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IGUSA LOCAL ZETA FUNCTIONS OF REGULAR
2-SIMPLE PREHOMOGENEOUS VECTOR SPACES OF

TYPE I WITH UNIVERSALLY TRANSITIVE OPEN
ORBITS

Satoshi WAKATSUKI

1. Introduction

In this paper, we explicitly determine the Igusa local zeta functions of
several variables for all but one type regular 2-simple prehomogeneous vector
spaces of type I with universally transitive open orbits. As for the remaining
one type of space, we give the explicit forms of the Igusa local zeta functions
of one variable for each of the basic relative invariants.

In [4], [5] and [8], the irreducible, simple or 2-simple regular prehomoge-
neous vector spaces with universally transitive open orbits were classified.
As for the irreducible reduced regular prehomogeneous vector spaces with
universally transitive open orbits, J. Igusa gave explicitly their Igusa local
zeta functions in [4]. And as for the simple regular prehomogeneous vector
spaces with universally transitive open orbits, their Igusa local zeta func-
tions were given explicitly in H. Hosokawa [3] and the author [17]. These
results indicate that their p-adic Γ-factors are expressed by the Tate local
factor and the b-functions. Here we treat the Igusa local zeta functions of
regular 2-simple prehomogeneous vector spaces of type I with universally
transitive open orbits, which were classified into the following nine spaces:
(1) (GL(1)3 × SL(5) × SL(2), Λ2 ⊗ Λ1 + Λ∗

1 ⊗ 1 + Λ∗
1 ⊗ 1),

(2) (GL(1)3 × Sp(n) × SL(2m), Λ1 ⊗ Λ1 + 1 ⊗ (Λ1 + Λ1)) (n > m),
(3) (GL(1)3 × Sp(n) × SL(2m), Λ1 ⊗ Λ1 + 1 ⊗ (Λ1 + Λ∗

1)) (n > m),
(4) (GL(1)3 × Sp(n) × SL(2m), Λ1 ⊗ Λ1 + Λ1 ⊗ 1 ⊗ (Λ∗

1 + Λ∗
1)) (n > m),

(5) (GL(1)2 × Sp(n) × SL(2m + 1), Λ1 ⊗ Λ1 + Λ1 ⊗ 1) (n > m),
(6) (GL(1)4×Sp(n)×SL(2m+1), Λ1⊗Λ1+Λ1⊗1+1⊗(Λ1+Λ1)) (n > m),
(7) (GL(1)4×Sp(n)×SL(2m+1), Λ1⊗Λ1+Λ1⊗1+1⊗(Λ∗

1+Λ∗
1)) (n > m),

(8) (GL(1)3 × Spin(10) × SL(2), (a half spin rep.) ⊗ Λ1 + 1 ⊗ (Λ1 + Λ1)),
(9) (GL(1)4×Spin(10)×SL(2), (a half spin rep.)⊗Λ1+1⊗(Λ1+Λ1+Λ1)),
(cf. [8]). We can easily reduce calculations of the Igusa local zeta functions
of the spaces (2), (4) to a result of [2]. We can immediately get those of
the spaces (3), (5), (8), (9) from results of [4] and [3]. So we mainly deal
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with those of the spaces (1), (6), (7), which are non-trivial at all. For the
Igusa local zeta function of a prehomogeneous vector space, the number
of its variables is the same as that of the basic relative invariants. As for
the spaces (6), (7), we calculate explicitly the Igusa local zeta functions of
several variables. As an approach of calculations of that of the space (1),
we calculate explicitly those of one variable for each of three basic relative
invariants. In order to calculate these Igusa local zeta functions, we use
some results of spherical functions of alternating forms of [2], and integrals
of [18]. In [18], we calculated integrals on some fibers of Sp(n)-invariant
maps by the results of [2].

We shall mention that the generalized Iwasawa-Tate theory holds for the
spaces (1) ∼ (9) (cf. [6] and [9]). In such a space, a global zeta function has
an Euler product, and their local factors of finite places are expressed by the
Igusa local zeta function. In [7], T. Kimura calculated explicitly the Fourier
transform of the complex power over R for a simple prehomogeneous vector
space by using the explicit form of the Igusa local zeta function which was
given in [3]. We apply this method to the spaces (2) ∼ (9), and get their
b-functions.

We found some exceptional properties of the space (1) as against other
reduced spaces with universally transitive open orbits. The spaces (2) ∼ (9)
have the following two specific properties (i) and (ii):

(i) All roots of their b-functions of the basic relative invariants are neg-
ative integers.

(ii) Each basic relative invariant f(x) is of the form

f(x1, . . . , xn) =
∑

1≤i1<i2<···<im≤n

ci1i2···im · xi1xi2 · · ·xim

with ci1i2···im ∈ R.
In [4] and [5], J. Igusa mentioned these properties (i), (ii) hold for the reduced
irreducible prehomogeneous vector spaces with universally transitive open
orbits. However the non-irreducible reduced space (1) satisfies neither (i)
nor (ii).

