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NOTE ON THE VECTOR-VALUED COHOMOLOGY
EQUATION f = h ◦ T − h

Shigeru HASEGAWA and Ryotaro SATO

Abstract. Let X be a Banach space and T be an ergodic endomor-
phism of a probability measure space (Ω,A, µ). Assuming that X is re-
flexive and has a countable (Schauder) basis {en : n ≥ 1}, we show that
a function f in Lp(Ω; X), where 1 ≤ p ≤ ∞, has the form f = h ◦ T − h
for some h ∈ Lp(Ω; X) if and only if there exists a set A ∈ A with

µ(A) > 0 such that lim infn→∞(1/n)
Pn

j=1 ‖χA · (
Pj−1

k=0 f ◦ T k)‖p < ∞.
This is a vector-valued generalization of a scalar-valued result due to
Alonso, Hong and Obaya.

1. Introduction and the result

Let (X, ‖ · ‖X) be a Banach space and (Ω,A, µ) be a probability measure
space. We denote by (L, ‖ · ‖L) a Banach space of X-valued strongly meas-
urable functions on (Ω,A, µ) under pointwise operations. Two functions f
and g in L are not distinguished provided that f(ω) = g(ω) for almost all
ω ∈ Ω. In this note we assume the following properties:

(a) If u, v ∈ L and ‖u(ω)‖X ≤ ‖v(ω)‖X for almost all ω ∈ Ω, then
‖u‖L ≤ ‖v‖L.

(b) If v is an X-valued strongly measurable function on Ω and there exists
a function u ∈ L such that ‖v(ω)‖X ≤ ‖u(ω)‖X for almost all ω ∈ Ω, then
v ∈ L.

(c) If (un) is a sequence of functions in L such that ‖u1(ω)‖X ≤ ‖u2(ω)‖X

≤ . . . for almost all ω ∈ Ω, and supn≥1 ‖un‖L < ∞, then there exists a
function u ∈ L such that ‖un(ω)‖X ≤ ‖u(ω)‖X for almost all ω ∈ Ω and all
n ≥ 1.

(d) If v is an X-valued strongly measurable function on Ω and u ∈ L is
such that

µ({ω : ‖v(ω)‖X > a}) = µ({ω : ‖u(ω)‖X > a})

for all a ∈ R with a > 0, then v ∈ L and ‖v‖L = ‖u‖L.
It is interesting to note that, besides the usual X-valued Lp-spaces

Lp(Ω;X) with 1 ≤ p ≤ ∞, there are many important Banach spaces
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(L, ‖·‖L) of X-valued strongly measurable functions on Ω which share prop-
erties (a)–(d). Examples are (X-valued) Orlicz spaces and Lorentz spaces,
etc.

Let T : Ω → Ω be an endomorphism of (Ω,A, µ). Thus, if A ∈ A
then T−1A ∈ A and µ(T−1A) = µ(A). The endomorphism T is called an
automorphism of (Ω,A, µ) if T is one-to-one and onto, and T−1 is again
an endomorphism of (Ω,A, µ). If there does not exist a set A in A with
T−1A = A and 0 < µ(A) < 1, then T is called ergodic. By property (d)
every endomorphism T yields a linear isometry of (L, ‖ · ‖L) by the mapping
u 7→ u ◦ T .

Let f be an X-valued strongly measurable function on Ω. Define

S0f(ω) := 0, and Sjf(ω) :=
j−1∑
k=0

f(T kω) for j ≥ 1,

so that the cocycle identity Sj+kf(ω) = Sjf(ω) + Skf(T jω) holds for every
j, k ≥ 0. The function f is called an (X-valued) coboundary cocycle if
there exists an X-valued strongly measurable function h on Ω such that
f(ω) = h(Tω) − h(ω) for almost all ω ∈ Ω. In this case we have

Sjf(ω) = h ◦ T j(ω) − h(ω) for almost all ω ∈ Ω.

