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SYMPLECTIC INVARIANTS ARISING
FROM A GRASSMANN QUOTIENT

AND TRIVALENT GRAPHS

Hiroki AKAZAWA

Abstract. In this paper, we study the sp-invariant graded algebra aris-
ing in a specific quotient of a Grassmann algebra, and identify it with
an algebra generated by trivalent graphs.
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1. Introduction

Let sp := sp2g(C) be the Lie algebra of symplectic matrices of degree 2g
over the complex number field C. Let H be the fundamental representation
of sp2g(C),

∧k the k-th exterior functor, and U the irreducible sp-module
isomorphic to

∧3H/H. Suppose g is large enough. Then
∧2U as well as∧2(

∧3H) contains a unique irreducible sp-component [22]sp, where [λ]sp de-
notes the irreducible sp-module corresponding to a partition λ. We consider
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100 H. AKAZAWA

the quotient space of the Grassmann algebra
∧

U (or
∧

(
∧3H)) divided by

the ideal ([22]sp), where ([22]sp) is the ideal generated by [22]sp ⊂
∧2U (or∧

(
∧3H)). The algebras

∧
U/([22]sp) and

∧
(
∧3H)/([22]sp) are important

in the study of the mapping class groups of surfaces. In particular, using
a classical theorem of H. Weyl in the invariant theory, S. Morita ([6]) gave
an interpretation of the sp-invariant space (

∧
U)sp (or (

∧
(
∧3H))sp) by the

algebra C(φ), where C(φ) denotes the commutative graded algebra freely
generated by the connected trivalent graphs, i.e., by the connected graphs
where each vertex meets exactly three ends of edges. Furthermore, recent
studies by Garoufalidis-Nakamura ([2],[3]), Kawazumi-Morita ([4],[5]) gave
relations of trivalent graphs in the symplectic invariant ideals of Grassmann
algebras. Let IHbis

0 be the ideal of C(φ) generated by the graph invariants
of type:

− +
1

2(g + 1)

{ ¥¦¤£ + §̈ ¡¢ +
1

2g + 1
¤£ ¡¢− ¦§¤¡ − ¥̈£¢ − 1

2g + 1
¤£¡¢ }

.

Here, the symbols indicate graphs differing from each other only in parts
where certain 4 distinct edges are connected as illustrated. Let (loop) denote
the ideal generated by graphs containing loops, where a loop is an edge which
begins and ends at the same vertex. Then the following theorem is shown
by S. Garoufalidis and H. Nakamura [2], [3]:

Theorem 1.1 ([2],[3], cf. [5, Remark 11.2]). There exists a stable isomor-
phism of graded algebras

C(φ)/(IHbis
0 + loop) →

(∧
U/([22]sp)

)sp

which multiplies degrees by 2. It gives also an isomorphism in the range of
g ≥ 3m.

Here, ‘stable’ means that the homogeneous subspace of degree m in the left
side is isomorphic to the homogeneous subspace of degree 2m in the right
side if g ≥ 3m.

Next, for the Grassmann algebra
∧

(
∧3H) and its ideal ([22]sp) generated

by [22]sp ⊂
∧2(

∧3H), we introduce the ideal IH∗ of C(φ), which is generated
by the graph invariants of type:

−

+
1

2(g + 1)

{ ¥¦¤£ − d + d − ¦§¤¡ + §̈ ¡¢ − d + d −
¥̈£¢ }

+
1

2(g + 1)(2g + 1)

{ ¤£ ¡¢− c c + cc − ¤£¡¢ }
.

(1.1)
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Observe that killing the graph invariants with loops in (1.1) yields the graph
invariants generating the ideal IHbis

0 , viz., IH∗+loop = IHbis
0 +loop ⊂ C(φ).

In this paper, we shall closely study the graph invariants generating the ideal
IH∗ in C(φ). In particular, we obtain the following:

Theorem 1.2. There exists a stable isomorphism of graded algebras

C(φ)/IH∗ →
(∧

(
∧3H)/([22]sp)

)sp

which multiplies degrees by 2. It gives also an isomorphism in the range of
g ≥ 3m.

The proof of Theorem 1.2 will be given in §4. By the above remark,
Theorem 1.1 immediately follows from Theorem 1.2.

2. Preparation

In this section, we briefly review the representation theory of a semisimple
Lie algebra and its Casimir operator. Especially, we describe about that in
the case of sp2g(C).

2.1. Review of the representation theory of a semisimple Lie al-
gebra. Let g be a semisimple Lie algebra over C. We take a maximal
subalgebra h of g acting diagonally on g by the adjoint representation

ad : H 7→ ad(H)(X) := [H,X].

Such a subalgebra exists and is unique up to inner automorphisms of g. We
fix one such h and call it the Cartan subalgebra of g. Then we find that h
acts diagonally on any representation V of g and that V will admit a direct
sum decomposition

V =
⊕

Vα,

where the direct sum runs over a finite set of α ∈ h∗ (linear characters of
h). Here, h acts on each Vα by multiplication by the eigenvalue α, i. e., for
any H ∈ h and v ∈ Vα we have

H(v) = α(H)v.

