is of codimension 1

in Cp(Π).

Proof. Let D = 〈vL − vM | L,M ∈ L〉. Let L,L′ and M be lines in Π

then [vM , vL − vL′ ] = 2 − 2 = 0. Hence the code D is contained in Cp(Π)⊥.

Of course, D is naturally contained in Cp(Π). Let L be any line in the

biplane, then 〈D, vL〉 = Cp(Π). Hence the code D is at most codimension

1 in Cp(Π). However, since p is an odd prime we know that Cp(Π) is not

self-orthogonal since [vL, vL] = 2 6= 0 for all lines in the biplane. Hence

D ⊆ Hullp(Π) ⊂ Cp(Π) and D is of codimension 1 in Cp(Π) and we have

the result. �

3. Higher Weights

In this section we shall relate the minimum higher weights of the Hull

and the code of a plane and biplane.

Lemma 3.1. Let Π be a projective plane or a biplane of odd order. Let V

be a k-dimensional subspace of Cp(Π) then V ∩ Hullp(Π) is a k or k − 1

dimensional subspace of Hullp(Π).

Proof. If V is contained in Hullp(Π) then V ∩Hullp(Π) is a k dimensional

subspace of Hullp(Π). Otherwise we have V ⊕Hullp(Π) = Cp(Π) which gives

dim (V ) + dim (Hullp(Π)) − dim (V ∩ Hullp(Π)) = dim(Cp(Π))

k + dim Cp(Π) − 1 − dim (V ∩ Hullp(Π)) = (dimCp(Π))

k − 1 = dim (V ∩ Hullp(Π)).

�

Theorem 3.2. Let Π be a projective plane or a biplane of odd order. Then

for 1 ≤ k ≤ dim(Cp(Π)), we have

(3) dk(Cp(Π)) ≥ dk−1(Hullp(Π)).
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Proof. If V is a k dimensional subspace of Cp(Π) then V is either a k

dimensional subspace of Hullp(Π) or V ∩ Hullp(Π) is a k − 1 dimensional

subspace of Hullp(Π). We know that dk(Hullp(Π)) > dk−1(Hullp(Π)) and if

V ∩ Hullp(Π) is a k − 1 dimensional subspace we know

|Supp(V )| ≥ |Supp(V ∩ Hullp(Π)|,

which gives dk(Cp(Π)) ≥ dk−1(Hullp(Π)). �

It is possible that dk(Cp(Π)) = dk−1(Hullp(Π)). For instance d6(Cp(Π)) =

d5(Hullp(Π)) = 12 for the projective plane of order 3.

Using the MacWilliams relations given in Equation 1 and the bounds

given in Equation 3, we can compute the higher weight enumerators of the

projective plane of order 3. We use the known Hamming weight enumerators

of the plane of order 3 in this computation. We require a bit more to

determine the higher weight enumerators of the biplane of order 3, but we

compute it later. The higher weights of the projective plane are given in

Table 1 and for the biplane are given Table 8.

Table 1. Higher Weight Enumerators of the code and the

Hull of the Projective Plane of Order 3

Weight 4 5 6 7 8 9 10 11 12 13

W
1
C3(Π) 13 0 78 312 0 247 390 0 39 14

W
1
H3(Π) 0 0 78 0 0 247 0 0 39 0

W
2
C3(Π) 0 0 0 78 819 4030 11310 26910 34710 21606

W
2
H3(Π) 0 0 0 0 117 286 1404 3042 3705 2457

W
3
C3(Π) 0 0 0 0 0 715 8580 64350 283140 568986

W
3
H3(Π) 0 0 0 0 0 13 234 2340 10296 20997

W
4
C3(Π) 0 0 0 0 0 0 286 8580 125125 791780

W
4
H3(Π) 0 0 0 0 0 0 0 78 1417 9516

W
5
C3(Π) 0 0 0 0 0 0 0 78 4576 94809

W
5
H3(Π) 0 0 0 0 0 0 0 0 13 351

W
6
C3(Π) 0 0 0 0 0 0 0 0 13 1080

W
6
H3(Π) 0 0 0 0 0 0 0 0 0 1

W
7
C3(Π) 0 0 0 0 0 0 0 0 0 1

Theorem 3.3. Let Π be a projective plane or a biplane with N points and

dim(Cp(Π)) = r. Then W r−1(y) = NyN−1 + (pr−1
p−1 − N)yN .
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Proof. We know that W r−1(1) = pr−1
p−1 so we need only to determine the

number of r − 1 dimensional subspaces that have support size N − 1 and

show that there are none with support size less than N − 1.