Here, if h is in L, then f ∈ L and furthermore

2‖h‖L = ‖h ◦ T j‖L + ‖h‖L ≥ ‖Sjf‖L ≥ ‖χA · Sjf‖L

for every A ∈ A with µ(A) > 0 by properties (b) and (a). Thus we have

(1) lim inf
n→∞

1
n

n∑
j=1

‖χA · Sjf‖L < ∞.

The purpose of this note is to prove that the converse implication holds,
under some additional assumptions on X and T . This may be regarded as
a continuation of the paper [6]. For related topics we refer the reader to [1],
[4] and [5] where scalar-valued functions are considered. (See also [7].) Our
result is the following

Theorem (Cf. Remark 2 of [6]). Assume that X is reflexive and has a
countable (Schauder) basis {en : n ≥ 1}, and that T is an ergodic endomor-
phism of (Ω,A, µ). Let f be an X-valued strongly measurable function on
Ω. If (1) holds for some A ∈ A, with µ(A) > 0 and χA · Sjf ∈ L for all
j ≥ 1, then there exists h ∈ L such that f = h ◦ T − h.

Remarks. (i) Since every X-valued strongly measurable function on Ω is
µ-almost separably valued, it is immediate that the conclusion of the above
Theorem holds when X is a (not necessarily separable) Hilbert space.
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(ii) It is known (cf. e.g. Singer [8], [9]) that, although many interesting
concrete Banach spaces have countable (Schauder) bases, there are examples
of separable reflexive Banach spaces which do not have countable (Schauder)
bases. Thus one may wonder whether the above Theorem holds, without
assuming the existence of a countable (Schauder) basis of X. The authors
could not prove this, and it seems to us that this is an open problem.

2. Proof of Theorem

Since {en : n ≥ 1} is a (Schauder) basis of X, for every x ∈ X there exists
a unique sequence {ϕn(x) : n ≥ 1} of scalars such that

(2) lim
n→∞

‖x −
n∑

j=1

ϕj(x)ej‖X = 0.

Here we may assume without loss of generality (see e.g. Chapter 1 of [8])
that X is a real Banach space, and that ‖en‖X = 1 for all n ≥ 1. It is also
known that ϕn ∈ X∗ for every n ≥ 1. Thus, f(ω) can be written uniquely
as

(3) f(ω) =
∞∑

j=1

aj(ω)ej =
∞∑

j=1

ϕj(f(ω))ej ,

and an(ω) becomes a real-valued measurable function on Ω for every n ≥ 1.
Let Pn : X → X, n ≥ 1, be the projection operators on X defined by

Pnx :=
n∑

j=1

ϕj(x)ej (x ∈ X).

Since limn→∞ ‖x − Pnx‖X = 0, it follows from the uniform boundedness
principle that

(4) M := sup
n≥1

‖Pn‖ < ∞,

whence the X-valued functions

(5) fn(ω) :=
n∑

j=1

aj(ω)ej (= Pnf(ω)) (n ≥ 1, ω ∈ Ω)

satisfy

(6) ‖fn(ω)‖X ≤ M‖f(ω)‖X (n ≥ 1, ω ∈ Ω);

and χA · f ∈ L implies χA · fn ∈ L for every n ≥ 1, by (6) and property (b).
Here, we introduce a Banach space L̃ of real-valued measurable functions

on Ω as follows. Let L̃ be the set of all real-valued measurable functions ũ
on Ω such that ũ · e1 ∈ L, and define

(7) ‖ũ‖
eL

:= ‖ũ · e1‖L.
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By properties (a)–(d), (L̃, ‖ · ‖
eL
) becomes a Banach space under pointwise

operations, and satisfies the following properties:
(A) If ũ, ṽ ∈ L̃ and |ũ(ω)| ≤ |ṽ(ω)| for almost all ω ∈ Ω, then ‖ũ‖

eL
≤ ‖ṽ‖

eL
.

