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BOTT’S THEOREM ON SAMELSON PRODUCTS

Kei SUGATA

1. Introduction

Let G be a topological group. For x, y ∈ G, if x or y is the unit element, so
is the commutator xyx−1y−1. Hence the correspondence (x, y) 7→ xyx−1y−1

induces a map c : G ∧ G → G. For α ∈ πn(G) and β ∈ πm(G), the
composition

Sn+m = Sn ∧ Sm α∧β−→ G ∧ G
c−→ G

determines an element of πn+m(G), called the Samelson product, and de-
noted by 〈α, β〉. Note that the Samelson product is bilinear and satisfies a
kind of “anti-commutativity”, 〈α, β〉 = (−1)mn+1〈β, α〉.

Recall from [1] some results on homotopy groups of the unitary group:

π2i+1(U(t)) ∼= Z for 0 ≤ i < t,
π2i(U(t)) ∼= 0 for 0 ≤ i < t,
π2t(U(t)) ∼= Z/t!,

where the first and the second are in the stable range, and the third is in
the beginning of the unstable range.

To begin with, let us recall a theorem due to R. Bott concerning the
Samelson product:

Theorem ([2]). If α ∈ π2r+1(U(t)), β ∈ π2s+1(U(t)), γ ∈ π2t(U(t)) with
t = r + s + 1 are suitable generators, then

〈α, β〉 = r!s!γ.

This element does not vanish unless γ = 0, that is, unless r = s = 0.

Consider the homomorphisms induced by the standard embeddings:

· · · → π2t(U(t − 2)) → π2t(U(t − 1)) → π2t(U(t)).

Our purpose is to pull back the Bott’s result to π2t(U(t − 1)). Recall from
Kervaire [3] that

(1.1) π2t(U(t − 1)) ∼=


Z/12{ω} if t = 3,
Z/t!{γ} ⊕ Z/2{δ} if t : odd, t ≥ 5,

Z/(t!/2){ε} if t : even, t ≥ 4,

where ω, γ, δ and ε are generators.
Let α ∈ π2r+1(U(t − 1)) and β ∈ π2s+1(U(t − 1)) with t = r + s + 1

be generators in the stable range. Then we may set 1 ≤ r ≤ s, since
〈α, β〉 = 〈β, α〉. For the standard embedding i : U(t− 1) → U(t), it is easily
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seen that i ◦ α and i ◦ β are also generators of π2r+1(U(t)) and π2s+1(U(t))
respectively. Then applying Bott’s theorem, we have 〈i ◦ α, i ◦ β〉 = r!s!γ,
where γ is a suitable generator of π2t(U(t)). Further it is easily seen that
the Samelson product enjoys the naturality with respect to the standard
embedding i, that is, i◦ 〈α, β〉 = 〈i◦α, i◦β〉. Therefore, from the homotopy
exact sequence of the fibering U(t − 1) → U(t) → S2t−1, we can obtain
the order of 〈α, β〉 ∈ π2t(U(t − 1)). However, the knowledge of the order of
〈α, β〉 is not sufficient to see whether or not 〈α, β〉 is divisible by 2, since
π2t(U(t− 1)) has Z/2-component when t is odd and t ≥ 5. Our main result
is the following which we show by extending the method of the proof of
Bott’s theorem:

Theorem 1. If α ∈ π2r+1(U(t−1)) and β ∈ π2s+1(U(t−1)) with t = r+s+1
are generators in the stable range, then

〈α, β〉 =


ω if t = 3,
r!s!γ ⊕ δ if t = 5,
r!s!γ if t : odd, t ≥ 7,

(r!s!/2)ε if t : even, t ≥ 4,

where ω, γ, δ and ε are suitable generators as seen in (1.1).

Most of the cases in this theorem are verified without difficulties from
homotopy exact sequences of fiberings. In §2, we prove easy part of Theo-
rem 1. In §3, we prove difficult part of Theorem 1 which is a generalization
of Theorem II of [6], and the proof is parallel to that given in [6].