These eigencharacters α ∈ h∗ are called the weights of V and the Vα them-
selves are called weight spaces. Especially, for the adjoint representation we
have a direct sum decomposition, called the Cartan decomposition

(2.1) g = h ⊕
⊕
α∈R

gα.

The weights for the adjoint representation are called the roots of the Lie
algebra and the corresponding subspaces gα are called root spaces. The set
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of all roots is usually denoted R ⊂ h∗. For any H ∈ h and X ∈ gα we will
have

ad(H)(X) = α(H)X.

Then each root space gα is one dimensional. We can choose a lexicographic
ordering in h∗, and this allows that the roots can be divided into positive
and negative ones. And the maximal weight of a representation V is called
the highest weight of V .

The Killing form is a bilinear form on the Lie algebra g, and is defined by

B(X,Y ) := tr(ad(X) ◦ ad(Y )).

The Killing form B is nondegenerate on the semisimple Lie algebra g. We
find that the restriction of B to a Cartan subalgebra h is also nondegenerate
and that

(2.2) B(H,H ′) =
∑
α∈R

α(H)α(H ′)

for any H,H ′ ∈ h. By the nondegeneracy, any α ∈ h∗ has a unique Tα ∈ h
such that

B(Tα,H) = α(H)
for all H ∈ h. The map α 7→ Tα gives a linear isomorphism from h∗ to h.

For any Xα ∈ gα we can take some Yα ∈ g−α so that Hα := [Xα, Yα]
satisfies α(Hα) = 2. Then Hα ∈ h, and for any H ∈ h, we have

B(Hα,H) = B(H,Hα) = B(H, [Xα, Yα])

= B([H,Xα], Yα) = α(H)B(Xα, Yα)

by Jacobi’s identity. Especially, we have B(Hα,Hα) = 2B(Xα, Yα). Hence,
we find that

Tα =
Hα

B(Xα, Yα)
=

2Hα

B(Hα,Hα)
.

We denote the Killing form on h∗ by (α, β) := B(Tα, Tβ).
Let U1, ..., Un be a basis for the semisimple Lie algebra g, and U∗

1 , ..., U∗
n

be the dual basis with respect to the Killing form on g. Then the Casimir
element of g is given by

C = U1 · U∗
1 + · · · + Un · U∗

n.

Note that C is an element of the universal enveloping algebra Ug of g and
independent of the choice of a basis. We shall take a basis H1, ...,Hg of h
and nonzero Xα ∈ gα for each root α ∈ R so that {Hi, Xα; 1 5 i 5 g, α ∈ R}
forms a basis of g by (2.1). Taking this {Hi, Xα} as the above {U1, ..., Un},
we obtain

C =
g∑

i=1

Hi · H∗
i +

∑
α∈R

Xα · X∗
α.
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Moreover, by the nondegeneracy of B,

H∗
i =

Hi

B(Hi,Hi)
, X∗

α =
2Yα

B(Hα,Hα)
.

In general, the Casimir operator C acts on the irreducible representation
with the highest weight λ by multiplication by the scalar

(λ + ρ, λ + ρ) − (ρ, ρ) = (λ, λ) + (2λ, ρ).

Here, ρ denotes the half sum of the positive roots.

2.2. In the case of sp2g(C). The Lie algebra sp2g(C) is defined by the
space of the 2g × 2g matrices X satisfying the relation

tXJ + JX = O.

Here, J =
(

0 Ig

−Ig 0

)
and Ig is the g × g identity matrix.

As a Cartan subalgebra of sp2g(C), we can take the following:

h =


H =



a1

. . . 0
ag

−a1

0
. . .

−ag


; ai ∈ C


⊂ sp2g(C).

For convenience, the (g + i)-th row or the (g + j)-th column (1 5 i, j 5 g)
of any 2g × 2g matrix will be called the (−i)-th row or the (−j)-th column
respectively. Hence, h is spanned by the g matrices Hi := Ei,i −E−i,−i (1 5
i 5 g) where Ei,j is the matrix whose entries are 0 except 1 at the (i, j)-th
entry. We correspondingly take Lj (1 5 j 5 g) with Lj(Hi) = δi,j as basis
of the dual vector space h∗. Furthermore, as a basis of sp2g(C) we can take
the followings:

Hi = Ei,i − E−i,−i (1 5 i 5 g),
Xi,j = Ei,j − E−j,−i (1 5 i, j 5 g, i 6= j),
Yi,j = Ei,−j + Ej,−i (1 5 i < j 5 g),
Zi,j = E−i,j + E−j,i (1 5 i < j 5 g),
Ui = Ei,−i (1 5 i 5 g),
Vi = E−i,i (1 5 i 5 g).
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For any H =
∑

i aiHi ∈ h, we find that

ad(H)(Xi,j) = (ai − aj)Xi,j = (Li − Lj)(H)Xi,j ,
ad(H)(Yi,j) = (ai + aj)Yi,j = (Li + Lj)(H)Yi,j ,
ad(H)(Zi,j) = (−ai − aj)Zi,j = (−Li − Lj)(H)Zi,j ,
ad(H)(Ui) = 2aiUi = 2Li(H)Ui,
ad(H)(Vi) = −2aiVi = −2Li(H)Vi.