The plan of this paper is as follows. In Section 2, we review some known
properties of prehomogeneous vector spaces with universally transitive open
orbits. In Section 3, we give our main result on explicit forms of the Igusa
local zeta functions of several variables for the spaces (2) ∼ (9). In Section
4, we prove our main result. In Section 5, we give explicit forms of the Igusa
local zeta functions of one variable for each basic relative invariants of the
space (1).

Notation. Let K be a p-adic field i.e. a finite extension of Qp, and OK the
ring of integers in K. We fix a prime element π in OK , and then πOK is
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the ideal of nonunits of OK . The cardinality of the residue field OK/πOK

is denoted by q. We denote by | |K the absolute value of K normalized as
|π|K = q−1. For a commutative ring R, we denote by M(m,n; R) the totality
of m×n matrices over R, and by Alt(n; R) the totality of n×n alternating
matrices over R (m,n ∈ Z>0). We denote by det(x) the determinant of
x ∈ M(n, n; R). For any x ∈ M(m,n;R), tx is the transpose of x. We
denote by Pf(y) the Pfaffian of y ∈ Alt(2n; R). For an element y ∈ Alt(l; R)
and an integer i (1 ≤ 2i ≤ l), we denote by Pfi(y) the Pfaffian of the upper
left 2i by 2i block of y. If i = n and l = 2n, then Pfn(y) is the Pfaffian of y.
For any positive integer n, Sn is the symmetric group in n latters. For any
positive integer n, we set

Jn =
(

0 1
−1 0

)
⊥ · · · ⊥

(
0 1
−1 0

)
∈ Alt(2n),

and Sp(n) =
{
g ∈ GL(2n); tgJng = Jn

}
.

2. Preliminaries

In this section, we review some known properties of prehomogeneous vec-
tor spaces with universally transitive open orbits. For details, we refer to
[7] and [13].

Let G be a connected linear algebraic group defined over Q, V a finite
dimensional vector spaces with Q-structure, and ρ : G → GL(V ) a ra-
tional representation of G on V defined over Q. Throughout this section,
for simplicity, we assume that (G, ρ, V ) is one of irreducible, simple or 2-
simple of type I regular prehomogeneous vector spaces with a finitely many
adelic open orbits, which were classified in [6] and [9]. The spaces (1) ∼ (9)
are contained in their spaces. Let f1, . . . , fl be the basic relative invari-
ants of (G, ρ, V ), and χi the rational character of G corresponding to fi,
i.e. fi(ρ(g)v) = χi(g)fi(v) for all g ∈ G and all v ∈ V . Then any rela-
tive invariant in Q(V ) can be written uniquely as cfν1

1 · · · fνl
l with c ∈ Q×,

ν1, . . . , νl ∈ Z. The group of rational characters of G corresponding to rela-
tive invariants is a free abelian group of rank l generated by χ1, . . . , χl. Let
K be a p-adic field i.e. a finite extension of Qp, OK the ring of integers in K,
dv the Haar measure on V (K) normalized by

∫
V (OK) dv = 1, and S(V (K))

the Schwartz-Bruhat space of V (K). We denote by | |K the absolute value
of K normalized as |π|K = q−1. For the basic relative invariants f1, . . . , fl,
and Φ ∈ S(V (K)), we put

Z(s; Φ) =
∫

V (K)

l∏

i=1

|fi(v)|siΦ(v)dv (s = (s1, . . . , sl) ∈ Cl, Re(si) > 0).
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It is known that we can express this integral Z(s; Φ) by

Z(s; Φ) =
P (q−s1 , . . . , q−sl)

∏h
i=1(1 − q−

Pl
j=1 aijsj−bi)

,

where P (x1, . . . , xl) ∈ Q[x±1
1 , . . . , x±1

l ] and aij , bi ∈ Z (see, e.g. [1]). Let
Φ0 be the characteristic function of V (OK). We put Z(s) = Z(s; Φ0). This
local zeta function Z(s) is called the Igusa local zeta function of (G, ρ, V ).

We shall review local functional equations of Z(s; Φ). Let V ∗ be the dual
space of V , and ρ∗ the contragredient representation of ρ. It is known that
(G, ρ∗, V ∗) is also a prehomogeneous vector space, and there exist the basic
relative invariants f∗

1 , f∗
2 , . . . , f∗

l of (G, ρ∗, V ∗) such that the character χ−1
i

corresponds to f∗
i . Let dv∗ be the Haar measure on V ∗(K) normalized by∫

V ∗(OK) dv∗ = 1, and S(V ∗(K)) the Schwartz-Bruhat space of V ∗(K). We
define the p-adic local zeta function Z∗(s; Φ∗) of (G, ρ∗, V ∗) by

Z∗(s; Φ) =
∫

V ∗(K)

l∏

i=1

|f∗
i (v∗)|si

KΦ∗(v∗)dv∗

(s = (s1, . . . , sl) ∈ Cl, Re(si) > 0)

where Φ∗ ∈ S(V ∗(K)). Let ψ be an additive character of K such that ψ is
non-trivial on π−1OK and trivial on OK . We define the Fourier transform Φ̂∗

of Φ∗ ∈ S(V ∗(K)) by Φ̂∗(v) =
∫
V ∗(K) Φ∗(v∗)ψ(v∗(v))dv∗. By the regularity

of (G, ρ, V ), there exists an element κ = (κ1, κ2, . . . , κl) ∈ (1/2)·Zl satisfying
det(ρ(g))2 = χ1(g)2κ1 · · ·χl(g)2κl (cf. [14], [12]). By [7, Theorem 3.3], we
have the functional equation

