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NEW ULTIMATE BOUNDEDNESS AND PERIODICITY
RESULTS FOR CERTAIN THIRD-ORDER NONLINEAR

VECTOR DIFFERENTIAL EQUATIONS

Cemi̇l TUNÇ and Ercan TUNÇ

Abstract. The principle aim of this paper is to present some new
results related to the ultimate boundedness and existence of periodic
of solutions a certain non-linear ordinary vector differential equation
of third order. Our results improve some well-known results in the
literature.

1. Introduction

The boundedness and existence of periodic solutions are very important
in the theory and applications of differential equations. Till now, many
authors have done very excellent works; see, for example, [22] as a survey
book and [1], [2], [3], [4], [5], [6], [8], [9], [10], [11], [12], [13], [14], [15],
[18], [19], [20], [23], [24], [25], [26], [27] and [28]. However, it should be
clarified that the number of results related to the ultimate boundedness
and existence of periodic solutions of certain third order nonlinear vector
differential equations is very few in comparison to that on the certain scalar
nonlinear differential equations of third order. In fact, to our knowledge
these results can be presented here, briefly, as follows: Namely, in this way,
in 1966, 1983 and 1993, respectively, Ezeilo&Tejumola [8], Afuwape [2] and
Meng [20] investigated the ultimately boundedness and existence of periodic
solutions of the nonlinear vector differential equation of the form

...
X + A

..
X + B

.
X + H(X) = P (t,X,

.
X,

..
X).

Afterward, in 1985, Afuwape [4] also considered the vector differential equa-
tion ...

X + A
..
X + G(

.
X) + H(X) = P (t, X,

.
X,

..
X)

and for the above equation the author proved ultimate boundedness results
which are generalizations of earlier conclusions of Ezeilo and Tejumola [8].
Along with the above works, in 1985, Abou-El-Ela [1] also established suf-
ficient conditions which ensure that all solutions of real vector differential
equations as follows

...
X + F (X,

.
X)

..
X + G(

.
X) + H(X) = P (t,X,

.
X,

..
X)
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are ultimately bounded. Later, in 1995, Feng [14] demonstrated a result
associated with the existence of unique periodic solution of the similar type
equation

...
X + A(t)

..
X + B(t)

.
X + H(X) = P (t,X,

.
X,

..
X).

Further, in 1999, Tiryaki [23] obtained some sufficient conditions which make
certain that all the solutions of

...
X + A

..
X + G(

.
X) + H(X) = P (t, X,

.
X,

..
X)

are ultimately bounded and he also gave some sufficient conditions which
guarantee that there exists at least one periodic solution of the equation
just mentioned above. In the same year, the author in [25] also proved some
theorems on the same topic for nonlinear vector differential equation

...
X + F (X,

.
X)

..
X + B

.
X + H(X) = P (t,X,

.
X,

..
X).

Recently, that is in 2005, Tunç and Ates [26] investigated, for the cases P ≡ 0
and P 6= 0, respectively, the asymptotic stability of the zero solution and
boundedness of all solutions of the third order non-linear ordinary vector
differential equation

...
X + F (X,

.
X,

..
X)

..
X + B(t)

.
X + H(X) = P (t, X,

.
X,

..
X).

With respect to our observation in the literature, ostensibly, the last work
proceeded on ultimate boundedness of solutions of third order non-linear
vector differential equation has been made, in 2004, by Afuwape and Omeike
[6]. That is to say that, Afuwape and Omeike [6], inspiring from the papers
of Ezeilo ([7], [9], [10]) and Tiryaki [23], established two results contain
sufficient conditions on the theme for nonlinear vector differential equation

...
X + F (

..
X) + G(

.
X) + H(X) = P (t,X,

.
X,

..
X).

During establishment of the results, Afuwape and Omeike [6] defined the
following relations with respect to the vectors F,G and H:

F (
..
X1) = F (

..
X2) + Af (

..
X1,

..
X2)(

..
X1 −

..
X2),(1.1)

G(
.