Let q be any point in Π. Then vq is the vector that is 1 on q and 0

elsewhere. We note that vq /∈ Cp(Π)⊥. Let C0 = {w | [w, vq] = 0, w ∈

Cp(Π)}. Then C0 is of codimension 1 in Cp(Π) and hence dimension r − 1.

The code C0 consists precisely of those vectors that are 0 on the coordinate

corresponding to the point q. Any other point q ′ is part of the support of

C0. Simply take a line through the point q ′ that does not intersect q. Then

the characteristic function of this line is in C0 and has a 1 at the coordinate

corresponding to q′. Hence the support size is N − 1 and there are N such

r − 1 dimensional subspaces.

Assume D is a subspace of Cp(Π) with dim(D) = r − 1 and |Supp(D)| <

N−1. Then there exists a constant vector v /∈ Cp(Π)⊥ with D = {w | [w, v] =

0, w ∈ Cp(Π)}. Let a1 and a2 be two points in Supp(v), i.e. two points not

in the support of the subspace D. Each line L through either point must

have [L, v] = 0 since ai is not in the support of D. Let L1 be a line through

a1 that is not through a2 and let L1 be a line through a2 that is not through

a1. Then αvL1 + βvL2 /∈ Cp(Π) for any non-zero α and β. Then D is at

least codimension 2 in Cp(Π) which is a contradiction. Therefore there are

no r − 1 dimensional subspaces with support size less than N − 1. �

4. Planes of even order

In this section we shall examine planes of even order and as such we

assume p = 2 throughout. We note that Hull2(Π) is a doubly-even code.

This can be seen by noticing that it is a self-orthogonal code and that for

any lines L and M the vector vL − vM has weight 2n which is doubly-even

when n is even.

Lemma 4.1. Let Π be a projective plane of order n ≡ 2 (mod 4), then

(4) HHull2(Π)(x, y) + HHull2(Π)(y, x) =
1

|Hull2(Π)|
HHull2(Π)(x + y, x − y).

Proof. If n ≡ 2 (mod 4) then 2 sharply divides the order giving that

Hull2(Π)⊥ = C2(Π). The left side computes HC2(Π)(x, y) by using the fact

that C2(Π) = 〈Hull2(Π),1〉 and the right side computes HC2(Π)(x, y) by

using the MacWilliams relations. �
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Lemma 4.2. If α = |Supp〈v, w〉|, v, w ∈ Hull2(Π) then α is even.

Proof. We know wt(v) = 4β, wt(w) = 4γ and they meet in 2δ places for

some β, γ, δ. Then we have |Supp(〈v, w〉)| = 4β+4γ−2δ = 2(2β+2γ−δ). �

Notice that |P| = n2 +n+1 and if n ≡ 2 (mod 4) all weights in Hull2(Π)

are 0 (mod 4) and 1 has weight 3 (mod 4) so all weights in C2(Π) have

weight either 3 or 0 (mod 4). If n ≡ 0 (mod 4) then all weights in C2(Π)

have weight either 1 or 0 (mod 4).

Theorem 4.3. Let Π be a projective plane of order n ≡ 0 (mod 2). If

W 2
C2(Π)(y) =

∑

Aiy
i and W 2

Hull2(Π)(y) =
∑

Biy
i then for even i, Ai = Bi.

Proof. The code Hull2(Π) is a doubly-even code of codimension 1 in

C2(Π) and C2(Π) = 〈Hull2(Π),1〉. For n ≡ 2 (mod 4) the weights in C2(Π)

are 0 or 3 (mod 4) and for n ≡ 0 (mod 4) the weights in C2(Π) are all 0 or

1 (mod 4).

If v, w ∈ C2(Π) − Hull2(Π), then v + w ∈ Hull2(Π). Then we have

|Supp〈v, w〉| = wt(v) + wt(w) − |w ∧ v| and wt(v) + wt(w) − 2|w ∧ v| ≡ 0

(mod 4). For n ≡ 2 (mod 4) we have 3 + 3 − 2|v ∧ w| ≡ 0 (mod 4) which

implies |v∧w| ≡ 1 (mod 2). For n ≡ 0 (mod 4) we have 1+1−2|v∧w| ≡ 0

(mod 4) which implies |v∧w| ≡ 1 (mod 2). This gives that |Supp〈v, w〉| ≡ 1

(mod 2).