Z(s − κ; Φ̂∗) = γ(s)Z∗(−s; Φ∗),

where s − κ = (s1 − κ1, . . . , sl − κl) and γ(s) is independent of Φ∗. We call
γ(s) the p-adic Γ-factor of (G, ρ, V ). For p-adic local functional equations
of prehomogeneous vector spaces which do not have universally transitive
open orbits, we refer to [13]. Since the Fourier transform Φ̂0 of Φ0 is equal
to Φ0, we have γ(s) = Z(s − κ)/Z(−s).

We shall define the b-function of (G, ρ, V ). We put fm =
∏l

i=1 fmi
i ,

f∗m =
∏l

i=1 f∗mi
i for m = (m1,m2, . . . , ml) ∈ Zl. Fix a Q-basis of V ,

and identify V (Q) with Qn (dim V = n). We also identify V ∗(Q) with Qn

by the basis of V ∗ dual to the fixed basis of V . We put v = (v1, . . . , vn),
gradv = ( ∂

∂v1
, . . . , ∂

∂vn
). Then for any l-tuple m = (m1,m2, . . . , ml) ∈ (Z≥0)l,

there exists a polynomial bm(s) such that f∗m(gradv)f s+m(v) = bm(s)fs(v),
where s+m = (s1+m1, . . . , sl+ml). The polynomial bm(s) does not depend
on v ∈ V . We call bm(s) the b-function of (G, ρ, V ). The coefficient of the
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part of the highest degree of the b-function depends on only constant factors
of the basic relative invariants. So we treat the b-function bm(s) except its
coefficient of the part of the highest degree.

3. Main result

In this section, we give explicit forms of the Igusa local zeta functions and
the p-adic Γ-factors for the spaces (2) ∼ (9).

We shall define some notations. We define the irreducible representation
Λ1 (resp. Λ∗

1) of SL(n) by Λ1(g)x = gx (resp. Λ1(g)x = tg−1x) for g ∈
SL(n), x ∈ M(n, 1), and the irreducible representation Λ1 of Sp(n) by
Λ1(g)x = gx for g ∈ Sp(n), x ∈ M(2n, 1). For a half-spin representation of
Spin(10), we refer to [14]. For each space, we denote by l the number of the
basic relative invariants, and χ1, . . . , χl the characters corresponding to the
basic relative invariants. These characters will be given in the form χi(g) =
am1

1 am2
2 · · · amk

k for g = (a1, a2, . . . , ak, A, B) ∈ G = GL(1)k × G1 × G2,
where m1,m2, . . . , mk are integers depending only on i, and G1, G2 are
simple algebraic groups.

Theorem 3.1. Let (G, ρ, V ) be one of the prehomogeneous vector spaces
(2) ∼ (9) of Introduction, and Z(s) the associated Igusa local zeta function.
Then, we have

Z(s) =
N∏

j=1

1 − q−αj

1 − q−ηj(s)
,

where the constants α1, . . . , αN and the forms

ηj(s) =
l∑

i=1

ηijsi + αj , (ηij = 0 or 1, αj ∈ Z>0)

are given in each case as follows:
(2) (GL(1)3 × Sp(n) × SL(2m),Λ1 ⊗ Λ1 + 1 ⊗ (Λ1 + Λ1)) (n > m). l = 2.

χ1(g) = a2m
1 , χ2(g) = a2m−2

1 a2a3.{
s1 + 1, s1 + 2n − 2m + 2, s2 + 1, s2 + 2m,

s1 + s2 + 2j + 1, s1 + s2 + 2n − 2j + 2 ; j = 1, 2, . . . , m − 1
}

.

(3) (GL(1)3 × Sp(n) × SL(2m),Λ1 ⊗ Λ1 + 1 ⊗ (Λ1 + Λ∗
1)) (n > m). l = 2.

χ1(g) = a2m
1 , χ2(g) = a2a3.

{s1 + 2j − 1, s1 + 2n − 2j + 2, s2 + 1, s2 + 2m ; j = 1, 2, . . . , m} .

(4) (GL(1)3 × Sp(n) × SL(2m), Λ1 ⊗ Λ1 + Λ1 ⊗ 1 ⊗ (Λ∗
1 + Λ∗

1)) (n > m).
l = 2. χ1(g) = a2m

1 , χ2(g) = a2
1a2a3.{

s1 + 2j − 1, s1 + 2n − 2j, s2 + 1, s2 + 2m,
s1 + s2 + 2m − 1, s1 + s2 + 2n

; j = 1, 2, . . . ,m − 1
}

.
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(5) (GL(1)2 × Sp(n) × SL(2m + 1),Λ1 ⊗ Λ1 + Λ1 ⊗ 1) (n > m), l = 1.
χ1(g) = a2m+1

1 a2.