Hence, the set of all roots for sp2g(C) is

R = {±Li ± Lj ; 1 5 i, j 5 g} ⊂ h∗.

The set of all positive roots is

R+ = {Li + Lj}i5j ∪ {Li − Lj}i<j .

For each root α ∈ R, we find that

α = Li − Lj ⇒ Xα = Xi,j , Yα = Xi,j , Hα = Hi − Hj ,
α = Li + Lj ⇒ Xα = Yi,j , Yα = Zi,j , Hα = Hi + Hj ,
α = −Li − Lj ⇒ Xα = Zi,j , Yα = Yi,j , Hα = −Hi − Hj ,
α = 2Li ⇒ Xα = Ui, Yα = Vi, Hα = Hi,
α = −2Li ⇒ Xα = Vi, Yα = Ui, Hα = −Hi.

Next, we will compute the Killing form for sp2g(C). From (2.2), we have

B(H,H ′) = (4g + 4)(
∑

aibi)

for any H =
∑

aiHi and H ′ =
∑

biHi ∈ h. Hence, we can compute the
Casimir element of sp2g(C) as

C =
1

4g + 4

{ g∑
i=1

Hi · Hi +
∑

15i,j5g, i6=j

Xi,j · Xj,i

+
∑

15i<j5g

(
Yi,j · Zj,i + Zi,j · Yj,i

)
+ 2

g∑
i=1

(
Ui · Vi + Vi · Ui

)}
=

1
4g + 4

{∑
(i)

(
Ei,i · Ei,i − Ei,i · E−i,−i

)
+

∑
(i,j),ij>0,i6=j

(
Ei,j · Ej,i − Ei,j · E−i,−j

)
+

∑
(i,j),ij<0,i6=−j

(
Ei,j · Ej,i + Ei,j · E−i,−j

)
+

∑
(i)

(
Ei,−i · E−i,i + Ei,−i · E−i,i

)}
.
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Here, (i1, ..., in) indicates the summation over the set

{(i1, ..., in);−g 5 i1, ..., in 5 g, i1 · · · in 6= 0},
and henceforce, we conclude the following proposition.

Proposition 2.1. The Casimir element of sp2g(C) is given by

C =
1

4g + 4

∑
(i,j)

(
Ei,j · Ej,i − ε(ij)Ei,j · E−i,−j

)
∈ Usp2g(C).

Here, ε means the signum function.

3. sp-invariant algebras and trivalent graphs

As the fundamental representation of sp2g(C), we have the 2g-dimensional
vector space

H = C2g =
∑
(i)

Cxi.

In this section, we summarize the correspondence between the sp-invariant
of the exterior algebra

∧
(
∧3H) and the commutative algebra generated by

trivalent graphs.

3.1. Isomorphisms of graded algebras. At first, we consider tensors
of H as the representation of sp2g(C). The third exterior power of H is
decomposed as an sp-module as follows:∧3H ∼= H ⊕ U ∼= [1]sp⊕ [13]sp

for g ≥ 3. Furthermore, the second exterior power of
∧3H and U are

decomposed as sp-modules in the following way [6, Lemma 6.3]:∧2(
∧3H) ∼= [0]sp⊕ [12]sp⊕ [12]sp⊕ [2112]sp⊕ [14]sp⊕

∧2U,∧2U ∼= [0]sp⊕ [22]sp⊕ [12]sp⊕ [14]sp⊕ [2212]sp⊕ [16]sp.

In general, it is known that the sp-invariant space (H⊗2n)sp are gener-
ated by the basis corresponding to the graphs which are determined by
ways of choosing n pairs from 2n vertices. For example, in the case of
n = 1, the space (H ⊗ H)sp is generated by the sp-invariant

∑
(i) ε(i)(xi ⊗

x−i). In the case of n = 2, the space (H⊗4)sp is generated by the sp-
invariants

∑
(i,j) ε(ij)(xi ⊗ x−i ⊗ xj ⊗ x−j),

∑
(i,j) ε(ij)(xi ⊗ xj ⊗ x−i ⊗ x−j)

and
∑

(i,j) ε(ij)(xi⊗xj ⊗x−j ⊗x−i). Next, we will introduce an sp-invariant
αΓ ∈

∧2m(
∧3H), which are corresponding to the trivalent graph Γ with 2m

vertices. We call m the degree of the trivalent graph Γ. The quotient space
(
∧2m(

∧3H))sp in (H⊗6m)sp is generated by the αΓ’s. The map Γ → αΓ is
given as follows. Let Γ be a trivalent graph with vertex set Vert(Γ) and edge
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set Edge(Γ) and let Flag(Γ) be the set of flags, where a flag is by definition
a pair consisting of vertex and an incident half-edge. Then a total ordering
τ of Γ consists of the following data:

• a linear ordering of vertices Vert(Γ) = {v1, ..., v2m},
• a linear ordering of Flag(v) = {f1(v), f2(v), f3(v)} for each v ∈ Vert(Γ),
• an ordering of Flag(e) = {f+(e), f−(e)} for each e ∈ Edge(Γ).