Acknowledgements. The author wishes to thank Professor M. Mimura
for his useful advice, reading the manuscript of the paper.

2. Proof of easy part of Theorem 1

2.1. The case t = 3 (r = s = 1). As in the proof of Lemma 1.6 of [3], we
have a short exact sequence

0 → π7(S5) → π6(U(2)) i∗→ π6(U(3)) → 0,

which is expressed as

0 → Z/2 → Z/12 → Z/6 → 0.

For the generators α, β ∈ π3(U(2)), the elements i∗α, i∗β ∈ π3(U(3)) are
also generators. By Bott’s theorem, i∗〈α, β〉 = 〈i∗α, i∗β〉 ∈ π6(U(3)) is a
generator, and so is 〈α, β〉.
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2.2. The case t is even. As in the proof of Lemma 1.6 of [3], we have a
short exact sequence

0 → π2t(U(t − 1)) i∗→ π2t(U(t)) → π2t(S2t−1) → 0,

which is expressed as

0 → Z/(t!/2) → Z/t! → Z/2 → 0.

For the generators α ∈ π2r+1(U(t−1)) and β ∈ π2s+1(U(t−1)), the elements
i∗α ∈ π2r+1(U(t)) and i∗β ∈ π2s+1(U(t)) are also generators. By Bott’s
theorem, i∗〈α, β〉 = 〈i∗α, i∗β〉 is of order t!/r!s!, and so is 〈α, β〉. Hence
〈α, β〉 = r!s!/2 ∈ Z/(t!/2).

2.3. The case t is odd and r > 1. Since r > 1, we have r ≤ s < t − 2.
Hence there exist generators in the stable range α̃ ∈ π2r+1(U(t − 2)) and
β̃ ∈ π2s+1(U(t − 2)) such that i∗α̃ = α and i∗β̃ = β.

Consider the homomorphisms induced by the standard embeddings:

· · · → π2t(U(t − 2)) i∗→ π2t(U(t − 1))
i′∗→ π2t(U(t)),

where we recall from Matsunaga [4] that

π2t(U(t − 2)) ∼= Z/(t!(24, t + 1)/24).

To investigate the map i∗, we consider the homotopy exact sequence of the
fibering U(t − 2) → U(t − 1) → S2t−3:

· · · → π2t+1(S2t−3) → π2t(U(t − 2)) i∗→ π2t(U(t − 1)) → π2t(S2t−3) → · · · ,

where it is known that πn+4(Sn) ∼= 0 for n ≥ 6 and πn+3(Sn) ∼= Z/24 for
n ≥ 5 (see [7]), so the sequence is expressed as

0 → Z/(t!(24, t + 1)/24) i∗→ Z/t! ⊕ Z/2 → Z/24.

For the generator 1 ∈ Z/(t!(24, t+1)/24), we have i∗(1) = 24/(24, t+1)⊕1 ∈
Z/t! ⊕ Z/2, since π2t(S2t−3) is cyclic.

By Bott’s theorem, i′∗i∗〈α̃, β̃〉 = 〈i′∗i∗α̃, i′∗i∗β̃〉 is of order t!/r!s!. It follows
that 〈α̃, β̃〉 is also of order t!/r!s!, since i′∗i∗ does not reduce the order of
〈α̃, β̃〉. This implies 〈α̃, β̃〉 = r!s!(24, t + 1)/24 ∈ Z/(t!(24, t + 1)/24), so we
have

〈α, β〉 = 〈i∗α̃, i∗β̃〉 = i∗〈α̃, β̃〉 =

{
4 ⊕ 1 if r = s = 2 (t = 5),
r!s! ⊕ 0 if t : odd, t ≥ 7 and r > 1.