{s1 + 2j − 1, s1 + 2n − 2j + 2 ; j = 1, 2, . . . ,m + 1} .

(6) (GL(1)4 ×Sp(n)×SL(2m + 1), Λ1 ⊗Λ1 + Λ1 ⊗ 1 + 1⊗ (Λ1 + Λ1)) (n >
m). l = 4. χ1(g) = a2m+1

1 a2, χ2(g) = a2m−1
1 a2a3a4, χ3(g) = a2m

1 a3,
χ4(g) = a2m

1 a4.



si + 1, s1 + 2n − 2m, s2 + 2m,
s1 + s2 + s3 + s4 + 2j + 1,

s1 + s2 + s3 + s4 + 2n − 2j + 2
; i = 1, 2, 3, 4, j = 1, 2, . . . ,m



 .

(7) (GL(1)4 × Sp(n) × SL(2m + 1), Λ1 ⊗ Λ1 + Λ1 ⊗ 1 + 1 ⊗ (Λ∗
1 + Λ∗

1))
(n > m). l = 4. χ1(g) = a2m+1

1 a2, χ2(g) = a2
1a3a4, χ3(g) = a1a2a3,

χ4(g) = a1a2a4.



si + 1, s1 + 2n − 2m, s1 + 2j + 1,
s1 + 2n − 2j, s2 + 2m,

s1 + s2 + s3 + s4 + 2m + 1,
s1 + s2 + s3 + s4 + 2n

; i = 1, 2, 3, 4, j = 1, 2, . . . , m − 1





.

(8) (GL(1)3 × Spin(10) × SL(2), (a half spin rep.) ⊗ Λ1 + 1 ⊗ (Λ1 + Λ1)).
l = 2. χ1(g) = a4

1, χ2(g) = a2a3.

{s1 + 1, s1 + 4, s1 + 5, s1 + 8, s2 + 1, s2 + 2} .

(9) (GL(1)4×Spin(10)×SL(2), (a half spin rep.)⊗Λ1+1⊗(Λ1+Λ1+Λ1)).
l = 4. χ1(g) = a4

1, χ2(g) = a2a3, χ3(g) = a3a4, χ4(g) = a4a2.

{s1 + 1, s1 + 4, s1 + 5, s1 + 8, s2 + 1, s3 + 1, s4 + 1, s2 + s3 + s4 + 2} .

Corollary 3.2. Let (G, ρ, V ) be one of the spaces (2) ∼ (9). From the set
{ηj(s); j = 1, . . . , N} of Theorem 3.1, the p-adic Γ-factor γ(s) of (G, ρ, V ) is
given by γ(s) =

∏N
j=1 γT (ηj(s− κ)), where their κ are given in each case as

follows: (2) κ = (2n− 2m + 2, 2m), (3) κ = (2n, 2m), (4) κ = (2n− 2, 2m),
(5) κ = 2n, (6) κ = (2n − 2m, 2m, 1, 1), (7) κ = (2n − 2, 2m, 1, 1), (8)
κ = (8, 2), (9) κ = (8, 1, 1, 1). Here we put γT (s) = (1− q−(1−s))/(1− q−s).
This γT (s) is called the Tate local factor.

By this corollary and the method of [7], we can get the Γ-factor over
R for the spaces (2) ∼ (9). Furthermore by [12, p.459 (5-8)], we can get
b-functions from the Γ-factors over R.

Corollary 3.3. Let (G, ρ, V ) be one of the spaces (2) ∼ (9). From the set
{ηj(s); j = 1, . . . , N} of Theorem 3.1, the b-function of (G, ρ, V ) is given by
bm(s) =

∏N
j=1 Γ(ηj(s + m))/Γ(ηj(s)), where Γ(s) is the gamma function.
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In [15] and [19], these b-functions were calculated explicitly by the method
of [16]. From Corollary 3.2 and 3.3, we see that the p-adic Γ-factors of
the spaces (2) ∼ (9) are expressed by the Tate local factor and the set
{ηj(s); j = 1, . . . , N}, which are determined by the b-functions.

Example 3.4. We illustrate our result in the case of (2) m = 2, n = 4:
(GL(1)2×Sp(4)×SL(4), Λ1⊗Λ1+1⊗(Λ1+Λ1),M(8, 4)⊕M(4, 1)⊕M(4, 1)).
For the basic relative invariants of this space, we give their explicit forms
in Subsection 4.1. From Theorem 3.1, the Igusa local zeta function of this
case is given by

Z(s1, s2) =
1 − q−1

1 − q−s1−1
× 1 − q−6

1 − q−s1−6
× 1 − q−1

1 − q−s2−1
× 1 − q−4

1 − q−s2−4

× 1 − q−3

1 − q−s1−s2−3
× 1 − q−8

1 − q−s1−s2−8
.

