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A NEW GENERALIZATION OF THE POISSON KERNEL

SErRAP BULUT

ABSTRACT. The purpose of this paper is to give a new generalization
of the Poisson Kernel in two dimensions and discuss an integral formula
for this.

1. INTRODUCTION

The Poisson Kernel in two dimensions is defined by
1—r?
(1 —re?) (1 —re?)
Here r is a real parameter satisfying |r| < 1, and —oco < 0 < co. It is well-
known that P,(#) is periodic in 6 with period 27 and the integral formula

(L1) Py(6) =

2m
1
(1.2) 5 P.(0)df =1
0
holds.
In [2], Haruki and Rassias gave the following new definitions (1.3) and
(1.5):
First, they set
(1.3) Q(0:a,b) & L ab

(1 —ae®?) (1 — be=0)’
where a, b are complex parameters satisfying |a| < 1 and [b] < 1.

Remark 1. If we take a = r and b = r in (1.3), then we find that (1.3) is
a generalization of (1.1).

Afterwards, they proved the following theorem.
Theorem 1.1.

27
(1.4) ;T/Q(H;a, b)do = 1,
0

where a, b are complex parameters satisfying |a| < 1 and |b] < 1.

Remark 2. Note that, (1.4) is a generalization of (1.2).

Mathematics Subject Classification. 31A05, 31A10.
Key words and phrases. Poisson Kernel, Integral Formula.

173



174 S. BULUT

Second, they set

L(a,b,c,d)
(1 —ae?) (1 —be) (1 — cet?) (1 — de—?)’
where a, b, ¢, d are complex parameters satisfying |a| < 1, |b] < 1, |¢| < 1,
|d| <1 and

(1.5) R(0;a,b,c,d) =

def (1 —ab)(1 — ad)(1 — be)(1 — cd)
(1.6) L(a,b,c,d) = T abod .

Remark 3. If we take ¢ = 0 and d = 0 in (1.5), then we find that (1.5) is
a generalization of (1.3).

Afterwards, they proved the following theorem.

Theorem 1.2.

2

1
(1.7) o R(0;a,b,c,d)dd =1,
0

where a, b, ¢, d are complex parameters satisfying |a| < 1, [b] < 1, || < 1
and |d| < 1.

In this paper, we shall generalize (1.5) and (1.7).
Set
(1.8)

L t
S(0; 2.y, 2,t,u,v) = (2,9, 2,1, u,v)

(1—ze?)1—ye~ )1 —ze? ) 1—te~ )1 —ue?)1—ve=i?)’
where x, y, z, t, u, v are complex parameters satisfying |z| < 1, |y| < 1,
lz| <1, t| < 1, Jul <1, |v] <1 and
(1.9) L(x,y,z,t,u,v)

def (1=zy)1—azt)(1—zv)(1-yz)1—yu)l—zt(1—2zv)(1—tu)1l—uv)
N K(z,y,z,t,u,v)

)

where
(1.10) K(z,y,z,t,u,w) = 1—[zz4+zu+zul[yt+yv+itv]
tzzulyAt + ) +ty + v)+o(y + 1))
+ytv[27(z + u)+24z + v)+ui(z + 2)]
— [2%2u + 22%u + 22u?] [yPto + yt*o + ytv?]
—|—4xyztuv+x2y2z2t2u2v2.
Remark 4. By taking u = 0 and v = 0 in (1.8), we find that (1.8) is a
generalization of (1.5).
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The purpose of this paper is to prove the following
Main Theorem.

21
1
(1.11) /S(G;x,y,z,t,u, v)df =1,
2
0

where z, y, 2, t, u, v are complex parameters satisfying |z| < 1, |y| < 1,
2| <1, |t <1, Ju| <1, |v] < 1.
2. PROOF OF THE MAIN THEOREM

Proof. We get

2

(2.1) i 40

' 21 ) (1—ze®)(1—ye=0)(1—2e?)(1—te0)(1—ue?)(1—ve)
0
2m

b (ew)Q 6
Zwi{(l — zef) (e — y)(1 — ze) (e — t)(1 — uet?)(e? — v) e,

If we substitute w = €, then we have
(2.2) ie?df = dw.