The other case “t is odd, t ≥ 5 and r = 1” is verified in a similar way to
the proof of Bott’s theorem.
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3. The case “t is odd, t ≥ 5 and r = 1”

3.1. Method.
The Samelson product is compatible with the embedding SU(n) → U(n):

πk(SU(n)) ⊗ πl(SU(n))

²²

〈−,−〉 // πk+l(SU(n))

²²
πk(U(n)) ⊗ πl(U(n))

〈−,−〉 // πk+l(U(n)),

where it is clear that the vertical homomorphisms are isomorphic if k ≥ 2
and l ≥ 2. Therefore we may consider the homotopy groups of the special
unitary groups instead of those of the unitary groups.

When n < m, there are two embeddings of SU(n) in SU(m); we denote
by im,n and jm,n the embeddings which identify SU(n) with the following
two subgroups of SU(m) respectively:(

SU(n) 0
0 1

)
,

(
1 0
0 SU(n)

)
.

Consider the composite of the following maps:

SU(2) ∧ SU(t − 1)
it−1,2∧1
−−−−−→ SU(t − 1) ∧ SU(t − 1) c−→ SU(t − 1),

where c is the commutator map defined in Introduction.
The image group jt−1,t−3(SU(t−3)) commutes with it−1,2(SU(2)) elemen-

twisely in SU(t−1). Hence if we write Wt−1,2 for SU(t−1)/jt−1,t−3(SU(t−
3)) and denote by p the natural projection, the composition above induces
a map λ : S3Wt−1,2 → SU(t − 1) which makes the following diagram com-
mutative:

SU(2) ∧ SU(t − 1)

1∧p
²²

c◦(it−1,2∧1)
// SU(t − 1).

S3Wt−1,2

λ

44iiiiiiiiiiiiiiiii

According to Bott [2], the map λ is suspendable, that is, there is a map

λE : S4Wt−1,2 −→ SU(t + 1)/SU(t − 1)

with the commutative diagram

π2t+1(S4Wt−1,2)

λE∗
²²

π2t(S3Wt−1,2)
Soo

λ∗
²²

π2t+1(SU(t + 1)/SU(t − 1)) ∆ // π2t(SU(t − 1)),
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where ∆ is the boundary homomorphism in the homotopy exact sequence

of the fibering SU(t − 1)
it+1,t−1−−−−−→ SU(t + 1) −→ SU(t + 1)/SU(t − 1).

Although Bott constructed the map λE in [2], we will reconstruct, for
our purpose, a map of S4Wt−1,2 to SU(t + 1)/SU(t − 1) which also makes
the above diagram commutative, and so we denote by λ̃ the reconstructed
map.

Consider the following commutative diagram:

π3(SU(2)) ⊗ π2t−3(SU(t − 1))

h
²²

1∗⊗p∗ // π3(S3) ⊗ π2t−3(Wt−1,2)

h
²²

π2t(SU(2) ∧ SU(t − 1))
(1∧p)∗ //

(c◦(it−1,2∧1))∗
²²

π2t(S3Wt−1,2),

λ∗ssgggggggggggggggggggg

π2t(SU(t − 1))

where h is the obvious homomorphism which sends f ⊗ g to f ∧ g. For
the generator α ∈ π3(SU(t − 1)), there exists a generator α′ ∈ π3(SU(2))
such that it−1,2∗(α

′) = α. Then the Samelson product 〈α, β〉 is expressed as
follows:

〈α, β〉 = c ◦ (α ∧ β)

= (c ◦ (it−1,2 ∧ 1))∗ ◦ h(α′ ⊗ β)

= λ∗ ◦ h ◦ (1∗ ⊗ p∗)(α′ ⊗ β)

= ∆ ◦ λ̃∗ ◦ S ◦ h ◦ (1∗ ⊗ p∗)(α′ ⊗ β).

(3.1)

In this expression, we have the following:

Proposition 3.2.
(i) h and S are isomorphisms.
(ii) ∆ is an epimorphism.