We see that this expression corresponds to the form of p-adic local zeta
functions which was given in Section 2. From Corollary 3.2, we have the
p-adic Γ-factor

γ(s1, s2) = γT (s1)γT (s1 − 5)γT (s2)γT (s2 − 3)γT (s1 + s2 − 2)γT (s1 + s2 − 7),

where γT (s) = (1 − q−(1−s))/(1 − q−s). From Corollary 3.3 and Γ(t + 1) =
tΓ(t), we have the b-function

b(m1,m2)(s1, s2) =
m1−1∏

i=0

(s1 + 1 + i)(s1 + 6 + i)

×
m2−1∏

i=0

(s2 + 1 + i)(s2 + 4 + i)

×
m1+m2∏

i=0

(s1 + s2 + 3 + i)(s1 + s2 + 8 + i).

4. Proof of main result

In this section, we shall calculate explicitly the Igusa local zeta functions
of several variables for the spaces (2), (4), (6), (7). As for the spaces (3), (5),
(8) and (9), we can immediately obtain their Igusa local zeta functions from
results of [4] and [3]. Because their Igusa local zeta functions are given by
products of Igusa local zeta functions of reduced irreducible or simple regular
prehomogeneous vector spaces with universally transitive open orbits. On
the contrary, the cases (2), (4), (6), (7) are not given as such products. As
for the cases (2) and (4), we can easily reduce their calculations to that of a
local zeta function which was given in [2]. As for the cases (6) and (7), we
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need to use the integral formulas of [2] and [18] in order to calculate their
Igusa local zeta functions.

4.1. The spaces (2) and (4). In the space (2), the group G = GL(1)3 ×
Sp(n) × SL(2m) acts on V = M(2n, 2m) ⊕ M(2m, 1) ⊕ M(2m, 1) by

(x, y, z) 7→ (a1gx th, a2hy, a3hz)

for (x, y, z) ∈ V and (a1, a2, a3, g, h) ∈ G. The basic relative invariants f1

and f2 of this space are given by

f1(x) = Pf( txJnx), f2(x, y, z) = Pf




txJnx y z
−ty 0 0
−tz 0 0




where (x, y, z) ∈ V (cf. [10]). Let dx be the Haar measure on M(2n, 2m; K)
normalized by

∫
M(2n,2m;OK) dx = 1, and dy, dz the Haar measure on

M(2m, 1;K) normalized by
∫
M(2n,1;OK) dy =

∫
M(2n,1;OK) dz = 1. We put

X ′
2m = {x ∈ M(2n, 2m;OK); Pfi( txJnx) 6= 0 (1 ≤ i ≤ m)}, and set

Φ(s) = Φ(s1, . . . , sm) =
∫

X′
2m

m∏

i=1

|Pfi( txJnx))|si
Kdx.

This Φ(s) is absolutely convergent for Re(s1), . . . ,Re(sm−1) ≥ 0, and have
analytic continuation to rational functions in q−s1 , . . . , q−sm . In [2, Section
3], this integral Φ(s) was given by

Φ(s1, . . . , sm) =
m∏

i=1

(1 − q−2i+1)(1 − q−2n+2m−2i)
(1 − q−(si+···+sm+2m−2i+1))(1 − q−(si+···+sm+2n−2i+2))

×
m−1∏

k=1

1 − q−1

1 − q−2k−1
×

∏

1≤i<j≤m

1 − q−(si+···+sj−1)−2(j−i)−1

1 − q−(si+···+sj−1)−2(j−i)+1
.

We put ei = t(0, . . . , 0, 1, 0, . . . , 0) ∈ M(l, 1) where 1 appears only at the i-
th place, and U(l) = M(l, 1;OK) \πM(l, 1;OK). We put W (i, j) = W ′(i)⊕
W ′′(j), W ′(i) = πiU(2m− 1)⊕OK , and W ′′(j) = πjU(2m). Then we have
M(2m, 2;OK) =

⋃∞
i,j=0 W (i, j) (disjoint union). Hence we get

Z(s1, s2)

=
∞∑

i,j=0

∫

M(2n,2m;OK)⊕W (i,j)
|f1(x)|s1

K |f2(x, z2m,1e2m + πie2m−1, π
je2m)|s2

Kdv

=
(1 − q−2m+1)(1 − q−2m)

(1 − q−2m+1−s2)(1 − q−2m−s2)
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×
∫

M(2n,2m;OK)⊕W
|f1(x)|s1

K |f2(x, z2m,1e2m + e2m−1, e2m)|s2
Kdv

=
(1 − q−2m+1)(1 − q−2m)

(1 − q−2m+1−s2)(1 − q−2m−s2)
Φ(0, . . . , s2, s1).

Hence we get an explicit form of the Igusa local zeta function of the space
(2).

The basic relative invariants f1 and f2 of the space (4) are given by
f1(x) = Pf( txJnx), f2(x, y, z) = tyxz where (x, y, z) ∈ V (cf. [10]). By an
argument similar to that of the space (2), we have

Z(s1, s2) =
(1 − q−2m+1)(1 − q−2m)

(1 − q−2m+1−s2)(1 − q−2m−s2)
Φ(s2, 0, . . . , 0, s1).

Hence we also get an explicit form of the Igusa local zeta function of the
space (4).