We set

w2

2.3 = .
23) ) = G = A = 2w) (w =1 (= ww) (0 =)
The function f(w) is an analytic function in |w| < 1 except at w =y, w =t

and w = v each of which is a pole of f.
Here there are five cases:

Dy#t#v
Qy=t#v
Ny=v#t
ht=v#y
S)y=t=wv

Case 1. Let y £t # v.

Then, by (2.1), (2.2) and (2.3) we obtain
2

) d
(2.4) %{(l_xew)(l_ye—z‘e)(l—zeie)(l—te—i(’)(l—ueie)(l—ve_ie)
1
= 27Ti/f(w)dw,

|w|=1
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where the complex integral of the function f(w) along the unit circle |w| =1
is in the positive direction.

Let Ry, Ry and Rs denote the residues of f(w) at w = y, w = ¢t and
w = v each of which is a simple pole of f, respectively. So, by the Residue
Theorem ([1]) we have

(2.5) / f dw = R{ 4+ Ry + Rs.
2ri
lw|=1

In the following, we shall calculate this residues R;, R and Rs.
We get

(2.6) B = lim [(w —y) f(w)]
w2
- 1})@3/(1 —zw)(1 — 2w)(w — t)(1 — vw)(w — v) (by (2:3))
2

(I—zy)(1—2y)(y — )1 —uy)(y —v)’

@1 Ry = i [(w— 1) f(w)
w2
- 11uu—n>t(l —zw)(w —y)(1 — 2w)(1 — uw)(w — v) (by (2.3))
2
(I —at)(t—y) (1 — 2t)(1 —ut)(t —v)
and
28) By = lim [(w—v) f(w)
w?
- 1111131(1 —zw)(w —y)(1 — z2w)(w — t)(1 — vw) (by (2.3))
02
- (1 — xv)(v —y) (1 —zv)(v —t)(1 —uw)’
So, from (2.5), ), (2.7) and (2.8) we obtain
(29) / I - (by (19) and (1.10))
’ 27m| - w) L(z,y,z,t,u,v) ¥ AL and AL

Therefore, by (1.8), (2.4) and (2.9) we get

1
/S(@;x,y,z,t,u, v)df = 1.
2
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Case 2. Let y =t #v.
Hence, (2.3) is of the form

w2

(2:10) flw) = (1—zw) (w—1y)* (1 —zw) (1 —uw) (w—1v)
Thus, by (2.1), (2.2) and (2.10) we obtain

2

(2.11) — d0
' 21 | (1—ze®)(1—ye=0)(1—ze?)(1—te=0)(1—ue?)(1—ve—?)
0
2m
1 de

2 | (1—aei®)(1—ye=19)2(1— 2¢1) (1 —uei?) (1 —ve )

where the complex integral of the function f(w) along the unit circle |w| = 1
is in the positive direction.

Here, note that f(w) is an analytic function in |w| < 1 except at w =y
which is a double pole of f and w = v which is a simple pole of f.

Let R; denotes the residue of f(w) at w =y and Ry denotes the residue
of f(w) at w = v. By the Residue Theorem, we have

(2.12) L / f(w)dw = R1 + Rs.

2mi

First, we shall calculate R;. By Cauchy’s Integral Formula for the deriv-
ative ([1]), we have

1 w?