Proof. As for (i), we consider the following commutative diagram:

π2t−3(Wt−1,2)

S3

²²
π3(S3) ⊗ π2t−3(Wt−1,2)

n
55jjjjjjjjjjjjjjj

h // π2t(S3Wt−1,2),

where n is the natural isomorphism. Since Wt−1,2 = S2t−5×S2t−3 is (2t−6)-
connected, S3 is an isomorphism by the suspension theorem (cf. [8]). Hence
h is an isomorphism. Moreover S in (3.1) is an isomorphism again by using
the suspension theorem.
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As for (ii), we consider the homotopy exact sequence of the fibering
SU(t − 1) → SU(t + 1) → SU(t + 1)/SU(t − 1):

· · · −→ π2t+1(SU(t + 1)/SU(t − 1)) ∆−→ π2t(SU(t − 1))

−→ π2t(SU(t + 1)) −→ · · · ,

where we have π2t(SU(t + 1)) = 0; so ∆ is an epimorphism. ¤

Consequently the factorization in (3.1) is expressed as follows:

Z ⊗ Z 1∗⊗p∗−−−−→ Z ⊗ (Z ⊕ Z/2) h−→ Z ⊕ Z/2

S−→ Z ⊕ Z/2 λ̃∗−→ Z ⊕ Z/2 ∆−→ Z/t! ⊕ Z/2.

However, for the generator β ∈ π2t−3(SU(t−1)), we have by [5] the following:

p∗(β) =

{
6 ⊕ 1 if r = 1, s = 3 (t = 5),
s! ⊕ 0 if t : odd, t ≥ 7 and r = 1,

in π2t−3(Wt−1,2) ∼= Z ⊕ Z/2. Therefore, in order to complete the proof of
Theorem 1, it is sufficient to prove the following:

Proposition 3.3. λ̃∗ is an isomorphism.

Now we will construct the map λ̃.

3.2. Construction of λ̃.

As was defined before, λ is the map induced by c ◦ (it−1,2 ∧ 1):

SU(2) ∧ SU(t − 1)

1∧p
²²

c◦(it−1,2∧1)
// SU(t − 1).

S3Wt−1,2

λ

44iiiiiiiiiiiiiiiii

Let X = S3Wt−1,2. For the sake of our convenience we represent SX as the
quotient X × [0, π/2]/(X × {0} ∪ X × {π/2}). For each θ ∈ [0, π/2] and for
1 ≤ i < j ≤ n, we define an element Tn(θ; i, j) ∈ SU(n) as follows:

Tn(θ; i, j)ek =


cos θ ei + sin θ ej if k = i,

− sin θ ei + cos θ ej if k = j,

ek otherwise,

where ek (1 ≤ k ≤ n) is the n-tuple with k-th coordinate 1 and all others 0.
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We also define a map Tθ : SU(t + 1) → SU(t + 1) as follows:

Tθ =


Tt+1(3θ; 2, t) if 0 ≤ θ ≤ π

6 ,

Tt+1(3θ − π
2 ; 1, 2) ◦ Tt+1(π

2 ; 2, t) if π
6 ≤ θ ≤ π

3 ,

Tt+1(3θ − π; 2, t + 1) ◦ Tt+1(π
2 ; 1, 2) ◦ Tt+1(π

2 ; 2, t) if π
3 ≤ θ ≤ π

2 ,

where P denotes the inner automorphism induced by P ∈ SU(n):

P (A) = PAP−1 for A ∈ SU(n).

Then the two groups it+1,2(SU(2)) and Tπ/2◦it+1,t−1(SU(t−1)) commute
elementwisely. Further, Tθ ◦ it+1,t−1(g) = it+1,t−1(g) for any θ ∈ [0, π/2] and
any g ∈ jt−1,t−3(SU(t − 3)), since the elements in it+1,t−1 ◦ jt−1,2(SU(2))
commute with Tt+1(θ; 2, t), Tt+1(θ; 1, 2) and Tt+1(θ; 2, t + 1). Hence the
two groups it+1,2(SU(2)) and Tθ ◦ it+1,t−1 ◦ jt−1,t−3(SU(t − 3)) commute
elementwisely. Thus the map

ϕ : SU(2) ∧ SU(t − 1) × [0, π/2] −→ SU(t + 1)

defined by

ϕ(f, g, θ) = c ◦
(
it+1,2 ∧ (Tθ ◦ it+1,t−1)

)
(f, g)

for f ∈ SU(2), g ∈ SU(t − 1) and θ ∈ [0, π/2] induces a map

ϕ : CX = X × [0, π/2]/X × {π/2} −→ SU(t + 1).

