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MULTIPLIERS AND CYCLIC VECTORS ON THE
WEIGHTED BLOCH SPACE

SHANLI YE

ABSTRACT. In this paper we study the pointwise multipliers and cyclic
vectors on the weighted Bloch space 81 = {f € H(D) : supp(l —
|2*) In( 1_2‘2‘ )| f'(2)| < 400}. We obtain a characterization of multipliers
on Bz and little 32. Also, a sufficient condition and a necessary condition
are given for which f is a cyclic vector in 32.

1. INTRODUCTION

Let D = {z : |2| < 1} be the open unit disk in the complex plane C, and
H(D) denote the set of all analytic functions on D. For f € H(D), Let

I £ll6. = sup{(1 —|2[*)*[f'(2)] : 2 € D}, 0 < a < +oo,

1l = sup{(1 = |2 (=Dl ()] : = € D).

As in [7], [9], the a-Bloch space [, consists of all f € H(D) satisfying
| fllg. < +oco and the little a-Bloch space 35 consists of all f € H(D)
satisfying |l}ml(l—|z|2)a|f’(z)| = 0; the logarithmic weighted Bloch space (3,

2*) In(

consists of all f € H(D) satisfying || f||g, < +oo and the little logarithmic
weighted Bloch space 37 consists of all f € H(D) satisfying ‘ |lirn (1-
z|—1—

2
2

1
=PI

under the norm

)If'(2)] = 0. It can easily proved that 37, is a Banach space

Ifllz = 1£O) + 1 f1lsz

and that ﬁ% is a closed subspace of (. It is well known that with the norm

[flla = [£O) + 1 f]l5a

Ba is a Banach space and 32 is a closed subspace of 3,. It is easily proved
that for 0 < o < 1, 8o & B & f1. For more information about 35, see, for
example, [9].
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The space of analytic functions on D of bounded mean oscillation, denoted
by BMOA, consists of f in H? for which

1
| fllBvoa = sup / 1f'(2)P(1 = |2*)dA(2) < +oo,
r Ml Jsa

where dA(z) denotes the Lebesgue measure on D, I denotes a subarc of 9D,
|| denotes the arclength measure of I and S(I) = {re? : 1—r < |I|,¢e¥ € I}.
The subset of BMOA, denoted by VMOA, consists of f for which

e Al
i o [ RO =) o

For more details, see [5].

Let X be an analytic function space. We say a function ¢ is a pointwise
multiplier on X, if ¢f € X for all f € X. Let M(X) denote the space of all
pointwise multipliers on X. By My we denote the operator of multiplication
by ¢: Myf = ¢f, f € X. An application of the closed graph theorem shows
that if ¢ € M(X), then My is a bounded linear transformation. Hence it
has a finite norm || My||.

In [2], K. R. M. Attle showed that for f € L2(D), the Hankel operator
Hy: Ll — L' is bounded if and only if f € 8z, and in [3], L. Brown and
A. L. Shields proved that M, is bounded on the classical Bloch space 31(3?)
if and only if ¢ € G, () H*. R. Yoneda [7] studied the composition operator
in Br, space. In Section 2 we will characterize multiplier spaces M () and
M),

Let Y be an analytic Banach function space and the polynomials are dense
in it. For f € Y and let [f] be the closure in Y of the polynomial multiples
of f. Thus f is called a cyclic vector in Y if and only if [f]=Y". In [1], [3], L.
Brown and A. L. Shields studied cyclic vectors in the classical Bloch space
B1(6Y). In the BMOA(VMOA) space, the author in [6] characterized the
cyclic vectors. There are just the following theorem.

Theorem A.

(1) For f € BMOA(VMOA), then f is a cyclic vector on BMOA(VMOA)
if and only if f is an outer function.

(2) If f is an outer function in (31(8Y), then f is cyclic in B1(5Y).

(3) There exists a singular inner function that is cyclic in 3.

In Section 3 we study cyclic vectors in [32.

2. MULTIPLIERS IN THE WEIGHTED BLOCH SPACE

In this section we shall characterize the pointwise multipliers space M (/1)
and M (3?). For this purpose, we need the following lemmas.
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Lemma 2.1. If f € 3, then
() [f(z)] < (2 +1In(ln § ’ ‘))HfHL,

2

. Iny=3
(i) [f(2) = f(t2)] < In(-—

lnl—\tz|

Proof. Suppose f € 1, and z € D, then

1 1
s =0l =1z [ renm <, [ G

|2 dr
< .

= Hf”ﬁL(lnln 1_2| | —Inln 1— |t \)
2

1—|z
< In(—=20) 11,
l 1—|tz]

Especially, | f(z) — f(0)] < ||J“'|]/3L(hahr117L‘| —InIn2), hence

) fllg,, for every t with 0 <t < 1.

||

dt
2) In 172|zt\

[f(2)l < 2+ nln——)|f]z.