If v ∈ C2(Π) and w ∈ Hull2(Π) then v + w ∈ C2(Π) − Hull2(Π) and a

similar argument gives that the size of the support is odd. Hence the only

way to have even support is if the 2 dimensional subspace is completely

contained in Hull2(Π). �

If Π is a plane of even order the code Hull2(Π) is a doubly-even self-

orthogonal code. Then the results follows from Theorem 2.2 in [2] give that

d2(Hull2(Π)) ≥ 3
2d2(Hull2(Π)).

Lemma 4.4. Let C be a self-orthogonal binary code. If W 2
C(y) =

∑

Aiy
i

then Ai = 0 when i is odd.

Proof. We know C is self-orthogonal so |Supp〈v, w〉| = wt(v) + wt(w) −

|w ∧ v| ≡ 0 (mod 2). �

Theorem 4.5. Let Π be a plane. If W 2
Hull2(Π)(y) =

∑

Aiy
i then Ai = 0 if i

is odd.

Proof. Follows from Lemma 4.4. �
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Using the previous theorems we can derive the higher weight enumerators

of the projective plane of order 2. We give it in Table 2.

Table 2. Higher Weight Enumerators of the Projective

Plane of Order 2

Weight 3 4 5 6 7

W
1
C2(Π) 7 7 0 0 1

W
1
H2(Π) 0 7 0 0 0

W
2
C2(Π) 0 0 21 7 7

W
2
H2(Π) 0 0 0 7 0

W
3
C2(Π) 0 0 0 7 8

W
3
H2(Π) 0 0 0 0 1

W
4
C2(Π) 0 0 0 0 1

Surprisingly, the previous results are also enough to give all weight enu-
merators of the projective plane of order 4, even though the Hull is not the
orthogonal of the code in this case. Instead we use the weight enumerator of
Hull together with the theorems to get the weight enumerators of the Hull
and its orthogonal. Then we can determine the weight enumerators of the
code using Theorem 4.3. The weight enumerators are given in Table 3. We
list only the code since the weight enumerators of the Hull can be read from
these weight enumerators.

5. Biplanes of even order

As a preliminary, we note that if L and M are two lines in Π, a biplane

of order n then [vL, vM ] = 2 if L and M are distinct and [vL, vM ] = n + 2 if

L = M.

Theorem 5.1. Let Π be a biplane of even order n. Then C2(Π) is a self-

orthogonal code and Hull2(Π) = C2(Π).

Proof. We notice that [vL, vM ] = 0 for any two lines L and M in Π

and hence the code is generated by self-orthogonal vectors. Then since

C2(Π) ⊆ C2(Π)⊥ we have Hull2(Π) = C2(Π) ∩ C2(Π)⊥ = C2(Π). �

Lemma 5.2. If Π is a biplane of order n ≡ 2 (mod 4) then all weights in

C2(Π) are congruent to 0 (mod 4).

Proof. Since n ≡ 2 (mod 4) the characteristic function of lines have

weight n+2 ≡ 0 (mod 4). Moreover, any two of these vectors are orthogonal
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Table 3. Higher Weight Enumerators of the Projective

Plane of Order 4

Weight W
1
C2(Π) W

2
C2(Π) W

3
C2(Π) W

4
C2(Π) W

5
C2(Π)

5 21 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

8 210 0 0 0 0

9 280 210 0 0 0

10 0 0 0 0 0

11 0 3360 0 0 0

12 280 3850 1120 0 0

13 210 20790 7770 0 0

14 0 10080 49080 2520 0

15 0 43680 182280 41664 168

16 21 17955 453495 327915 19341

17 0 48510 944580 1543500 277830

18 0 10080 1502760 5334000 2239020

19 0 13440 1669080 12945240 11822580

20 0 1470 1147020 19531008 37933434

21 1 826 390530 14018140 56929278

Weight W
6
C2(Π) W

7
C2(Π) W

8
C2(Π) W

9
C2(Π) W

10
C2(Π)

17 5985 0 0 0 0

18 144970 1330 0 0 0

19 1796130 49560 210 0 0

20 12497625 809025 10311 21 0

21 39299277 5487800 163730 1002 1

so the code is generated by orthogonal doubly-even vectors and hence the

code is doubly-even. �

Since the code is equal to the Hull we shall introduce a code that will act

in many ways like the Hull. Let Π be a biplane of even order n. If n ≡ 2

(mod 4) then C2(Π) is a doubly-even self-orthogonal code. If n ≡ 0 (mod 4)

then C2(Π) is a singly-even code. Let D2(Π) be the doubly-even subcode of

C2(Π). We have that C2(Π) = 〈D2(Π), vL〉 where L is a line of Π.