Since T0 is the identity map, ϕ restricted to X×{0} is precisely it+1,t−1◦λ.
Hence, for the bundle projection τ : SU(t+1) → SU(t+1)/it+1,t−1(SU(t−
1)), the composite τ ◦ϕ maps X ×{0} to the base point. Thus we may take
the map induced by τ ◦ ϕ for the required map

λ̃ : SX −→ SU(t + 1)/SU(t − 1).

By these constructions, we have the following consequence:

Proposition 3.4. The map λ̃ makes the following diagram commutative:

π2t+1(S4Wt−1,2)

λ̃∗
²²

π2t(S3Wt−1,2)
Soo

λ∗
²²

π2t+1(SU(t + 1)/SU(t − 1)) ∆ // π2t(SU(t − 1)),

where ∆ is the boundary homomorphism in the homotopy exact sequence of
the fibering SU(t − 1) → SU(t + 1) → SU(t + 1)/SU(t − 1).
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Proof. Consider the following diagram:

π2t+1(CX,X)

ϕ∗

²²

(proj.)∗
&&LLLLLLLLL

∂1

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

π2t+1(SX)

λ̃∗
²²

π2t(X)Soo

λ∗
²²

π2t+1(SU(t + 1)/SU(t − 1)) ∆ // π2t(SU(t − 1)),

π2t+1(SU(t + 1), SU(t − 1))

τ∗

88rrrrrrrrr ∂2

22eeeeeeeeeeeeeeeeeeeeeeeee

where ∂i (i = 1, 2) are the boundary homomorphisms in the homotopy exact
sequence of the pair. It follows from the constructions that the left-hand
side and the outside quadrilaterals are commutative, and it is clear that the
triangles are also commutative. Since ∂1 is clearly isomorphic, the rectangle
is also commutative. ¤

3.3. Proof of Proposition 3.3.

Consider the following two fiberings

SU(t − 2)/SU(t − 3) i1−→ SU(t − 1)/SU(t − 3)
p1−→ SU(t − 1)/SU(t − 2),

SU(t)/SU(t − 1) i2−→ SU(t + 1)/SU(t − 1)
p2−→ SU(t + 1)/SU(t)

induced respectively by the embeddings

SU(t − 3)
jt−2,t−3−−−−−→ SU(t − 2)

jt−1,t−2−−−−−→ SU(t − 1),

SU(t − 1)
it,t−1−−−→ SU(t)

it+1,t−−−→ SU(t + 1).

Now we consider the following diagram:

π2t+1(S(S3 ∧ S2t−5))
λE
∗ //

(S4i1)∗
²²

π2t+1(SU(t)/SU(t − 1))

i2∗
²²

π2t+1(S4Wt−1,2)
λ̃∗ //

(S4p1)∗
²²

π2t+1(SU(t + 1)/SU(t − 1))

p2∗
²²

π2t+1(S(S3 ∧ S2t−3))
λE
∗ // π2t+1(SU(t + 1)/SU(t)),

(3.5)

where the vertical sequences are clearly exact, and λE is the map defined by
Bott in [2]. When λE is a map between spheres of the same dimension, λE
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is of degree one by Proposition 2.2 of [2]. Hence it is sufficient to prove that
the above diagram is commutative.