4.2. Some lemmas. In order to calculate the Igusa local zeta functions of
the spaces (6) and (7), we shall give some lemmas.

First we review Hall-Littlewood polynomials. For details, we refer to [11].
For a positive integer m, we put

Λ+
m = {λ = (λ1, λ2, . . . , λm) ∈ Zm : λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0} ,

|λ| =
m∑

i=1

λi, n(λ) =
m∑

i=1

(i − 1)λi.

For λ, µ ∈ Λ+
m, we write λ ⊂ µ if λi ≤ µi for all i ≥ 1. For a non-negative

integer i and λ ∈ Λ+
m, the number mi(λ) of λj ’s which are equal to i is called

the multiplicity of i in λ. For a non-negative integer m, we put wm(t) =∏m
j=1(1 − tj), (w0(t) = 1). For λ ∈ Λ+

m, we put w
(m)
λ (t) =

∏+∞
i=0 wmi(λ)(t).

The Hall-Littlewood polynomial Pλ(x; t) is defined by

Pλ(x; t) = Pλ(x1, x2, . . . , xm; t)

=
(1 − t)m

w
(m)
λ (t)

·
∑

σ∈Sm

xλ1

σ(1) · · ·x
λm

σ(m)

∏

1≤i<j≤m

xσ(i) − txσ(j)

xσ(i) − xσ(j)

for each λ ∈ Λ+
m. For λ ∈ Λ+

m, Pλ(x; t) is a polynomial in x1, . . . , xm and
t, and the set {Pλ(x; t); λ ∈ Λ+

m} forms a Z[t]-basis of the ring Z[t][x1, . . . ,
xm]Sm of symmetric polynomials in x1, . . . , xm with coefficients in Z[t]. We
denote by fλ

µ ν(t) the structure constants of the ring Z[t][x1, . . . , xm]Sm with
respect to the basis {Pλ(x; t);λ ∈ Λ+

m}:

Pµ(x; t) · Pν(x; t) =
∑

λ

fλ
µ ν(t) · Pλ(x; t) (fλ

µ ν(t) ∈ Z[t]).
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Unless |λ| = |µ| + |ν| and µ, ν ⊂ λ, we have fλ
µ ν(t) = 0.

For λ ∈ Λ+
m, we put

(πλ)2m =
(

0 πλ1

−πλ1 0

)
⊥ · · · ⊥

(
0 πλm

−πλm 0

)
∈ Alt(2m;OK),

(πλ)2m+1 =
(

(πλ)2m 0
0 0

)
∈ Alt(2m + 1;OK).

The group GL(l) acts on Alt(l) by h ·y = hy th for h ∈ GL(l) and y ∈ Alt(l).
Let dy be the Haar measure on Alt(l; K) normalized by

∫
Alt(l;OK) dy = 1.

By [2, Corollary of Lemma 2.7] or [18, Section 5], we have the following
lemma.

Lemma 4.1. For λ ∈ Λ+
m, we have

∫

GL(2m;OK)·(πλ)2m

dy = q−4n(λ)−|λ| · w2m(q−1) ·
(
w

(m)
λ (q−2)

)−1
,

∫

GL(2m+1;OK)·(πλ)2m+1

dy = q−4n(λ)−3|λ| · (1 − q−1)−1 · w2m+1(q−1)

×
(
w

(m)
λ (q−2)

)−1
.

The group Sp(n) × GL(2m) acts on M(n, 2m) by (g, h) · x = gx th for
(g, h) ∈ Sp(n) × GL(2m) and x ∈ M(n, 2m). Let dx be the Haar measure
on M(2n, 2m;K) normalized by

∫
M(2n,2m;OK) dx = 1.

Lemma 4.2. [18, Theorem 4.3]. For any C-valued continuous function F
on Alt(2m;OK), we have

∫

M(2n,2m;OK)
F ( txJnx)dx =

∑

λ∈Λ+
m

c(λ) ·
∫

GL(2m;OK)·(πλ)l

F (y)dy,

where

c(λ) =
wn(q−2)

wn−m(q−2)

∑

µ,ν∈Λ+
m

fλ
µ ν(q

−2)q2(n(λ)−n(µ)−n(ν))−(2n−2m+1)|µ|.

For y ∈ Alt(l : OK), we put Hl,y = {h ∈ GL(l;OK) : Pfi(h · y) 6= 0 (1 ≤
2i ≤ l)}. For l = 2m or l = 2m + 1, s ∈ Cm, we set

ζl(y; s) = ζl(y; s1, . . . , sm) =
∫

Hl,y

m∏

i=1

|Pfi(h · y)|si
Kdh

where dh is the Haar measure on GL(l; K) normalized by
∫
GL(l;OK) dh = 1.

When Re(s1), . . . ,Re(sm−1) ≥ 0, the integrals ζl(y; s) is absolutely conver-



IGUSA LOCAL ZETA FUNCTIONS 95

gent and has an analytic continuation to a rational function in q−s1 , . . . , q−sm

by the theory of complex powers of polynomial functions.