X1) = G(
.

X2) + Bg(
.

X1,
.

X2)(
.

X1 −
.

X2)(1.2)

and

(1.3) H(X1) = H(X2) + Ah(X1, X2)(X1 − X2)

where Af (
..
X1,

..
X2), Bg(

.
X1,

.
X2) and Ah(X1, X2) are n × n-continuous

operators, having real eigenvalues λi(Af (
..
X1,

..
X2)), λi(Bg(

.
X1,

.
X2)) and

λi(Ch(X1, X2)) such that

0 < δf ≤ λi(Af (
..
X1,

..
X2)) ≤ ∆f ,(1.4)
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0 < δg ≤ λi(Bg(
.

X1,
.

X2)) ≤ ∆g,(1.5)

0 < δh ≤ λi(Ch(X1, X2)) ≤ ∆h, (i = 1, 2, ..., n),(1.6)

with δf , δg, δh, ∆f , ∆g and ∆h as fixed constants, and

(1.7) ∆h ≤ kδfδg

for some positive constant k(k < 1). Their primary reason of defining the
above operators is to proceed their results without imposing the differentia-
bility condition on the vector functions F (

..
X), G(

.
X) and H(X). Through all

the papers just pointed out above, the Lyapunov’s second (or direct) method
[17] is used as a basic tool to achieve the results there. It is reasonable to
ask why the Lyapunov’s second method has been used as basic tool in all
the above works. For instance, in this respect, Iggidr and Sallet [16] states
that ” The most efficient tool for the study of the stability of given non-
linear system is provided by Lyapunov theory. This theory is based on the
use positive definite functions that are non-increasing along the solutions of
the considered.... But finding an appropriate positive Lyapunov function is
in general a difficult, viz.” Likewise, the major advantage of this method
is that information about stability, boundedness, and existence of periodic
solution, viz. can be obtained without any prior knowledge of solutions.

In this paper, we consider nonlinear vector differential equations of the
form

(1.8)
...
X + F (X,

.
X,

..
X)

..
X + G(

.
X) + H(X) = P (t,X,

.
X,

..
X)

where X ∈ Rn and t ∈ R; F is an n × n-symmetric continuous matrix
function; G : Rn → Rn, H : Rn → Rn, H(0) = G(0) = 0 and P : R × Rn ×
Rn × Rn → Rn, and G, H and P are continuous.

In what follows it will be convenient to use the equivalent differential
system:

(1.9)

.
X = Y,

.
Y = Z,

.
Z = −F (X,Y, Z)Z − G(Y ) − H(X) + P (t,X, Y, Z),

which was obtained from (1.8) by setting
.

X = Y,
..
X = Z.

2. Notations

Corresponding to any pair X,Y in Rn, the symbol 〈X,Y 〉 and the repre-

sentation λi(A), (i = 1, 2, ..., n), will denote the usual scalar product
n∑

i=1
xiyi

and the eigenvalues of n×n-matrix A, respectively, and, in particular, 〈X,X〉
=‖X‖2 . Next, it is also used, as basic throughout this paper, that δ’s and
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∆’s with or without suffices will represent positive constants whose mag-
nitudes depend only on the constants associated with the equation under
study. The δ’s and ∆’s with numerical or alphabetical suffices may vary
from place to place, but each of them with suffix attached preserves its
identity in every place of occurrence.

3. Main results

First the following result is established

Theorem 1. In addition to the fundamental assumptions imposed on F , G,
H and P , we suppose that :

(i) There exists an real n × n-symmetric matrix function F (X,Y, Z) and
real continuous operators Bg(Y1, Y2), Ch(X1, X2) for any vectors X, Y , Z,
X1, X2, Y1, Y2 ∈ Rn such that the functions G,H satisfy (1.5), (1.6) and
F that

0 ≤ δf ≤ λi(F (X,Y, Z)) ≤ ∆f , (i = 1, 2, ..., n),

with δf and ∆f as fixed constants;
(ii) the operators Bg and Ch are associative and commute pairwise;
(iii) the function P satisfies

(3.1)
‖P (t,X, Y, Z)‖ ≤ p1(t) + p2(t)

{
‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2

} ρ
2

+p3(t)
{
‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2

} 1
2

for any X,Y, Z ∈ Rn and t ∈ R, where p1(t), p2(t) and p3(t) are continuous
function of t and 0 ≤ ρ < 1.