(i) As for the commutativity of the first square of the diagram (3.5), it is
sufficient to prove that the following diagram is homotopy commutative:

(C(S3 ∧ S2t−5), S3 ∧ S2t−5) s //

C(1∧i1)
²²

(SU(t), SU(t − 1))

it+1,t

²²
(C(S3Wt−1,2), S3Wt−1,2)

ϕ // (SU(t + 1), SU(t − 1)),

(3.6)

where s is the map constructed from a map

s : SU(2) ∧ SU(t − 2) × [0, π/2] −→ SU(t)

defined in [2] by

s(f, g, θ) = c ◦
(
it,2 ∧ (Tt(θ; 2, t) ◦ it,t−1 ◦ jt−1,t−2)

)
(f, g)

for f ∈ SU(2), g ∈ SU(t − 2) and θ ∈ [0, π/2]. Then observe that the map
s induces λE.

From the definitions, it follows immediately that

ϕ ◦ (1 ∧ jt−1,t−2 × 1)(f, g, θ) =

{
it+1,t ◦ s(f, g, 3θ) if 0 ≤ θ ≤ π/6,

base point if π/6 ≤ θ ≤ π/2.

Here we have that ϕ ◦ (1 ∧ jt−1,t−2 × 1) is homotopic, as a map of pairs, to
it+1,t ◦ s by an obvious homotopy, and we can easily see that this homotopy
induces a homotopy which makes the diagram (3.6) commutative.

(ii) As for the commutativity of the second square of the diagram (3.5), it
is sufficient to prove that the following diagram is homotopy commutative:

(C(S3Wt−1,2), S3Wt−1,2)
ϕ //

C(1∧p1)

²²

(SU(t + 1), SU(t − 1))

1
²²

(C(S3 ∧ S2t−3), S3 ∧ S2t−3) s // (SU(t + 1), SU(t)),

(3.7)

where s is the map constructed from a map

s : SU(2) ∧ SU(t − 1) × [0, π/2] −→ SU(t + 1)

defined in [2] by

s(f, g, θ) = c ◦
(
it+1,2 ∧ (Tt+1(θ; 2, t + 1) ◦ it+1,t ◦ jt,t−1)

)
(f, g),

for f ∈ SU(2), g ∈ SU(t − 1) and θ ∈ [0, π/2].
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By the definition of ϕ, the image ϕ(f, g, θ) is included in it+1,t(SU(t)) if
0 ≤ θ ≤ π/3. Hence we can deform ϕ along 0 ≤ θ ≤ π/3, that is, there is a
homotopy starting with ϕ:

Fk(f, g, θ) = c ◦
(
it+1,2 ∧ (Tµ ◦ it+1,t−1)

)
(f, g) k ∈ [0, 1],

where µ = (1 − k)θ + k((θ + π)/3). Denote by ϕ′ the final map of this
homotopy, then ϕ′ is a map defined by

ϕ′(f, g, θ) = c ◦
(
it+1,2 ∧ (Tt+1(θ; 2, t + 1) ◦ Tt+1(π/2; 1, 2)

◦ Tt+1(π/2; 2, t) ◦ it+1,t−1)
)
(f, g).

Thus ϕ is homotopic to ϕ′ as a map of pairs into (SU(t + 1), SU(t)).
Next, we consider a composite map

ρ = Tt−1(π/2; 2, 3) ◦ Tt−1(π/2; 3, 4) ◦ · · · ◦ Tt−1(π/2; t − 2, t − 1),

which is homotopic to the identity, since each Tn(π/2; i, j) : SU(n) → SU(n)
is clearly homotopic to the identity. Then it follows by an easy calculation
that

Tt+1(π/2; 1, 2) ◦ Tt+1(π/2; 2, t) ◦ it+1,t−1 ◦ ρ = it+1,t ◦ jt,t−1.

Therefore we have

ϕ ' ϕ′ ' ϕ′ ◦ (1 ∧ ρ × 1) = s

as a map of pairs, and we can easily see that the homotopy between ϕ and
s induces a homotopy which makes the diagram (3.7) commutative.
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