Lemma 4.3. [2, Theorem 6]. For λ ∈ Λ+
m, we have

ζ2m((πλ)2m; s1, . . . , sm) =
m−1∏

k=1

1 − q−1

1 − q−2k−1
·

∏

1≤i<j≤m

1 − qzi−zj−1

1 − qzi−zj+1

× q2n(λ)−(m−1)|λ| ·
w

(m)
λ (q−2)

wm(q−2)
× Pλ(qz1 , . . . , qzm ; q−2)

where z is a variables in Cm which is related with the variable s by
{

si = zi+1 − zi − 2 (1 ≤ i ≤ m − 1)
sm = (m + 1) − zm − 2 .

Lemma 4.4. [18, Lemma 6.8]. For λ ∈ Λ+
m, we have

ζ2m+1((πλ)2m+1; s) =
1 − q−1

1 − q−2m−1
·

m∏

i=1

1 − q−(si+···+sm+2m−2i+3)

1 − q−(si+···+sm+2m−2i+1)

× ζ2m((πλ)2m; s).

4.3. The space (7). In the space (7), the group G = GL(1)4 × Sp(n) ×
SL(2m + 1) acts on V = M(2n, 2m + 1) ⊕ M(2n, 1) ⊕ M(2m + 1, 1) ⊕
M(2m + 1, 1) by (x1, x2, z, w) 7→ (a1gx1

th, a2gx2, a3
th−1z, a4

th−1w) for
(x1, x2, z, w) ∈ V and (a1, a2, a3, a4, g, h) ∈ G. For (x1, x2, z, w) ∈ V and
x = (x1|x2) ∈ M(2n, 2m + 2), the basic relative invariants f1, f2, f3 and
f4 are given by f1 = Pf

(
txJnx

)
, f2 = tz tx1Jnx1w, f3 = tzx1Jnx2, f4 =

twx1Jnx2 (cf. [10]). Let dz, dw be the Haar measure on M(2m + 1, 2;K)
normalized by

∫
M(2m+1,1;OK) dz =

∫
M(2m+1,1;OK) dw = 1, and dy the Haar

measure on Alt(2m + 2;K) normalized by
∫
Alt(2m+2;OK) dy = 1. By Lemma

4.2, we have
(4.1)

Z(s) =
wn(q−2)

wn−m−1(q−2)

∑

λ,µ,ν∈Λ+
m+1

fλ
µ,ν(q

−2)q2(n(λ)−n(µ)−n(ν))−(2n−2m−1)|µ|I(λ)

where we put

I(λ) =
∫

Aλ⊕M(2m+1,2;OK)

4∏

i=1

|f ′
i(y, z, w)|si

Kdydzdw,
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Aλ = GL(2m + 2;OK) · (πλ)2m+2, f ′
1 = Pf (y), f2 = tzy1w, f3 = tzy2,

f4 = twy2 for y1 ∈ Alt(2m + 1), y2 ∈ M(2m + 1, 1), y =
(

y1 y2

−ty2 0

)
.

Hence we have only to calculate this I(λ). By an argument similar to that
of Subsection 4.1, we easily get

I(λ) = q−s1|λ| (1 − q−2m−1)(1 − q−2m)
(1 − q−2m−1−s2−23)

∞∑

l=0

q−2ml−s2lJ(l, λ)

where we put

J(l, λ) =
∫

Aλ⊕OK

|y1,2|s2
K |y1,2m+2|s3

K |w1y1,2m+2 + πly2,2m+2|s4
Kdydw1,

y = (yi,j) ∈ Alt(2m + 2) (yj,i = −yi,j), w = t(w1, w2, . . . , w2m+1), and
dw1 is the Haar measure on K normalized by

∫
OK

dw1 = 1. We need
some lemmas to calculate this J(l). A element T ∈ M(k, k′;OK) (k > k′)
is said to be primitive if it can be extended to a unimodular matrix by
complementing 2(k − k′) column vectors. We set L = {T ∈ M(2m +
2, 3;OK);T is primitive}, L(i, λ) = {T ∈ L; tT (πλ)2m+2T ∈ GL(3;OK) ·
(πi)3} (i ∈ Z≥0). We put v = t(v1, v2, v3) ∈ M(3, 1;OK). Let dT be the
Haar measure on M(2m+2, 3; K) normalized by

∫
M(2m+2,3;OK) dT = 1, and

dv the Haar measure on M(3, 1;K) normalized by
∫
M(3,1;OK) dv = 1.

Lemma 4.5. For every l and λ, we have

J(l, λ) = B(λ) × K(l),

where we put

B(λ) =
(∫

Aλ

dy

)(∫

L
dT

)−1
(∫

U(3)
dv

)−1 ∞∑

i=0

q−(s2+s3+s4)i

∫

L(i,λ)
dT,

K(l) =
∫

U(3)⊕OK

|v1|s2
K |v2|s3

K |wv2 + πlv3|s4
Kdvdw1.