Theorem 5.3. Let Π be a biplane of even order n then dk(C2(Π)) ≤

dk(D2(Π)) and d2(C2(Π)) > 3
2d1(C2(Π)) where the inequality is strict for

n ≡ 2 (mod 4). If n ≡ 0 (mod 4) then d2(D2(Π)) > 3
2d1(D2(Π)).
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Proof. The proof of the first statement is similar to the proof of The-

orem 3.2. The remainder of the statements follow from Theorem 2.2 in

[2]. �

Theorem 5.4. Let Π be a biplane of even order. If W 2
C2(Π)(y) =

∑

Aiy
i

then Ai = 0 if i is odd.

Proof. Follows from Lemma 4.4. �

There are 4 known biplanes of even order, namely the biplane of order 2

and the three biplanes of order 4. We can use the previous results to obtain

all their higher weight enumerators.

For the biplane of order 2 the code C2(Π) is a [7, 3, 4] code.The code

C2(Π)⊥ is the [7, 4, 3] Hamming code. Its weight enumerators are given in

Table 4.

Table 4. Higher Weight Enumerator of the Biplane of Order 2

Weight 3 4 5 6 7

W
1
C2(Π) 0 7 0 0 0

W
2
C2(Π) 0 0 0 7 0

W
3
C2(Π) 0 0 0 0 1

For the biplane B6A of order 4 the code C2(Π4) is a [16, 6, 6] code and

the code C2(Π)⊥ is a [16, 10, 4] code. Its weight enumerators are given in

Table 5.

Table 5. Higher Weight Enumerator of the Biplane B6A of

Order 4

Weight 6 7 8 9 10 11 12 13 14 15 16

W
1
C2(Π) 16 0 30 0 16 0 0 0 0 0 1

W
2
C2(Π) 0 0 0 0 120 0 380 0 120 0 31

W
3
C2(Π) 0 0 0 0 0 0 60 320 480 320 215

W
4
C2(Π) 0 0 0 0 0 0 0 0 120 256 275

W
5
C2(Π) 0 0 0 0 0 0 0 0 0 16 47

W
6
C2(Π) 0 0 0 0 0 0 0 0 0 0 1

For the biplane B6B of order 4 the code C2(Π4) is a [16, 7, 4] code and
the code C2(Π)⊥ is a [16, 10, 4] code. Its weight enumerators are given in
Table 6.
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Table 6. Higher Weight Enumerator of the Biplane B6B of

Order 4

Weight 4 5 6 7 8 9 10 11 12 13 14 15 16

W
1
C2(Π) 4 0 32 0 54 0 32 0 4 0 0 0 1

W
2
C2(Π) 0 0 0 0 54 0 560 0 1344 0 624 0 85

W
3
C2(Π) 0 0 0 0 0 0 24 192 892 2432 3672 3008 1591

W
4
C2(Π) 0 0 0 0 0 0 0 0 28 448 2208 4544 4583

W
5
C2(Π) 0 0 0 0 0 0 0 0 0 0 120 768 1779

W
6
C2(Π) 0 0 0 0 0 0 0 0 0 0 0 16 111

W
7
C2(Π) 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 7. Higher Weight Enumerator of the Biplane B6C of

Order 4

Weight 4 5 6 7 8 9 10 11 12 13 14 15 16

W 1
C2(Π)

12 0 64 0 102 0 64 0 12 0 0 0 1

W 2
C2(Π)

0 0 8 0 330 0 2352 0 5080 0 2760 0 265

W 3
C2(Π)

0 0 0 0 2 64 448 2240 8680 18368 29696 25408 12249

W 4
C2(Π)

0 0 0 0 0 0 8 96 1580 9920 37800 76768 74615

W 5
C2(Π)

0 0 0 0 0 0 0 0 12 512 5952 29184 61495

W 6
C2(Π)

0 0 0 0 0 0 0 0 0 0 120 1792 8883

W 7
C2(Π)

0 0 0 0 0 0 0 0 0 0 0 16 239

W 8
C2(Π)

0 0 0 0 0 0 0 0 0 0 0 0 1

For the biplane B6C of order 4 the code C2(Π4) is a [16, 8, 4] code. This

code is a Type I, self-dual code. Its weight enumerators are given in Table 7.