(B) If ṽ is a real-valued measurable function on Ω and there exists a
function ũ ∈ L̃ such that |ṽ(ω)| ≤ |ũ(ω)| for almost all ω ∈ Ω, then ṽ ∈ L̃.

(C) If (ũn) is a sequence of functions in L̃ such that |ũ1(ω)| ≤ |ũ2(ω)| ≤ . . .
for almost all ω ∈ Ω, and supn≥1 ‖ũn‖

eL
< ∞, then there exists a function

ũ ∈ L̃ such that |ũn(ω)| ≤ |ũ(ω)| for almost all ω ∈ Ω and all n ≥ 1.
(D) If ṽ is a real-valued measurable function on Ω and ũ ∈ L̃ is such that

µ({ω : |ṽ(ω)| > a}) = µ({ω : |ũ(ω)| > a})

for all a ∈ R with a > 0, then ṽ ∈ L̃ and ‖ṽ‖
eL

= ‖ũ‖
eL

.
By (5) we have

Slfn(ω) =
l−1∑
k=0

fn(T kω) =
l−1∑
k=0

n∑
j=1

aj(T kω)ej =
n∑

j=1

(
l−1∑
k=0

aj(T kω)

)
ej ;

and since ‖e1‖X = ‖ej‖X = 1, it follows (cf. (d), (3) and properties (b) and
(a)) that∥∥∥∥∥χA(·)

(
l−1∑
k=0

aj(T k·)

)∥∥∥∥∥
eL

=

∥∥∥∥∥χA(·)

(
l−1∑
k=0

aj(T k·)

)
e1

∥∥∥∥∥
L

=

∥∥∥∥∥χA(·)

(
l−1∑
k=0

aj(T k·)

)
ej

∥∥∥∥∥
L

=

∥∥∥∥∥χA(·)

(
l−1∑
k=0

ϕj ◦ f(T k·)

)
ej

∥∥∥∥∥
L

≤ ‖ϕj‖

∥∥∥∥∥χA(·)

(
l−1∑
k=0

f(T k·)

)∥∥∥∥∥
L

= ‖ϕj‖‖χA(·)Slf(·)‖L.

Thus, (1) implies that for each fixed j ≥ 1,

lim inf
m→∞

1
m

m∑
l=1

∥∥∥∥∥χA(·)

(
l−1∑
k=0

aj(T k·)

)∥∥∥∥∥
eL

≤ ‖ϕj‖ · lim inf
m→∞

1
m

m∑
l=1

‖χA · Slf‖L < ∞.

Since (L̃, ‖ · ‖
eL
) is a Banach lattice of equivalence classes of real-valued

measurable functions on Ω satisfying Properties (A)–(D), it then follows
from Theorem 2 of [5] that there exists ξ̃j ∈ L̃ such that aj(ω) = ξ̃j(Tω) −
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ξ̃j(ω) for almost all ω ∈ Ω. Let gn =
∑n

j=1 ξ̃j · ej . Since ξ̃j · ej ∈ L by the
definition of L̃ and property (d), it follows that gn ∈ L, and that

fn(ω) = Pnf(ω) =
n∑

j=1

aj(ω)ej = gn(Tω) − gn(ω) for almost all ω ∈ Ω.

Thus we find

(8) fn ∈ L, and Skfn =
k−1∑
i=0

fn ◦ T i = gn ◦ T k − gn for k ≥ 1.

Clearly, by (4)–(6) we have Skfn = SkPnf = PnSkf , and

(9) ‖Skfn(ω)‖X ≤ M‖Skf(ω)‖X (k, n ≥ 1; ω ∈ Ω).

Since T is ergodic by assumption, we next apply the Birkhoff pointwise
ergodic theorem (see e.g. Chapter 1 of [3]), together with (8) and (9), to
infer that for almost all ω ∈ Ω∫

Ω
‖gn(·)‖X dµ = lim

l→∞

1
l

l∑
k=1

‖gn(T kω)‖X(10)

≤ lim inf
l→∞

1
l

l∑
k=1

‖Skfn(ω)‖X + ‖gn(ω)‖X

≤ lim inf
l→∞

1
l

M

l∑
k=1

‖Skf(ω)‖X + ‖gn(ω)‖X .