Such a τ is called ∧-admissible if it satisfies the condition:

sgn
(

f1(v1) f2(v1) f3(v1) f1(v2) · · · f3(v2m)
f+(e1) f−(e1) f+(e2) f−(e2) · · · f−(e3m)

)
= 1

for every linear ordering of edges Edge(Γ) = {e1, ..., e3m}. We define f3i+j :=
fj(vi+1) (0 5 i < 2m, j = 1, 2, 3) and OR := {f+(e)}e∈Edge(Γ). For a
trivalent graph Γ given a total ordering τ , put

I := {i = (i1, ..., i6m); −g 5 ij 5 g, ik = −il ⇔ fk, fl is in the same edge},

and for any i ∈ I, set

ε(i) :=
∏

fk∈OR

ε(ik),

xi := xi1 ⊗ · · · ⊗ xi6m .

Then, we define an sp-invariant

α(Γ,τ) :=
∑
i∈I

ε(i)xi ∈ (H⊗6m)sp.

We find that the image of α(Γ,τ) via the standard projection H⊗6m →∧2m(
∧3H) is independent of ∧-admissible τ , which will be denoted by αΓ ∈

(
∧2m(

∧3H))sp. Since the kernel of
∧3H → U equals to H ∧

∑
(i) ε(i)(xi ∧

x−i), the image of αΓ in
∧2mU vanishes when the graph Γ has a loop.

Namely, (
∧2mU)sp is generated by the trivalent graphs with 2m verticies

without loops [2]. Therefore, if g is large enough, we have stable isomor-
phisms of graded algebras

C(φ) ∼=
⊕
m≥0

(
∧2m(

∧3H))sp =
(∧

(
∧3H)

)sp
,(3.1)

C(φ)/(loop) ∼=
⊕
m≥0

(
∧2mU)sp =

(∧
U

)sp
.(3.2)

Here, ‘loop’ denotes the ideal generated by the graphs containing loops.
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3.2. Isomorphisms of Grassmann quotients. Let Γ be a trivalent graph
and I,H,X be a graph as indicated in the following figures respectively.

, , ¡¡

¡¡

@
@

@

The graphs I,H,X.

Given an embedding of graphs I ↪→ Γ, let Γ = ΓI , ΓH , ΓX denote three
trivalent graphs constructed by replacing I-part in Γ by the graph I,H,X
respectively. For t = t1 ⊗ t2 ⊗ t3 ⊗ t4 ∈ H⊗4, we define sp-homomorphisms
fI , fH , fX : H⊗4 →

∧2(
∧3H) as follows:

fI(t) :=
∑
(e)

ε(e)(t1 ∧ t2 ∧ xe) ∧ (t3 ∧ t4 ∧ x−e),

fH(t) :=
∑
(e)

ε(e)(t1 ∧ t3 ∧ xe) ∧ (t4 ∧ t2 ∧ x−e),

fX(t) :=
∑
(e)

ε(e)(t1 ∧ t4 ∧ xe) ∧ (t2 ∧ t3 ∧ x−e).

And for any triple of scalars (a, b, c), we define

fa,b,c := afI + bfH + cfX : H⊗4 →
∧2(

∧3H),

Ia,b,c := (aΓI + bΓH + cΓX ; I ↪→ Γ) ⊂ C(φ).

Furthermore, we denote the composite of fa,b,c with the projection∧2(
∧3H) →

∧2U

by f̄a,b,c. Then,

Proposition 3.1 ([2, Proposition 2.1]). The stable isomorphism of equa-
tions (3.1), (3.2) induces stable isomorphism of graded algebras

C(φ)/Ia,b,c
∼=

(∧
(
∧3H)/(Imfa,b,c)

)sp
,

C(φ)/(Ia,b,c + loop) ∼=
(∧

U/(Imf̄a,b,c)
)sp

which multiply degrees by 2.

Definition 1. We define

fIH := fI − fH = f1,−1,0 : H⊗4 →
∧2(

∧3H),

IH := I1,−1,0 = (ΓI − ΓH ; I ↪→ Γ) ⊂ C(φ).
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From [2, Corollary 2.2], ImfIH ⊂
∧2(

∧3H) and Imf̄IH ⊂
∧2U are de-

composed as an sp-module in the following way:

ImfIH
∼= Imf̄IH

∼= [22]sp⊕ [12]sp⊕ [0]sp.

Therefore, we have the stable isomorphisms:

C(φ)/IH ∼=
(∧

(
∧3H)/(ImfIH)

)sp
,

C(φ)/(IH + loop) ∼=
(∧

U/(Imf̄IH)
)sp

.