Then, there exist constants ρ3, ∆1,∆2, ∆3 such that if |p3(t)| ≤ ρ3, for all
t ∈ R, with ρ3 chosen small enough, then every solution X(t) of (1.8) with

X(t0) = X0,
.

X(t0) = Y0,
..
X(t0) = Z0,

and for any constant r, whatever in the range 1
2 ≤ r ≤ 1, satisfies{

‖X(t)‖2 +
∥∥∥ .
X(t)

∥∥∥2
+

∥∥∥ ..
X(t)

∥∥∥2
}r

≤ ∆1 exp {−∆2(t − t0)}

+ ∆3

t∫
t0

{
p2r
1 (τ) + p

2r/(1−ρ)
2 (τ)

}
exp {−∆2(t − τ)} dτ

(3.2)

for all t ≥ t0 ≥ 0, where ∆1 ≡ ∆1(X0, Y0, Z0).

Remark 1. When specialized to the case n = 1 with P depending only on
t, the above estimate (3.2) reduces to the estimate in Harrow [15].
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Remark 2. It should be noted that Theorem 1 mentioned above can be
proved here without defining the operator (1.1) and that imposing the dif-
ferentiability assumption on the matrix function F (X,Y, Z). Hence, in the
special case F (X,Y, Z) = F (Z), the above assumptions are less restrictive
than those established in Afuwape and Omeike [6; Theorem 1], and our
result improves the result proved by them.

Corollary 1. If P ≡ 0 and all the conditions of Theorem 1 hold, then
every solution X(t) of (1.8) satisfies{

‖X(t)‖2 +
∥∥∥ .
X(t)

∥∥∥2
+

∥∥∥ ..
X(t)

∥∥∥2
}

→ 0 as t → ∞,

provided that ρ3 is small enough. This case can be seen easily when ρ1(t) =
ρ2(t) = 0 in (3.2).

Our second result is the following ultimately bounded result, which can
be deduced from Theorem 1.

Theorem 2. Let all the conditions of Theorem 1 be satisfied, and in addition
we assume that |p3(t)| ≤ ρ3 for all t ∈ R, with ρ3 chosen small enough, and
that the functions p1 and p2 satisfy

|p1(t)| ≤ δ0 and |p2(t)| ≤ δ1

for all t ∈ R. Then, there exists a constant ∆4 such that every solution X(t)
of (1.8) ultimately satisfies{

‖X(t)‖2 +
∥∥∥ .
X(t)

∥∥∥2
+

∥∥∥ ..
X(t)

∥∥∥2
}

≤ ∆4.

Remark 3. In the special case F (X,Y, Z) = F (Z), the assumptions of
Theorem 2 are less restrictive than those established by Afuwape and Omeike
[6, Theorem 2], and our result improves their second result, [6, Theorem 2].

Remark 4. It should become better to say that if P is a bounded function
as in Theorem 2, then the constant ∆4 above can be fixed independent of
the initial values X0, Y0 and Z0 as in Theorem 1. This fact is difference
between boundedness and ultimately boundedness conceptions.

Finally, we have that

Theorem 3. In differential system (1.9), let P satisfies

P (t + ω,X, Y, Z) = P (t, X, Y, Z)

uniformly for all X,Y, Z ∈ Rn. Assume also that all the conditions of Theo-
rem 2 are satisfied. Then there exists a periodic solution X(t) of (1.9) with
a period ω.
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Remark 5. Theorem 3 yields an additional result to the results of Afuwape
and Omeike [6].