To see that
∫
Ω ‖gn(·)‖X dµ < ∞, we first prove that

(11) lim inf
l→∞

1
l

l∑
k=1

‖Skf(ω)‖X < ∞ for almost all ω ∈ A.

To do this, let

(12) F (ω) := lim inf
n→∞

1
n

n∑
j=1

χA(ω)‖Sjf(ω)‖X ,

and

(13) Fn(ω) := inf
m≥n

1
m

m∑
j=1

χA(ω)‖Sjf(ω)‖X .

Then we have

(14) 0 ≤ Fn(ω) ↑ F (ω) as n → ∞, and Fn ∈ L̃,

where the last property comes from the assumption that χA · Sjf ∈ L for
j ≥ 1 and the definition of L̃, together with Property (B). Furthermore, we
have
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‖Fn‖
eL
≤ 1

n

∥∥∥∥∥∥
n∑

j=1

χA(·)‖Sjf(·)‖X

∥∥∥∥∥∥
eL

≤ 1
n

n∑
j=1

‖χA(·)‖Sjf(·)‖X‖
eL

=
1
n

n∑
j=1

‖χA · Sjf‖L (by (7) and (d)),

whence

sup
n≥1

‖Fn‖
eL

= lim inf
n→∞

‖Fn‖
eL

(15)

≤ lim inf
n→∞

1
n

n∑
j=1

‖χA · Sjf‖L < ∞ (by (14) and (1)).

Using this, together with (14) and Properties (C) and (B), we find

(16) F ∈ L̃,

which proves that 0 ≤ F (ω) < ∞ for almost all ω ∈ Ω, and this completes
the proof of (11).

Now, from (10), (11) and the assumption µ(A) > 0 we can take ω ∈ A
such that∫

Ω
‖gn(·)‖X dµ ≤ lim inf

l→∞

1
l

M

l∑
k=1

‖Skf(ω)‖X + ‖gn(ω)‖X < ∞.

This implies that gn ∈ L1(Ω;X). Then we apply Theorem 4.2.1 of [3] to
infer that the limit

ĝn(ω) := lim
l→∞

1
l

l∑
k=1

gn(T kω)

exists for almost all ω ∈ Ω. (Incidentally, we note that, by the ergodicity of
T , we have ĝn(ω) =

∫
Ω gn(·) dµ for almost all ω ∈ Ω.) Using this and (8),

we can define an X-valued strongly measurable function hn on Ω as follows:

(17) hn(ω) := lim
l→∞

−1
l

l∑
k=1

Skfn(ω) = gn(ω) − lim
l→∞

1
l

l∑
k=1

gn(T kω)

= gn(ω) − ĝn(ω) (for almost all ω ∈ Ω).

Since ĝn ◦ T = ĝn, it follows from (8) that

(18) hn ◦ T − hn = gn ◦ T − gn = fn,

and from (9) and (12) that

‖χA(ω)hn(ω)‖X ≤ lim inf
l→∞

1
l

l∑
k=1

χA(ω)‖Skfn(ω)‖X(19)
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≤ lim inf
l→∞

M

l

l∑
k=1

χA(ω)‖Skf(ω)‖X = MF (ω),

so that, by properties (a), (b), (7) and (16), we have

(20) χA · hn ∈ L, and ‖χA · hn‖L ≤ M‖F‖
eL
.