[/ (2)
In(ln )

— Iz

Lemma 2.2. If f € 39, then lim; - =0.

The proof is similar to Lemma 2.1. The details are omitted.

—|z|)In 1 ‘Z|

Lemma 2.3. Let f(z) = | “[n
B |1—Z\

€ D. Then |f(2)] < 2.

2

137

Proof. Since r(z) = xIn2 is increasing on (0, 2], decreasing on [2,1] and

r(2) =2 <1, then |f(2)| <1 where 2 € Dy ={z € D:[1—2z| < 2}.
On the other hand, for z € D \ Dy,

(1- |z])ln1 2]
%1112 - %

2
e

<2,

[f(2)] <

Ju—

n?2
hence |f(2)] < 2.

Theorem 2.4. The following are equivalent:
(a) o € M(Br);
(b) ¢ € M(BY);
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(¢) ¢ € H*® and
2
1— |z

Proof. (¢)=-(a). Assume ¢ € H* and (2.1) holds. For every f € fr, by
Lemma 2.1, we have

(2.1) sup(1  [¢f?) In =17 In(ln = )|6/ ()] < +oc.

IZ!

(1= 1) n =l () ()
< (1= ) I = 0 () + (1= ) I = )
<0l + (1= 1) In = 2+ =) < o

Thus fo¢ € Or.
(a)=(c). Suppose that ¢ is a multiplier of 5;. Then by [4, Proposition

3] ¢ € H* and |¢(2)| < ||[Mg||. Let zo = re?. We take the test function
4
f(Z) = ln(ln m)
By Lemma 2.3 we know that f € 8 and || f|| < 5. We have
[foll < IMallllFllz < 5[ M-

It follows that

(1= ) 0 = i =) 162

2
<(- \Z|2)lnm

5([[@lloc + [[Mo]]) < +o00.

() (2)] + 5l M|l

Let z = z9. Hence
(1= 2/*)

Thus

2
1-— ‘Zoy

[ In(ln - | ‘)!qﬁ (20)] < 5(l[¢llco + [|Mg]]) < +o00.

sup(1 — [2?) In = In(in )|/ (2)] < +ov.
p T

(b)=(c). Given zy = re? and a € (0, ) Let

fa(2) = (In(In 4

— i,

)
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A calculation shows that f, € 8 and sup, ||f||L = k < +oo. In a manner
similar to the proof (a)=(c), one obtains that if ¢ is a multiplier of 3%, then
for each «,

2

g

(1-l20*)In (In(In N ()] < k(ll@lloo + |Ms]]) < +o00.

1 — |z

Hence
2

———|In(In 4
1 — 2] 1 — |20l
which shows that (1) holds.

(c)=(b). Assume ¢ € H*® and supp(1 — |z|?)In 1_2|Z| In(In 1_2|Z|)|¢’(z)| =
M < +o0. For every f € 32, by Lemma 2.2, we have

(1~ |20]*) In )NI¢' (z0)] < +o0,

(1= ) I = (M)

< (1= ) = G )+ (= ) I = )

suwma—m%mlfMf@ﬂ+mmféﬂuwneowwau
Thus f¢ € 9. O

3. CYCLIC VECTORS IN THE LITTLE WEIGHTED BLOCH SPACE

2
Lemma 3.1. Let g(x) = (1 — x)In %€ [0,1). Then ;((t:;)) < 2 for
each t € [0,1].
2 . 4
Proof. Let zg = 1 — —. A calculation shows that g.ﬁﬂo < 1. We know that
e

g(x) is increasing on [0, x|, and decreasing on [z, 1).

First, suppose ¢ > 1 and x > 3%0- Then x > tx > xg, hence g(z) < g(tx).

4
Next, suppose t > 1 and x < giﬁo- Then

4() gz) e
= tin(g(0),g(Fzg)) W2 <7

3
Finally, suppose t < 1 A calculation shows that

Zan < g(txr) <
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Then

g

Lemma 3.2. Let h(z) = (1 — z)In® ;2.,z € [0,1). Then there exists a
h(z)
h(tx)

constant M > 0 such that < M for each t € [0,1].

The proof is similar to Lemma 3.1. We omit the details.

Lemma 3.3. Suppose f € B, then f € BY if and only if ||f: — fllL —
0(t — 17), where fi(z) = f(tz).

Proof. Suppose f € B2, then given any € > 0, there exists § € (0, 1) such that
2
(1=lz)Iny ()] < (1= 2[*) In
— |2 1— 2]

Consider

'(2)] < e forall 62 < |z| < 1.

