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A NOTE ON QUOTIENTS OF ORTHOGONAL GROUPS

Akihiro OHSITA

Abstract. We discuss the mod 2 cohomology of the quotient of a com-
pact classical Lie group by its maximal 2-torus. In particular, the case
of the orthogonal group is treated. The case of the spinor group is not
included.

1. Introduction.

Let G be a compact simple Lie group. It is well known that for classical
G, the cohomology modulo 2 of BG does not have higher 2-torsion ([7]).

According to Adams [1], a subgroup of G is called a 2-torus when it is
isomorphic to an elementary abelian 2-group. Let V be a 2-torus of the
maximal rank. The rank of V is called 2-rank of G. These two notions are
used to study the cohomology ring of a compact Lie group (for instance,
[2], [3], [4], [6], [11]). G/V is, for example, connected with calculation of
2-roots, i.e. the eigenvalues as functions associated with the restriction of
the adjoint representation to V . When G = SU(n), U(n) or Sp(n), it is
known by some topologists that G/V does not have higher 2-torsion. But
the case of O(n) does not seem so obvious. The purpose of this paper is to
show the following theorem.

Theorem 1.1. H∗(O(n)/V ; Z) has no higher 2-torsion.

The corresponding result also holds when one replace O(n) with SO(n).
The other classical cases above are also verified similarly to our proof for
O(n). The case of Spin(n) seems much complicated. In this paper we will
make use of the method of [3], [8] and [5]. We denote the mod 2 cohomology
of a space X simply by H∗X.

2. Sq1-cohomology and the proof.

As is well known, the Serre spectral sequence for the fibration

O(n)/V → BV → BO(n)

collapses with respect to the mod 2 cohomology, and the image of
H∗(BO(n)) is generated by the elementary symmetric polynomials, i.e. the
Stiefel-Whitney classes. Thus let H∗(BV ) = F 2[ t1, . . . , tn ], and then
H∗(O(n)/V ) = F 2[ t1, . . . , tn ] / (w1, . . . , wn), where we abuse the same
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symbol ti for its image. The method of [5] is applicable for computing the
Sq1-cohomology.

Let A0 be F 2[ t1, . . . , tn ]/(w1), which also admits the Sq1-action as a
differential. We sketch the program here. We consider the Sq1-cohomology
of successive quotients of A0 in a slightly different order so as to regard the
multiplication by wi as a monomorphic Sq1-cochain map. The multiplication
by w3 on A0 commutes with the Sq1-action, since Sq1(w2i−1x) = w2i−1Sq1x.
And since Sq1(w2ix) = w2i+1x+w2iSq1x in A0, the multiplication by w2 is a
cochain map on A1 = A0/(w3) with respect to Sq1. Note that if one consider
A0/(w2) instead of A1 above, Sq1 cannot act on it since Sq1w2 = w3 in A0,
that is, the ideal in A0 is not closed under the Sq1-action. Thus we define
elements of A0 as follows: g1 = w3, g2 = w2, g3 = w5, g4 = w4 and so on.
If n is odd, this definition goes well for all gk. If n is even, let gn−1 = wn.
Let Ak be A0/(g1, . . . , gk), on which the multiplication by gk+1 acts as a
cochain map. An−1 is isomorphic to H∗(O(n)/V ).

Now we begin to calculate H∗(Ak). First, it is immediate to see that
H∗(A0) = F 2 and H∗(A1) =

∧
(w2). Define α4i−1 by

∑
j1<j2<···<j2i

tj1tj2
2 · · · tj2i

2

in A0. This element satisfies Sq1α4i−1 = w2i
2. We assert

Lemma 2.1.

H∗(Ak) =
{ ∧

(α3, α7, . . . , α4m−1) (k = 2m)∧
(α3, α7, . . . , α4m−1, gk+1) (k = 2m + 1)

except for the case n is even and k = n − 1.

Proof. Note that gk+1 = wk+1 in the above. We proceed by induction. We
have an exact sequence

0 −→ Ak−1
·gk−→ Ak−1 −→ Ak −→ 0

and hence the resulting long exact sequence

· · · −→ H∗(Ak−1)
·[gk]−→ H∗(Ak−1) −→ H∗(Ak) −→ H∗(Ak−1) −→ · · · .