4. Preliminaries

In order to reach our main results, we dispose of some well-known alge-
braic results which will be required in the proofs. The first of these is quite
standart one:

Lemma 1 (See [21]). Let D be a real symmetric n × n matrix. Then for
any X in Rn

δd ‖X‖2 ≤ 〈DX,X〉 ≤ ∆d ‖X‖2

where δd and ∆d are, respectively, the least and greatest eigenvalues of the
matrix D.

Next, we require the following lemma.

Lemma 2 (See [21]). Let Q,D be any two real n×n commuting symmetric
matrices. Then,

(i) The eigenvalues λi(QD), (i = 1, 2, ..., n), of the product matrix QD are
real and satisfy

max
1≤j,k≤n

λj(Q)λk(D) ≥ λi(QD) ≥ min
1≤j,k≤n

λj(Q)λk(D).

(ii) The eigenvalues λi(Q + D), (i = 1, 2, ..., n), of the sum of matrices Q
and D are real and satisfy{

max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)
}

≥ λi(Q + D) ≥
{

min
1≤j≤n

λj(Q) + min
1≤k≤n

λk(D)
}

where λj(Q) and λk(D) are, respectively, the eigenvalues of Q and D.

5. The Lyapunov function V

We use the Lapunov function used in Afuwape and Omeike [6] in the
proof of the main results. That is, the function V = V (X,Y, Z) defined by

(5.1)
2V = β(1 − β)δ2

g 〈X,X〉 + βδg 〈Y, Y 〉 + αδgδ
−1
f 〈Y, Y 〉 + αδ−1

f 〈Z,Z〉
+ 〈Z + δfY + (1 − β)δgX,Z + δfY + (1 − β)δgX〉 ,

where 0 < β < 1 and α > 0.
The function and its time derivative, (in the light of Lyapunov’s second

or direct method), must satisfy some fundamental inequalities.
Now, the first property of the function V = V (X,Y, Z) is summarized

with Lemma 3.
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Lemma 3. Assume that all the conditions on F,G and H in Theorem 1 are
satisfied. Then, there are positive constants δ2 and δ3 such that

δ2

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
≤ V (X,Y, Z) ≤ δ3

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
is valid for every solution of (1.9).

Proof. Since the function V in (5.1) is the same as the function V defined
in [6], if one follows the lines indicated as the same as in [6], it can be easily
obtained that
(5.2)

δ2

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
≤ V (X,Y, Z) ≤ δ3

(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
,

where
δ2 = min

{
β(1 − β)δ2

g , δg(β + αδ−1
f ), αδ−1

f

}
and

δ3 = max
{

δg(1 − β)(1 + δf + δg), δg(β + αδ−1
f ) + δf [1 + δg(1 − β) + δf ],

1 + αδ−1
f + δf + δg(1 − β)

}
.

This completes the proof of the lemma. ¤

Now, let (X,Y, Z) = (X(t), Y (t), Z(t)) be an arbitrary solution of (1.9).
Differentiating the function V = (X(t), Y (t), Z(t)) in (5.1) along the system
(1.9) we obtain