4. Proof of Theorem 1.2

In this section, using the Casimir operator for the representation of
sp2g(C), we construct the projection from ImfIH (or Imf̄IH) to the irre-
ducible component [22]sp, and describe graph invariants generating ([22]sp)sp.

4.1. Projection Pr[22]sp
: ImfIH → [22]sp. As recalled in §2.1, the Casimir

operator C is multiplication by the constant (λ, λ)+(2λ, ρ) on the irreducible
representation with the highest weight λ. Here, ρ denotes the half sum of
positive roots and equals to gL1 + (g − 1)L2 + · · · + Lg for sp2g(C). Hence,
the eigenvalue of C equals to

2g + 1
g + 1

on [22]sp,

g

g + 1
on [12]sp,

0 on [0]sp

respectively. Therefore, we compute the projection from [22]sp⊕ [12]sp⊕ [0]sp

into the [22]sp-part as

Pr[22]sp
=

g + 1
2g + 1

C
(
C − g

g + 1
)

=
g + 1
2g + 1

C2 − g

2g + 1
C.

4.2. Tensors in the ideal ([22]sp). Recall from §3.2 that

(ImfIH)sp = ([22]sp⊕ [12]sp⊕ [0]sp)sp ∼= IH = (ΓI − ΓH ; I ↪→ Γ).

The generators ΓI −ΓH for the ideal IH can be classified into the following
three patterns:

• IH0-type, where indices a, b, c, d indicate 4 distinct edges as
a b

c d

−

a b

c d

.
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• IH1-type, where a and c indicate a same edge and b, d indicate distinct
edges as

°̄®­
b

d

− m b

d

.

• IH2-type, where a, c indicate a same edge and b, d also indicate another
same edge as ²± °̄− ±°²¯±°²

.̄

The sp-invariants corresponding to these types are respectively in the forms
of ∑
(a,b,c,d,e,...)

ε(abcde · · · )
{
(xa ∧ xb ∧ xe) ∧ (xc ∧ xd ∧ x−e)

− (xa ∧ xc ∧ xe) ∧ (xd ∧ xb ∧ x−e)
}

∧ · · · ∧ x−a ∧ · · · ∧ x−b ∧ · · · ∧ x−c ∧ · · · ∧ x−d ∧ · · · ,∑
(h,b,d,e,...)

ε(hbde · · · )
{
(xh ∧ xb ∧ xe) ∧ (x−h ∧ xd ∧ x−e)

− (xh ∧ x−h ∧ xe) ∧ (xd ∧ xb ∧ x−e)
}

∧ · · · ∧ x−b ∧ · · · ∧ x−d ∧ · · · ,∑
(h,f,e,...)

ε(hfe · · · )
{
(xh ∧ xf ∧ xe) ∧ (x−h ∧ x−f ∧ x−e)

− (xh ∧ x−h ∧ xe) ∧ (x−f ∧ xf ∧ x−e)
}
∧ · · · ,

where we should understand that the total orderings of the corresponding
graphs are given to be ∧-admissible. In order to get the ideal ([22]sp)sp ⊂
C(φ), we want to apply the projection Pr[22]sp

to the first {∗}-part of the
above forms. More precisely, we argue as follows.

Let J be the ideal of
∧

(
∧3H) generated by [22]sp ⊂

∧2(
∧3H), i.e, gener-

ated by the image of Pr[22]sp
◦ fIH and J2m its homogeneous part of degree

2m. Then we will describe the sp-invariant part Jsp
2m. We can obtain J2m as

the image of an sp-homomorphism

(4.1) H⊗6m →
∧2m(

∧3H)

which is defined as follows. We define the sp-homomorphism

H⊗6m →
∧2(

∧3H) ⊗
∧2m−2(

∧3H)

in such a way that the domain components of the canonical contraction
H⊗2 → C (which maps

∑
(i) ε(i)(xi ⊗ x−i) to 1) share the third and sixth
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factors of H⊗6m, and

Pr[22]sp
◦ fIH : H⊗4 →

∧2(
∧3H)

share the first, second, fourth and fifth factors of H⊗6m, and the standard
surjection H⊗6m−6 →

∧2m−2(
∧3H) share the last 6m− 6 factors of H⊗6m.

The composite of this map with the obvious surjection∧2(
∧3H) ⊗

∧2m−2(
∧3H) →

∧2m(
∧3H)

yields the sp-homomorphism (4.1) and gives a surjection onto J2m. Here,
the semisimplicity of sp-representations implies that Jsp

2m is generated by the
images of sp-invariants α(Γ,τ) ∈ (H⊗6m)sp via the sp-homomorphism (4.1),
where (Γ, τ) runs over the trivalent graphs of degree m with ∧-admissible
total orderings such that f3 = f+(e), f6 = f−(e) for some e ∈ Edge(Γ), cf.
also [2, §3.1, p.396].