213) Ry = —

(2.13) R 27 (I—zw)(1—zw ) 1—uw f(w—v)

|w|=1

[ (w—y)*dw

d w?
a [dw< (I—zw)(1—zw (1-uw)(w— v) >] wy
_ Y Ty Y yu Y
- (lay) 12y (1-uy (y—v) [2+ [T Ry p T
Second, we have
(2.14) Ry = lim [(w —v) f(w)]

w—v

’U)2

= lim 3
w=v (1 —zw) (w—y) (1 — zw) (1 — vw)
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U2

(1—av)(v—y)* (1 —2v) (1 —uww)
So, by (2.12), (2.13) and (2.14) we obtain

(2.15) % / fw)dw =

|w|=1

K(z,y,2,y,u,v)
(1—2y)?(1—2y)*(1—~yu)? (1—zv ) 1~uv ) 1-2v)
1
= Ty ey (7 (19) and (110))

Thus, by (1.8), (2.11) and (2.15) we have

2

1

2W/S(G;a:,y,z,y,u,v)d@ =1.
0

Case 3 and Case 4. The proofs of the integral formulas

2w
1
/S(H;xayvzatau7y)d0 =1
2
0
and
1 2m
271_/S(@;az,y,z*,t,u,t)al@ =1
0

for Case 3 and Case 4, respectively, are similar to the proof of the Case 2.
Case 5. Let y =t =wv.
In this case, (2.3) is of the form

wZ
(2.16) Jw) = (1 —zw)(w—y)3(1 — zw)(1 — uw)’
Thus, by (2.1), (2.2) and (2.16) we obtain
2T
1 do
CAT) o ) U—ae®) (1 —ye ) (1= 2e9) (1 —te @)(1—uc?)(1—ve )
0
21
_ 1 df
I | (1—aei®)(1—ye?)? (1-ze?) (1-uei?)
1
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where the complex integral of the function f(w) along the unit circle |w| =1
is in the positive direction.

So, f(w) is an analytic function in |w| < 1 except at w = y. Note that
f(w) has a pole of order 3 at w = y. Let R denotes the residue of f at
w = y. Then, by the Residue Theorem we get

(2.18) o / Flw

lw|=1

Therefore, we must calculate R. By Cauchy’s Integral Formula for the de-
rivative, we have

w2

= — w—y)3dw
(2.19) 2772 / fw)dw = 271 (1—:Ew)(1—zw)(1—uw)/( y)d
|w|=1 |w|=1

:% {dd; <(1_xw)(1iw)(1—“w)>hzy

— K(may,z,y,u,y)
(1—my)3(1—zy)3(1_uy)3
1
= Togsgug v (1:9) and (1.10)).

Thus, by (1.8), (2.17) and (2.19) we have

1
%/S(H;x,y,z,y,u,y)de =1

From the Cases 1, 2, 3, 4 and 5, we get the desired result (1.11). O

Corollary 2.1. If we set z = x, u = z and t = y, v = y in the Main
Theorem, then we have

27
1 (1— :Uy)g 1+ dzy + 22y?
(2.20) / e —3d0 = 3
270(1—xez)(1—yez) (1 —ay)

Proof. By the Main Theorem, we know that

1
= /S(H;x,y,z,t, u, v)dh.
27



180 S. BULUT

Then, for z =z, u =2 and t =y, v = y we obtain

2
1
I = /S(Q,x,y,x,y,m,y)d@
27
0

2w
— 1 L(U’Uayaﬂf,y,ﬂf,y)
27 / (1— xeia)?’ (1— ye*i(’)?’
2
1 (1—ay)°
- 27 i0\3 —i0\3 do
T g (1 —ze?)’ (1 — ye=i9)° K(x,y, x,y,,7)
2w
= (1—2y)° 1/ (1—=y)’ "
a 073 ——
K(x7y7xayax7y> 27T 0 (1 — 1'616) (1 — ye—la)
2
— (1 — $y)6 1 / (1 _ my)?) "
(1- rry)4 (1 + 4zy + x2y?) 27 / (1— xei@)3 (1— ye,ig):&
27
_ (1 - zy)? 1/ (1 - ay)® y
(1 + 4zy + 2%y?) 27 (1— .I'eie)g (1- ye_ie)g )
0

where
K(z,y,2,y,2,y) = (1 — ay)* (1 +4ay + 2%y°) .
Thus, we have

2
1/ (1—ay)® d9_1—|—4xy+$2y2
27 g (1 — zeif)® (1 — ye—i0)? (1 —ay)?
O
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