(5.3)
.
V =

d

dt
V (X(t), Y (t), Z(t)) = −V1 −V2 −V3 −V4 −V5 −V6 −V7 −V8,

where

V1 = {γ1δg(1 − β) 〈X,H(X)〉 + η1δf 〈Y,G(Y ) − δg(1 − β)Y 〉

+ ξ1αδ−1
f 〈Z,F (X,Y, Z)Z〉 + 〈Z,F (X,Y, Z)Z − δfZ〉

}
,

V2 =
{

γ2δg(1 − β) 〈X,H(X)〉 + ξ2αδ−1
f 〈Z,F (X,Y, Z)Z〉

+ (1 + αδ−1
f ) 〈Z,H(X)〉

}
,

V3 = {γ3δg(1 − β) 〈X,H(X)〉 + η2δf 〈Y,G(Y ) − δg(1 − β)Y 〉
+ δf 〈Y,H(X)〉} ,

V4 =
{

γ4δg(1 − β) 〈X,H(X)〉 + ξ3αδ−1
f 〈Z,F (X,Y, Z)Z〉

+ δg(1 − β) 〈X,F (X,Y, Z)Z − δfZ〉} ,
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V5 = {γ5δg(1 − β) 〈X,H(X)〉 + η3δf 〈Y,G(Y ) − δg(1 − β)Y 〉
+ δg(1 − β) 〈X,G(Y ) − δgY 〉} ,

V6 =
{

ξ4αδ−1
f 〈Z,F (X,Y, Z)Z〉 + η4δf 〈Y,G(Y ) − δg(1 − β)Y 〉

+ (1 + αδ−1
f ) 〈Z,G(Y ) − δgY 〉

}
,

V7 =
{

ξ5αδ−1
f 〈Z,F (X,Y, Z)Z〉 + η5δf 〈Y,G(Y ) − δg(1 − β)Y 〉

+ δf 〈Y, F (X,Y, Z)Z − δfZ〉} ,

V8 =
{〈

(1 − β)δgX + δfY + (1 + αδ−1
f )Z,P (t, X, Y, Z)

〉}
,

with ξi, ηi, γi; (i = 1, 2, 3, 4, 5), are strictly positive constants such that
5∑

i=1

ξi = 1,

5∑
i=1

ηi = 1,

5∑
i=1

γi = 1.

The next property related to the time derivative of the function V =
V (X,Y, Z) is clarified with Lemma 4.

Lemma 4. Let us assume that all the conditions of Theorem 1 hold. Then,
subject to a conveniently chosen of values of constants ki, (i = 1, 2, 3, 4, 5, 6),
in (1.7), the components of the time derivative of the function V , Vi =
Vi(X,Y, Z), (i = 2, 3, ..., 7), and

.
V satisfy

Vi(X,Y, Z) ≥ 0 for all X,Y, Z ∈ Rn

and
.
V ≤ −δ10ψ

2 + δ14

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r)

for any r in the large 1
2 ≤ r ≤ 1.

Proof. The function V3, V5 and V8 here are the same as the functions W3,W5

and W8 defined in [6]. The estimates for V3, V5 and V8 in [6] yield that

V3 ≥ 0, V5 ≥ 0, |V8| ≤
√

3δ9

{
p3(t)ψ2 + p2(t)ψ(1+ρ) + p1(t)ψ

}
where δ9 is a certain positive constant as fixed in [6].

Now, by noting assumptions of (i), (ii) of Theorem 1 and Lemma 1, it
follows that

V1 = {γ1δg(1 − β) 〈X,H(X)〉 + η1δf 〈Y,G(Y ) − δg(1 − β)Y 〉

+ ξ1αδ−1
f 〈Z,F (X,Y, Z)Z〉 + 〈Z, [F (X,Y, Z) − δfI]Z〉

}
≥ {γ1δg(1 − β) 〈X,Ch(X, 0)X〉 + η1δf 〈Y, [Bg(Y, 0)

− δg(1 − β)]Y 〉 + ξ1α ‖Z‖2
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≥ γ1δgδf (1 − β) ‖X‖2 + η1δgδfβ ‖Y ‖2 + ξ1α ‖Z‖2

≥ δ8(‖X‖2 + ‖Y ‖2 + ‖Z‖2),

where

δ8 = min {γ1δgδf (1 − β), η1δfδgβ, ξ1α} .

Next, consider the expression

V2 =
{

γ2δg(1 − β) 〈X,H(X)〉 + ξ2αδ−1
f 〈Z,F (X,Y, Z)Z〉

+ (1 + αδ−1
f ) 〈Z,H(X)〉

}
.