4.3. Tensors in the image of Pr[22]sp
◦fIH . In order to identify the image

of Pr[22]sp
◦ fIH above, let us first compute the image of

fI(xa ⊗ xb ⊗ xc ⊗ xd)

=
∑
(e)

ε(e)(xa ∧ xb ∧ xe) ∧ (xc ∧ xd ∧ x−e) ∈ ImfI ⊂
∧2(

∧3H)

by the Casimir operator C. Since fI : H⊗4 →
∧2(

∧3H) commutes with the
action of C, we may only take care of the actions on xa, xb, xc, xd. Using
Proposition 2.1, we compute that( ∑

(i,j)

Ei,j · Ej,i

)
xa = 2gxa,

( ∑
(i,j)

ε(ij)Ei,j · E−i,−j

)
xa = −xa,

and the operators act on xb, xc, xd in similar ways. Furthermore, we compute
that ∑

(i,j)

(Ei,jxa ⊗ Ej,ixb) =
∑
(i,j)

(Ej,ixa ⊗ Ei,jxb) = xb ⊗ xa,

∑
(i,j)

ε(ij)(Ei,jxa ⊗ E−i,−jxb)

=
∑
(i,j)

ε(ij)(E−i,−jxa ⊗ Ei,jxb) = ε(a)δa,−b

∑
(i)

ε(i)(xi ⊗ x−i),

and the operators similarly act on the pairs of xa and xc, etc. We now
introduce the following symbols:

Definition 2.

〈a, b|c, d〉 :=
∑
(e)

ε(e)(xa ∧ xb ∧ xe) ∧ (xc ∧ xd ∧ x−e),
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〈h, b| − h, d〉 :=
∑
(h,e)

ε(he)(xh ∧ xb ∧ xe) ∧ (x−h ∧ xd ∧ x−e)

=
∑
(h)

ε(h)〈h, b| − h, d〉,

〈h, f | − h,−f〉 :=
∑

(h,f,e)

ε(hfe)(xh ∧ xf ∧ xe) ∧ (x−h ∧ x−f ∧ x−e)

=
∑
(h,f)

ε(hf)〈h, f | − h,−f〉.

It is easy to see

〈a, b|c, d〉 = −〈b, a|c, d〉, 〈h, b| − h, d〉 = −〈−h, b|h, d〉
and so on. Under these symbols, the above computations combined with
Proposition 2.1 yield:

C〈a, b|c, d〉 =
1

4g + 4
{
8g〈a, b|c, d〉 + 4〈a, b|c, d〉
+ 2〈b, a|c, d〉 − 2ε(a)δa,−b〈h,−h|c, d〉
+ 2〈c, b|a, d〉 − 2ε(a)δa,−c〈h, b| − h, d〉
+ 2〈b, d|c, a〉 − 2ε(a)δa,−d〈h, b|c,−h〉
+ 2〈a, c|b, d〉 − 2ε(b)δb,−c〈a, h| − h, d〉
+ 2〈a, d|c, b〉 − 2ε(b)δb,−d〈a, h|c,−h〉
+ 2〈a, b|d, c〉 − 2ε(c)δc,−d〈a, b|h,−h〉

}
=

1
2g + 2

{
4g〈a, b|c, d〉 + 2〈c, b|a, d〉 + 2〈a, c|b, d〉
− ε(a)δa,−c〈h, b| − h, d〉 − ε(b)δb,−d〈a, h|c,−h〉
− ε(a)δa,−d〈h, b|c,−h〉 − ε(b)δb,−c〈a, h| − h, d〉
− ε(a)δa,−b〈h,−h|c, d〉 − ε(c)δc,−d〈a, b|h,−h〉

}
.

Furthermore, we compute

C〈h, b| − h, d〉

=
∑
(h)

ε(h)
1

2g + 2
{
4g〈h, b| − h, d〉 + 2〈−h, b|h, d〉 + 2〈h,−h|b, d〉

− ε(h)δh,h〈f, b| − f, d〉 − ε(b)δb,−d〈h, f | − h,−f〉
− ε(h)δh,−d〈f, b| − h,−f〉 − ε(b)δb,h〈h, f | − f, d〉
− ε(h)δh,−b〈f,−f | − h, d〉 − ε(−h)δ−h,−d〈h, b|f,−f〉

}
=

1
2g + 2

{
4g〈h, b| − h, d〉 + 2〈−h, b|h, d〉 + 2〈h,−h|b, d〉
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− 2g〈f, b| − f, d〉 − ε(b)δb,−d〈h, f | − h,−f〉
− 〈f, b|d,−f〉 − 〈b, f | − f, d〉 − 〈f,−f |b, d〉 + 〈d, b|f,−f〉

}
=

1
2g + 2

{
2g〈h, b| − h, d〉 − ε(b)δb,−d〈h, f | − h,−f〉

}
,

and thus

C〈h, f | − h,−f〉

=
∑
(f)

ε(f)
1

2g + 2
{
2g〈h, f | − h,−f〉 − ε(f)δf,f 〈h, i| − h,−i〉

}
= 0.