At this point we remark that, by using the argument given on pp. 290–
291 in [5], we may assume without loss of generality that T is an ergodic
automorphism of (Ω,A, µ). Since Skfn = hn ◦T k −hn for k ≥ 1 by (18) and
fn ∈ L by (8), with this assumption we see that

1
l

l∑
k=1

‖χA · Skfn‖L + ‖χA · hn‖L ≥ 1
l

l∑
k=1

‖χA · (hn ◦ T k)‖L

=
1
l

l∑
k=1

‖(χA ◦ T−k) · hn‖L (by (d))

≥

∥∥∥∥∥
(

1
l

l∑
k=1

χA ◦ T−k

)
· hn

∥∥∥∥∥
L

;

where, putting

dn(ω) := inf
m≥n

1
m

m∑
k=1

χA(T−kω) (n ≥ 1, ω ∈ Ω),

we have by the Birkhoff pointwise ergodic theorem that

(21) 0 ≤ d1(ω) ≤ d2(ω) ≤ . . . −→ µ(A) > 0 for almost all ω ∈ Ω.

Therefore, from (9) and (20) we see (cf. also properties (a) and (b)) that

(22) lim inf
l→∞

‖dl · hn‖L ≤ lim inf
l→∞

∥∥∥∥∥
(

1
l

l∑
k=1

χA ◦ T−k

)
· hn

∥∥∥∥∥
L

≤ lim inf
l→∞

1
l

l∑
k=1

‖χA · Skfn‖L + ‖χA · hn‖L

≤ M

(
lim inf

l→∞

1
l

l∑
k=1

‖χA · Skf‖L + ‖F‖
eL

)
,

and from (21), property (a) and (1) that

sup
l≥1

‖dl · hn‖L = lim inf
l→∞

‖dl · hn‖L < ∞,
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and consequently from properties (c), (b) and (21) that µ(A)hn ∈ L, and
thus

(23) hn ∈ L (n ≥ 1).

For n ≥ 1, we now define a real-valued nonnegative measurable function
pn on Ω by

(24) pn(ω) := inf
m≥n

‖hm(ω)‖X (ω ∈ Ω).

It follows from (23), property (b), the definition of L̃, and Property (B) that
pn ∈ L̃, and dn · pn ∈ L̃. Then, as in (22), we can see (cf. (7), property (b),
and (1)) that

lim inf
n→∞

‖dn · pn‖
eL
≤ lim inf

n→∞
‖dn · hn‖L ≤ lim inf

n→∞

∥∥∥∥∥
(

1
n

n∑
k=1

χA ◦ T−k

)
· hn

∥∥∥∥∥
L

≤ M

(
lim inf
n→∞

1
n

n∑
k=1

‖χA · Skf‖L + ‖F‖
eL

)
< ∞.

Here, the relation

0 ≤ dn(ω)pn(ω) ≤ dn+1(ω)pn+1(ω) (n ≥ 1, ω ∈ Ω),

together with Property (A), implies that ‖dn ·pn‖
eL
≤ ‖dn+1 ·pn+1‖

eL
. Hence

we have supn≥1 ‖dn · pn‖
eL

= lim infn→∞ ‖dn · pn‖
eL

< ∞; and from Property
(C) there exists ũ ∈ L̃ such that dn(ω)pn(ω) ≤ ũ(ω) for almost all ω ∈ Ω and
all n ≥ 1. Using pn(ω) ≤ pn+1(ω) (cf. (24)), we then find that if l ≥ n ≥ 1,
then dl(ω)pl(ω) ≥ dl(ω)pn(ω). Therefore, letting n ≥ 1 fixed, we have by
(21) that

µ(A)pn(ω) = lim
l→∞

dl(ω)pn(ω)(25)

≤ lim
l→∞

dl(ω)pl(ω) ≤ ũ(ω) for almost all ω ∈ Ω.

Lastly, let ω ∈ Ω be such that pn(ω) ≤ ũ(ω)/µ(A) < ∞ for all n ≥ 1. (By
(25) and the fact ũ ∈ L̃ we see that the relation pn(ω) ≤ ũ(ω)/µ(A) < ∞
holds for almost all ω ∈ Ω and all n ≥ 1.) Then we have

lim inf
n→∞

‖hn(ω)‖X = lim
n→∞

pn(ω) ≤ ũ(ω)/µ(A) < ∞ (cf. (24)).