2
1 —z]

Ife = fll = S%p(l ~[2[*)In tf'(tz) = f'(2)]

< sup (1 —[2[*)In
|2[>6 1—|z]

tf'(tz) — f'(2)]

+ sup (1 — |z/*) In
12|<6 — 2]

éfl—f-fg.

tf'(tz) = f'(2)]

If |z| > 6 and t > 6, then |tz| > 6% . By Lemma 3.1 we have

2
I < sup (1 — \2\2)1 () + sup (1 — |2[*) In —— |t f'(t2)]
2> !Z\ 2> |2
2
<2sup(l—|z[)In |f'(2)] +2 sup (1 — |2]) In |f(t2)]
|2[>6 - \Z| 12> — 2|
< 2e+ +4 sup (1 — |zt]) In '(t2)]
2> — |2t
< 2¢ + 4e = 6Be.

On the other hand, I» — 0 as t — 1~ since ¢f’(tz) — f’(z) uniformly
for |z| <¢. Thus lim;_,- ||ft — f|lz = 0.
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Conversely, suppose f € [32 and limy_1 ||f; — f|lz = 0. Then for ¢ > 0
there exists ¢t € (0,1) such that ||f; — f||L < e. It follows that

(L= 257 <= Fle+ 0= 2P 251(A) ()
2 1A ).

Now let |z| — 1 then (1 — |z|?)In %M|(ft)’(z)| — 0 because f; € Y.
Hence f € 39. O

<e+(1—1z*)In

Proposition 3.4. The polynomials are dense in ﬁ%.

1

Proof. Let f € 8 and ¢, = 1 — —, then f(t,2) is analytic in |2| < 1. Hence
n

there exists a polynomial p,(z) such that

Fn) = a2 < 0 17 (tn2) ~ B2 <

for all |z| < 1. Then by Lemma 3.3 we get
1f(z) = pn(2)llL < [1f(2) = fFtn2)llL + 1 f (tnz) — pu(2)lL
(1+32)
<|[f(2) = f(tn2)llL + <
Thus the polynomials are dense in [32. ]
Proposition 3.5. 3 C VMOA.

Proof. Let I is an arc in 9D and S(I) is the Carleson box based on I, i.e,
S(I) = {re? : 1 —r < |I|,e? € I}. For f € By, it follows that

/ ()P - [22)dA()
S(I)

1713
< L dA
—Amu—vw 2|(”

— 0(n — 00).

il
SUAIBII [ o dr = I,
\ng/l =1 az
Then
. o 1715,
L rera - )dAe) < . o(1] o).
1 Js In ﬁ

Hence f € VMOA.

Since B, C fr, for 0 < a < 1, we have the following corollary.
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Corollary 3.6. For0<a <1, 8, C VMOA.

This fact was proved in [8, Theorem 3]. However this proof is much easier
than the one in [8].

Theorem 3.7.
(1) Let f € B2, if | f(2)] > o > 0(|z] < 1), then fis a cyclic vector in 9.
(2) If f is a cyclic vector in ﬁ%, then f is an outer function.

Proof. (1) For 0 <t < 1, fi(z) = f(tz). Since % is analytic in |2] <1, we

can easily prove that there exists polynomials p,, such that ||p, f —j; |l — 0
t
as n — oo. Thus we have :7{ elf]. It H; — 1|l — 0 ast — 17, then
t t
1 € [f], hence by Proposition 3.4, f is cyclic in 3?. Now we are going to
show that ij S = Ot — 17).
t
We have

I~ < 07 = il apt = o) =l (2) = 1622
2 113 + %14.
o g

By Lemma 3.3 we know I3 — 0(t — 17), then we only prove Iy —
0(t—17).
Since f € 8?, for a given any € > 0, there exists § € (0,1) such that

2
(1—1z[*)In =T "(2)] <€

for all 62 < |z| < 1. If || > § and t > 4, then [tz| > §2. By Lemmas 2.1 and
3.2 it follows that

sup (1= |22) In - _QM 5) = FElIef (e2)

|z|>8
(1- |Z‘ ) In \ | B
<O ‘If(z) £(t2)
( ‘ | ) ln1,2|2|
< oy e 2

< el i, 20 DI
<elfllg

F—- |tz]) In2 1—2|tz|
< OM | f|5,e
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On the other hand,

sup (1 —|z[*) In _2 | (2) = f(E2)|ILf'(2))]
|z|<8 1 |Z’

(1—12*)In 2 In>

< 2 su ] In
= Ml e e 2 M2

Hence Iy — 0(t — 17). Thus f is a cyclic vector in 9.

(2) If f is a cyclic vector in 39, then, according to Proposition 3.5 and [4,
Proposition 6], f is a cyclic vector in VM OA. Hence f is an outer function
by Theorem A. This completes the proof of Theorem 3.1. O
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