Since

fIH(xa ⊗ xb ⊗ xc ⊗ xd) = fI(xa ⊗ xb ⊗ xc ⊗ xd) − fH(xa ⊗ xb ⊗ xc ⊗ xd)

= 〈a, b|c, d〉 − 〈a, c|d, b〉,

according to the above calculations, we conclude the action of C on the
general element fIH(xa ⊗ xb ⊗ xc ⊗ xd) of ImfIH ⊂

∧2(
∧3H) as in the

following lemma:

Lemma 4.1.

(i) C
(
〈a, b|c, d〉 − 〈a, c|d, b〉

)
=

2g + 1
g + 1

{
〈a, b|c, d〉 − 〈a, c|d, b〉

}
− 1

2(g + 1)

{
ε(a)δa,−c

(
〈h, b| − h, d〉 − 〈h,−h|d, b〉

)
+ ε(a)δa,−b

(
〈h,−h|c, d〉 − 〈h, c|d,−h〉

)
+ ε(b)δb,−d

(
〈a, h|c,−h〉 − 〈a, c| − h, h〉

)
+ ε(c)δc,−d

(
〈a, b|h,−h〉 − 〈a, h| − h, b〉

) }
.

(ii) C
(
〈h, b| − h, d〉 − 〈h,−h|d, b〉

)
=

g

g + 1
{
〈h, b| − h, d〉 − 〈h,−h|d, b〉

}
− 1

2(g + 1)
{
ε(b)δb,−d

(
〈h, f | − h,−f〉 − 〈h,−h| − f, f〉

)}
.

(iii) C
(
〈h, f | − h,−f〉 − 〈h,−h| − f, f〉

)
= 0.

Letting C act on the above results, and applying Lemma 4.1 again, we obtain
the action of C2 as follows:

Lemma 4.2.

(i) C2
(
〈a, b|c, d〉 − 〈a, c|d, b〉

)
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=
(2g + 1)2

(g + 1)2
{
〈a, b|c, d〉 − 〈a, c|d, b〉

}
− 3g + 1

2(g + 1)2
{

ε(a)δa,−c

(
〈h, b| − h, d〉 − 〈h,−h|d, b〉

)
+ ε(a)δa,−b

(
〈h,−h|c, d〉 − 〈h, c|d,−h〉

)
+ ε(b)δb,−d

(
〈a, h|c,−h〉 − 〈a, c| − h, h〉

)
+ ε(c)δc,−d

(
〈a, b|h,−h〉 − 〈a, h| − h, b〉

) }
+

1
2(g + 1)2

{
ε(ab)δa,−cδb,−d

(
〈h, f | − h,−f〉 − 〈h,−h| − f, f〉

)
+ ε(ac)δa,−bδc,−d

(
〈h,−h|f,−f〉 − 〈h, f | − f,−h〉

) }
.

(ii) C2
(
〈h, b| − h, d〉 − 〈h,−h|d, b〉

)
=

g2

(g + 1)2
{
〈h, b| − h, d〉 − 〈h,−h|d, b〉

}
− g

2(g + 1)2
{
ε(b)δb,−d

(
〈h, f | − h,−f〉 − 〈h,−h| − f, f〉

)}
.

(iii) C2
(
〈h, f | − h,−f〉 − 〈h,−h| − f, f〉

)
= 0.

According to the above lemmas, we conclude the action of

Pr[22]sp
=

g + 1
2g + 1

C2 − g

2g + 1
C

on the general element of ImfIH ⊂
∧2(

∧3H) as follows:

Lemma 4.3.

(i) Pr[22]sp

(
〈a, b|c, d〉 − 〈a, c|d, b〉

)
= 〈a, b|c, d〉 − 〈a, c|d, b〉

− 1
2(g + 1)

{
ε(a)δa,−c

(
〈h, b| − h, d〉 − 〈h,−h|d, b〉

)
+ ε(a)δa,−b

(
〈h,−h|c, d〉 − 〈h, c|d,−h〉

)
+ ε(b)δb,−d

(
〈a, h|c,−h〉 − 〈a, c| − h, h〉

)
+ ε(c)δc,−d

(
〈a, b|h,−h〉 − 〈a, h| − h, b〉

) }
+

1
2(g + 1)(2g + 1)

{
ε(ab)δa,−cδb,−d

(
〈h, f | − h,−f〉 − 〈h,−h| − f, f〉

)
+ ε(ac)δa,−bδc,−d

(
〈h,−h|f,−f〉 − 〈h, f | − f,−h〉

)}
.

(ii) Pr[22]sp

(
〈h, b| − h, d〉 − 〈h,−h|d, b〉

)
= 0.

(iii) Pr[22]sp

(
〈h, f | − h,−f〉 − 〈h,−h| − f, f〉

)
= 0.
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4.4. Completion of the proof of Theorem 1.2 (and Theorem 1.1).
Returning to the situation §4.2 (4.1), we shall consider the sp-invariants
arising in the sequence of surjections

H⊗6m −→ Im(Pr[22]sp
◦ fIH) ⊗

∧2m−2(
∧3H) −→ J2m ⊂

∧2m(
∧3H).