Since X is a reflexive Banach space by assumption, the closed ball {x ∈ X :
‖x‖X ≤ (ũ(ω)+1)µ(A)−1} is weakly compact, and hence weakly sequentially
compact by Theorem V.6.1 of [2]. Since the set {n ≥ 1 : ‖hn(ω)‖X ≤
(ũ(ω) + 1)µ(A)−1} is infinite, it then follows that there exists h(ω) ∈ X
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which is a weak-limit point of a subsequence of the sequence {hn(ω) : n ≥ 1}
in X. Using the Schauder basis {ej : j ≥ 1} of X, we write

(26) h(ω) =
∞∑

j=1

cj(ω)ej , where cj(ω) = ϕj(h(ω)) (cf. (2)).

Here we note, by the definition of hn (see (17) and (5)), that for almost
all ω ∈ Ω we have

hn(ω) = lim
l→∞

−1
l

l∑
k=1

Skfn(ω) = lim
l→∞

−1
l

l∑
k=1

k−1∑
m=0

fn(Tmω)

= lim
l→∞

−1
l

l∑
k=1

k−1∑
m=0

 n∑
j=1

aj(Tmω)ej


= lim

l→∞

n∑
j=1

(
−1
l

l∑
k=1

k−1∑
m=0

aj(Tmω)

)
ej .

Therefore, if n ≥ j ≥ 1, then for almost all ω ∈ Ω we can define

bj(ω) := lim
l→∞

−1
l

l∑
k=1

k−1∑
m=0

aj(Tmω)(
= lim

l→∞
ϕj

(
−1
l

l∑
k=1

Skfn(ω)

)
= ϕj(hn(ω))

)
,

where the last equality comes from the fact that ϕj ∈ X∗. That is, we have
gotten a sequence {bj : j ≥ 1} of real-valued measurable functions on Ω such
that for almost all ω ∈ Ω and all n ≥ 1, the following equality holds:

(27) hn(ω) =
n∑

j=1

bj(ω)ej .

Since h(ω) =
∑∞

j=1 cj(ω)ej is a weak-limit point of a subsequence of the
sequence {hn(ω) : n ≥ 1}={

∑n
j=1 bj(ω)ej : n ≥ 1} in X for almost all

ω ∈ Ω, it then follows that

ck(ω) = ϕk(h(ω)) = lim
n′→∞

ϕk(hn′(ω)) = lim
n′→∞

ϕk

 n′∑
j=1

bj(ω)ej

 = bk(ω)

for almost all ω ∈ Ω and all k ≥ 1. Consequently, we conclude that h(ω) =∑∞
j=1 bj(ω)ej for almost all ω ∈ Ω. That is,

(28) lim
n→∞

‖h(ω) −
n∑

j=1

bj(ω)ej‖X = lim
n→∞

‖h(ω) − hn(ω)‖X = 0
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for almost all ω ∈ Ω. By this, we may consider h to be an X-valued strongly
measurable function on Ω.

On the other hand, since µ(A) > 0 and ũ ∈ L̃, it follows from (25) and
Property (B) that the function

(29) p(ω) := lim
n→∞

pn(ω) (= lim inf
n→∞

‖hn(ω)‖X) (ω ∈ Ω)

belongs to L̃. Using this and the fact that ‖h(ω)‖X = limn→∞ ‖hn(ω)‖X =
p(ω) for almost all ω ∈ Ω, which comes from (28), we observe (cf. the
definition of L̃ and property (d)) that h ∈ L. Furthermore, by (18) and (5),
we have that h(Tω) − h(ω) = limn→∞(hn(Tω) − hn(ω)) = limn→∞ fn(ω) =
limn→∞ Pnf(ω) = f(ω) for almost all ω ∈ Ω. This completes the proof.
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