We shall show that some of the interesting aspects of these codes are true

in general.

Lemma 5.5. Let Π be a biplane of order n. The minimum weight of C2(Π)⊥

is at least n
2 + 2.

Proof. If w ∈ C2(Π)⊥ then [w, vL] = 0 for all lines L in Π. Hence no line

meets the support of w only once.

Assume |Supp(w)| < n. Let q1, q2, . . . , qk be the points in Supp(w). There

are n + 2 lines through q1. Each of these lines must hit at least one other

qi otherwise it would meet the support only once. Through q1 and qi there

are exactly two lines, at most 2(k − 1) of the lines through q1 can intersect

w evenly many times. This gives that k must be at least n
2 + 2. �
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We say that a set of points in a biplane is a k-biarc if no 3 points are

collinear.

Proposition 5.6. In a biplane of order n, if a k-biarc exists then k ≤ n
2 +2,

with equality only possible when n is even.

Proof. Allowing q1, q2, . . . , qk to be the points in the k-biarc and applying

the same reasoning as in the proof of Lemma 5.5, we see that k ≤ n
2 + 2.

For equality to occur we need n to be divisible by 2. �

In this case with equality, we shall call the ( n
2 + 2) points a bihyperoval.

It is clear that the weight (n
2 +2) vectors in C2(Π)⊥ are bihyperovals. These

results give the following.

Theorem 5.7. Let Π be a biplane of even order n then the minimum weight

of C2(Π)⊥ is n
2 + 2 if and only if there exist bihyperovals.

Notice that the biplane of order 2 and all the biplanes of order 4 have

bihyperovals.

6. Ternary Codes

In this section we shall investigate the codes of planes and biplanes where

3 divides their order. If Π is a plane or a biplane with 3 dividing n then

all weights in Hull3(Π) are congruent to 0 (mod 3). This follows from the

fact that the code Hull3(Π) is a self-orthogonal code and all self-orthogonal

vectors over F3 have weight congruent to 0 (mod 3).

We know for odd prime p, 〈Hull3(Π),1〉 = Cp(Π) with 1 /∈ Hullp(Π) for

biplanes, and 〈Hull3(Π),1〉 = Cp(Π) with 1 /∈ Hullp(Π) for all projective

planes, see[1]. Then for p = 3, for v ∈ Hullp(Π), α 6= 0, [v + α1, v + α1] =

α2[1,1] = [1,1].

Hence for a projective plane the weights in the code are either 1 or 0

(mod 3) and for a biplane the weights in the code are either 2 or 0 (mod 3).

In both cases the vectors that have weight 0 (mod 3) are precisely those

vectors that are in Hull3(Π).

This gives the following.

Theorem 6.1. For a projective plane the weights in the code are either 1

or 0 (mod 3) and for a biplane the weights in the code are either 2 or 0

(mod 3). Set W 1(C3(Π); y) =
∑

Aiy
i and W 1(Hull3(Π); y) =

∑

Biy
i. If

i ≡ 0 (mod 3) then Ai = Bi.
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Using the previous results we are able to compute all the higher weight

enumerators of the biplane of order 3.

Table 8. Higher Weight Enumerator of the Biplane of Order 3

Weight 5 6 7 8 9 10 11

W 1
C3(Π)

66 66 0 165 55 0 12

W 1
H3(Π)

0 66 0 0 55 0 0

W 2
C3(Π)

0 0 330 825 2695 4125 3036

W 2
H3(Π)

0 0 0 165 220 495 330

W 3
C3(Π)

0 0 0 165 1705 9405 22605

W 3
H3(Π)

0 0 0 0 55 330 825

W 4
C3(Π)

0 0 0 0 55 1221 9735

W 4
H3(Π)

0 0 0 0 0 11 110

W 5
C3(Π)

0 0 0 0 0 11 353

W 5
H3(Π)

0 0 0 0 0 0 1

W 6
C3(Π)

0 0 0 0 0 0 1
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