Taking into consideration the ∧-admissibility, we may translate Lemma 4.3
(i) into the language of graph invariants as follows:

a b

c d

−
a b

c d

+
1

2(g + 1)

{ °̄§̈a b

c d

− ga b

c d

+ ga b

c d

− °±¨¥a b

c d

+ ²±¥¦a b

c d

− ga b

c d

+ ga b

c d

−
²̄§¦a b

c d

}

+
1

2(g + 1)(2g + 1)

{ ¤£ ¡¢a b

c d

− e ea b

c d

+ eea b

c d

−
¤£ ¡¢a b

c d

}
.

This means the type of the graph invariants generating the ideal IH∗. Since
any graphs having loops vanish in (

∧
U)sp, we get the type of graph invari-

ants generating IHbis
0 = ([22]sp)sp ⊂

∧
U :

a b

c d

−
a b

c d

+
1

2(g + 1)

{ °̄§̈a b

c d

+ ²±¥¦a b

c d

+
1

2g + 1
¤£ ¡¢a b

c d

− °±¨¥a b

c d

−
²̄§¦a b

c d

− 1
2g + 1

¤£ ¡¢a b

c d

}
which appeared in the theorem of [3]. This completes the proofs of Theorem
1.1 and Theorem 1.2. ¤

5. Three type IH-relations

As shown in §4.1, we can compute the projections from [22]sp⊕[12]sp⊕[0]sp

into the [12]sp or [0]sp-part as

Pr[12]sp
= −g + 1

g
C2 +

2g + 1
g

C,

Pr[0]sp
=

(g + 1)2

g(2g + 1)
C2 − (g + 1)(3g + 1)

g(2g + 1)
C + 1,
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respectively. Now, we summarize the images of the three types IH-relation
via the projections to each part of ImfIH as the following theorem.

Theorem 5.1. The ideals ([22]sp)sp, ([12]sp)sp, ([0]sp)sp ⊂ (ImfIH)sp ⊂
(
∧

(
∧3H))sp are respectively generated by sp-invariants corresponding to the

graphs of following types:

([22]sp)sp = 〈 −

+
1

2(g + 1)
{ ¥¦¤£ − d + d − ¦§¤¡ + §̈ ¡¢ − d + d −

¥̈£¢ }
+

1
2(g + 1)(2g + 1)

{ ¤£ ¡¢− c c + cc − ¤£¡¢ }
〉,

([12]sp)sp = 〈 ¥¦¤£ − d +
1
2g

{ ¤£ ¡¢− c c }
〉,

([0]sp)sp = 〈 ¤£ ¡¢− c c〉.
Proof. The first line comes from the proof of Theorem 1.2. The other two
lines follow from similar computations. In fact, the sp-invariants of the
images of the projection Pr[12]sp

are respectively given by the graph

− 1
2(g + 1)

{ ¥¦¤£ − d + d − ¦§¤¡ + §̈ ¡¢ − d + d −
¥̈£¢ }

− 1
2g(g + 1)

{ ¤£ ¡¢− c c + cc − ¤£¡¢ }
,

for the type IH0, and

¥¦¤£ − d +
1
2g

{ ¤£ ¡¢− c c }
for the type IH1, and 0 for the type IH2. See §4.2 for the definitions of
IH0, IH1, IH2. Since the graph for IH0 consists of the graphs for IH1, the
second line follows. The sp-invariants of the images of the projection Pr[0]sp

are respectively translated into the graph

1
2g(2g + 1)

{ ¤£ ¡¢− c c + cc − ¤£¡¢ }
,

for the type IH0, and

− 1
2g

{ ¤£ ¡¢− c c }
,

for the type IH1, and ¤£ ¡¢ − c c for the type IH2. The third line follows
similarly to the second. Thus we complete the proof. ¤
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Remark. The third line of Theorem 5.1 is given in [5, Proposition 10.2]. If
we argue in the similar way using Pr[22]sp⊕[12]sp

, then we see that the graph
invariants

− +
1

2g(2g + 1)
{ ¤£ ¡¢− c c} ∗

{
−

}
generate ([22]sp⊕ [12]sp)sp. Namely, we have

− ≡ 1
2g(2g + 1)

{ c c − ¤£ ¡¢} ∗
{

−
}

in (
∧

(
∧3H)/([22]sp⊕ [12]sp))sp. This gives an alternative proof of the propo-

sition presented by N. Kawazumi and S. Morita in [5, Proposition 11.1].

By Theorem 5.1, we obtain the following:

Corollary 5.2. Let IH0, IH1, IH2 denote the ideal generated by the graph
invariants for the type IH0, IH1, IH2 of §4.2 respectively. Then we stably
have

(ImfIH)sp = ([22]sp⊕ [12]sp⊕ [0]sp)sp ∼= IH2 + IH1 + IH0 = IH,

([12]sp⊕ [0]sp)sp ∼= IH2 + IH1,

([0]sp)sp ∼= IH2.
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