Again, in view of (1.6), assumption (i) of Theorem 1 and Lemma 1, easily,
we obtain that

V2 ≥ ξ2α ‖Z‖2 +
∥∥∥∥k1

√
1 + αδ−1

f Z +
1

2k1

√
1 + αδ−1

f H(X)
∥∥∥∥2

− k2
1(1 + αδ−1

f ) ‖Z‖2 − 1
4k2

1

(1 + αδ−1
f ) 〈H(X),H(X)〉

+ γ2δg(1 − β) 〈X,Ch(X, 0)X〉

≥ ξ2α ‖Z‖2 − k2
1(1 + αδ−1

f ) ‖Z‖2

− 1
4k2

1

(1 + αδ−1
f ) 〈Ch(X, 0)X,Ch(X, 0)X〉

+ γ2δg(1 − β) 〈X,Ch(X, 0)X〉

≥ [ξ2α − k2
1(1 + αδ−1

f )] ‖Z‖2 + [γ2δg(1 − β)

− 1
4k2

1

(1 + αδ−1
f )δh∆h] ‖X‖2 .

If we choose

k2
1 ≤

ξ2αδf

α + δf
and ∆h ≤

4γ2ξ2α(1 − β)δ2
fδg

(α + δf )2
,

then, clearly,

V2(X,Y, Z) ≥ 0 for all X,Y, Z ∈ Rn.

For the terms

V4 =
{

γ4δg(1 − β) 〈X,H(X)〉 + ξ3αδ−1
f 〈Z,F (X,Y, Z)Z〉

}
+ {δg(1 − β) 〈X,F (X,Y, Z)Z − δfZ〉} ,
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similarly, if we take into consideration (1.6), assumption (i) of Theorem 1
and Lemma 1, we have that

V4 ≥ γ4δgδh(1 − β) ‖X‖2 + ξ3α ‖Z‖2 + δg(1 − β) 〈X,F (X,Y, Z)Z − δfZ〉

=
∥∥∥∥ 1

2k3

√
δg(1 − β)

√
[F (X,Y, Z) − δfI]X

+ k3

√
δg(1 − β)

√
[F (X,Y, Z) − δfI]Z

∥∥∥∥2

+ γ4δgδh(1 − β) ‖X‖2 + ξ3α ‖Z‖2

− 1
4k2

3

〈δg(1 − β)[F (X,Y, Z) − δfI]X,X〉

− k2
3 〈δg(1 − β)[F (X,Y, Z) − δfI]Z,Z〉

≥ γ4δgδh(1 − β) ‖X‖2 + ξ3α ‖Z‖2

− 1
4k2

3

〈δg(1 − β)[F (X,Y, Z) − δfI]X,X〉

− k2
3 〈δg(1 − β)[F (X,Y, Z) − δfI]Z,Z〉

≥ γ4δgδh(1 − β) ‖X‖2 + ξ3α ‖Z‖2

− 1
4k2

3

δg(1 − β)(∆f − δf ) ‖X‖2

− δg(1 − β)(∆f − δf )k2
3 ‖Z‖2 .

Let us choose
∆f − δf

4γ4δh
≤ k2

3 ≤ ξ3α

(1 − β)δg(∆f − δf )
.

Hence

V4(X,Y, Z) ≥ 0 for all X,Y, Z ∈ Rn.

Similarly, subject to the assumptions of Theorem 1, we easily obtain

V6(X,Y, Z) ≥ 0 for all X,Y, Z ∈ Rn.

Lastly, we consider

V7 =
{

ξ5αδ−1
f 〈Z,F (X,Y, Z)Z〉 + η5δf 〈Y,G(Y ) − δg(1 − β)Y 〉

+ δf 〈Y, F (X,Y, Z)Z − δfZ〉} .
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By using (1.5), assumptions (i), (ii) of Theorem 1 and Lemma 1, it is clear
that