If k is odd, gk = wk+2 is 0 in the cohomology because wk+2 = Sq1wk+1

in Ak−1. Thus the long exact sequence splits into short ones

0 −→ H∗(Ak−1) −→ H∗(Ak) −→ H∗(Ak−1) −→ 0.

It is easy to check that H∗(Ak) = H∗(Ak−1)⊗
∧

(wk+1), and the inductive
step is proved in this case.

If k is even, H∗(Ak−1) = H∗(Ak−2)⊗
∧

(gk) and whence the following
sequence is exact.

0 −→ H∗(Ak−2) −→ H∗(Ak) −→ gk · H∗(Ak−2) −→ 0
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Then diagram chasing shows H∗(Ak) = H∗(Ak−2)⊗
∧

(α4m−1). Therefore
the lemma is proved. ¤

Finally we deal with the case n is even and k = n − 1. In this case
gk (= wn) is a trivial cocycle. To see this, we note wi = w′

i + tnw′
i−1, where

w′
i is the i-th elementary symmetric polynomial in t1, . . . , tn−1. Thus in A0,

wn = w′
n−1w

′
1 = Sq1w′

n−1. Moreover, it is easy to see w′
i = (w′

1)
i = tn

i and
hence w′

n−1 = tn
n−1 in An−2. We can reason similarly if we take ti instead

of tn for any i.
Since the multiplication by wn induces a null homomorphism on coho-

mology, we have a short exact sequence

0 −→ H∗(An−2) −→ H∗(An−1) −→ H∗(An−2) −→ 0,

where H∗(An−2) =
∧

(α3, α7, . . . , α4m−5). Again by diagram chasing, we
obtain H∗(An−1) = H∗(An−2)⊗

∧
(tnn−1). Summing up all, we have ob-

tained

Proposition 2.2.

H∗(H∗(O(n)/V ); Sq1) =
{ ∧

(α3, α7, . . . , α4m−1) (n = 2m + 1)∧
(α3, α7, . . . , α4m−5, β) (n = 2m),

where β is represented by ti
n−1 for arbitrary i.

Here in H∗(BV ), Sq1(α4i−1) = w2i
2 and Sq1(β) = ti

n = wn when n is
even, both of which has the image null in H∗(O(n)/V ).

In H∗(H∗(O(n)/V ); Sq1) the degree of the generators are as follows:
deg α4i−1 = 4i− 1 and deg β = 2k− 1 (= n− 1). On the other hand, the ra-
tional cohomology of O(n)/V is of the same form. Therefore the Bockstein
spectral sequence collapses and O(n)/V does not have higher torsion. It is
immediate to see the similar result holds for SO(n).

As in [7], we describe H∗(O(n)/V ; Z) as a graded module as follows. Put

f(t) =
n∏

i=1

1 − ti

1 − t
,

g+(t) = (1 + tn−1)
k∏

i=1

(1 + t4i−1) =
∑

i

g+
i ti (g+

i ∈ Z),

g−(t) =
k∏

i=1

(1 + t4i−1) =
∑

i

g−i ti (g−i ∈ Z),

where k = max
{

i ∈ Z | i ≤ n − 1
2

}
. Proposition 3 deduces that these

three are the Poincaré polynomials of H∗(O(n)/V ; F 2), H∗(O(n)/V ; Q) for
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even n, and H∗(O(n)/V ; Q) for odd n, respectively. There then exist poly-
nomials r+(t) =

∑
i

r+
i ti (r+

i ∈ Z) and r−(t) =
∑

i

r−i ti (r−i ∈ Z) such that

f(t)− g+(t) =
(

1 +
1
t

)
r+(t) for even n and f(t)− g−(t) =

(
1 +

1
t

)
r−(t)

for odd n. (Note that a factorization into monic polynomials in rational co-
efficients can be realized already in integral coefficients since Z is integrally
closed.) Thus we obtain the next corollary.

Corollary 2.3.

H i(O(n)/V ; Z) =

{
Zg+

i ⊕ (Z/2Z)r+
i (n : even),

Zg−i ⊕ (Z/2Z)r−i (n : odd).
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