V7 =
{

ξ5α ‖Z‖2 + η5δf 〈Y, [Bg(Y, 0) − δg(1 − β)I]Y 〉

+ δf 〈Y, F (X,Y, Z)Z − δfZ〉}

≥ ξ5α ‖Z‖2 + βη5δfδg ‖Y ‖2 + δf 〈Y, F (X,Y, Z)Z − δfZ〉

=
∥∥∥∥ 1

2k6

√
δf

√
[F (X,Y, Z) − δfI]Y + k6

√
δf

√
[F (X,Y, Z) − δfI]Z

∥∥∥∥2

+ ξ5α ‖Z‖2 + βη5δfδg ‖Y ‖2 − 1
4k2

6

〈δf [F (X,Y, Z) − δfI]Y, Y 〉

− k2
6 〈δf [F (X,Y, Z) − δfI]Z,Z〉

≥ ξ5α ‖Z‖2 + βη5δfδg ‖Y ‖2 − 1
4k2

6

〈δf [F (X,Y, Z) − δfI]Y, Y 〉

− k2
6 〈δf [F (X,Y, Z) − δfI]Z,Z〉

≥ ξ5α ‖Z‖2 + βη5δfδg ‖Y ‖2 − 1
4k2

6

δf (∆f − δf ) ‖Y ‖2

− δf (∆f − δf )k2
6 ‖Z‖2 .

Taking
∆f − δf

4η5βδg
≤ k2

6 ≤ ξ5α

δf (∆f − δf )
,

we get
V7 ≥ 0.

Bringing together the estimates just obtained for V1, V2, V3, V4, V5, V6, V7 and
V8 in (5.3), using the fact |p3(t)| ≤ ρ3 (for all t ∈ R) and follows the line
indicated in [6] we get

.
V ≤ −

(
δ8 −

√
3δ9ρ3

)
ψ2 +

√
3δ9

{
p2(t)ψ(1+ρ) + p1(t)ψ

}
and hence

.
V ≤ −δ10ψ

2 + δ14

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r).

This completes the proof of Lemma 4. ¤

6. Proof of Theorem 1

Let (X,Y, Z) = (X(t), Y (t), Z(t)) be an arbitrary solution of (1.9). To
complete the proof of Theorem 1, it is sufficient to proceed that, subject
to the conditions of Theorem 1, the Lyapunov function V defined in (5.1),
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satisfies for any solution (X(t), Y (t), Z(t)) of (1.9) and for any r in the range
1
2 ≤ r ≤ 1 the inequality as follows

.
V ≤ −δ4ψ

2 + δ5

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r)

for some constants δ4, δ5, where ψ2(t) =
{
‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2

}
.

The rest of the proof can be verified proceeding exactly along the lines just
indicated [6, Theorem 1]. Hence we omit the detailed proof.

7. Proof of Theorem 2

Consider the function V defined by (5.1). To perfect the proof of Theorem
2, it is enough to show under the assumptions of Theorem 2 that

(7.1) V (X,Y, Z) → ∞ as ‖X‖2 + ‖Y ‖2 + ‖Z‖2 → ∞

and

(7.2)
.
V ≤ −1 provided that ‖X‖2 + ‖Y ‖2 + ‖Z‖2 ≥ δ16.

If we take into consideration the result of Lemma 3, then the accuracy of
(7.1) is clear. Next, since

.
V satisfies the inequality

.
V ≤ −δ10ψ

2 + δ14

{
p2r
1 (t) + p

2r/(1−ρ)
2 (t)

}
ψ2(1−r),

1
2
≤ r ≤ 1,

in view of the boundedness of the functions p2(t) and p3(t) for all t ∈ R, it
follows that there exists a positive constant δ15 such that

.
V ≤ −δ10ψ

2 + δ15ψ
2(1−r) ≤ −1 provided ψ ≥ δ16 >

(
δ−1
10 δ15

)1/2r
.

The proof of Theorem 2 is now complete.

8. Proof of Theorem 3

By an similar argument to that in the proof of the boundedness result of
Tejumola [24], one can complete the proof of this theorem. Therefore, we
omit the detailed proof for the theorem.
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