Proof. Let dg be the Haar measure on GL(2m + 2;K) normalized by
∫

GL(2m+2:OK)
dg = 1,

g = t(g1|g2| · · · |g2m+2) ∈ GL(2m + 2;K) (gi ∈ M(2m + 2, 1; K)),

and

tT (πλ)2m+2T =




0 ϕ3(T ) −ϕ2(T )
−ϕ3(T ) 0 ϕ1(T )
ϕ2(T ) −ϕ1(T ) 0


 ∈ Alt(3;OK).
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Then we have

J(l, λ) =
(∫

Aλ

dy

)

×
∫

GL(2m+2;OK)⊕OK

| tg1(πλ)2m+2g2|s2
K | tg1(πλ)2m+2g2m+2|s3

K

× |z1,2
tg1(πλ)2m+2g2m+2 + πl tg2(πλ)2m+2g2m+2|s4

Kdgdw1

=
(∫

Aλ

dy

)(∫

L
dT

)−1

×
∫

L⊕OK

|ϕ1(T )|s2
K |ϕ2(T )|s3

K |w1ϕ2(T ) + πlϕ3(T )|s4
KdTdw1.

Let dh be the Haar measure on GL(3; K) normalized by
∫
GL(3;OK) dh = 1,

h = (hij) ∈ GL(3). Here we identify Alt(3) as M(3, 1). Then we have
∫

L⊕OK

|ϕ1(T )|s2
K |ϕ2(T )|s3

K |w1ϕ2(T ) + πlϕ3(T )|s4
KdTdw1

=
∞∑

i=0

∫

L(i,λ)⊕OK

|ϕ1(T )|s2
K |ϕ2(T )|s3

K |w1ϕ2(T ) + πlϕ3(T )|s4
KdTdw1

=
∞∑

i=0

∫

L(i,λ)⊕OK

∫

GL(3;OK)
|ϕ1(T th)|s2

K |ϕ2(T th)|s3
K |w1ϕ2(T th)

+ πlϕ3(T th)|s4
KdhdTdw1

=
∞∑

i=0

∫

L(i,λ)
dT ×

∫

GL(3;OK)⊕OK

|πih11|s2
K |πih21|s3

K |πih21w1

+ πl+ih31|s4
Kdhdw1

=

(∫

U(3)
dv

)−1 ∞∑

i=0

q−(s2+s3+s4)i

∫

L(i,λ)
dT × K(l).

Hence we get the above equality. ¤
Lemma 4.6. For every λ ∈ Λ+

2m+2, we have

B(λ) =
(1 − q−2m−1−s2−s3−s4)

(1 − q−2m−1)(1 − q−s2−s3−s4−3)
q−2n(λ)−(m+1)|λ|

× w2m+2(q−1)
wm+1(q−2)

Pλ(qz; q−2),

where

(z1 +m+1, z2 +m+1, . . . , zm+1 +m+1) = (−s2−s3−s4 +1, 3, . . . , 2m+1).

Proof. By Lemma 4.4, we have
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ζ2m+2((πλ)2m+2; s, 0, . . . , 0)

=
(∫

L
dT

)−1 ∫

L
|Pf1( tT (πλ)2m+2T )|sKdT

=
(∫

L
dT

)−1 ∞∑

j=0

∫

L(j,λ)
dT · ζ3((πj)3; s)

=
(∫

L
dT

)−1 ∞∑

j=0

∫

L(j,λ)
dT · q−js (1 − q−1)(1 − q−s−3)

(1 − q−3)(1 − q−s−1)
.

By Lemma 4.3, this integral ζ2m+2((πλ)2m+2; s, 0, . . . , 0) is given explicitly.
Hence if we set s = s2 + s3 + s4, then we can get an explicit form of(∫

L dT
)−1 ∑∞

j=0

∫
L(j,λ) dT · q−j(s2+s3+s4). Therefore if we put together this

result, Lemma 4.1 and
∫
U(3) dv = 1 − q−3, we get the above lemma. ¤

Lemma 4.7.
∞∑

l=0

q−2ml−s2lK(l) =
4∏

i=2

1 − q−1

1 − q−si−1
× (1 − q−s2−s3−s4−3)(1 − q−s2−s3−2m−1)

(1 − q−s2−2m)(1 − q−s2−s3−s4−2m−1)
.

Proof. We consider l ≥ 1. We divide the domain U(3) as OK ⊕OK ⊕U(1),
OK ⊕ U(1) ⊕ πOK and U(1) ⊕ πOK ⊕ πOK . Then we have

(4.2) K(l) =
(1 − q−1)2

(1 − q−1−s2)
K ′(l) +

q−1(1 − q−1)3

(1 − q−1−s2)(1 − q−1−s4)
+ q−2−s3−s4(1 − q−1)K ′′(l),

where

K ′(l) =
∫

OK
2
|v2|s3

K |w1v2 + πl|s4
Kdvdw1,

K ′′(l) =
∫

OK
3
|v2|s3

K |w1v2 + πlv3|s4
Kdvdw1.

And we have

K ′(l) =
(1 − q−1)2{1 − (q−s3−s4−1)l+1}

(1 − q−s4−1)(1 − q−s3−s4−1)
+ q−1−s3(q−s3−s4−1)l 1 − q−1

1 − q−1−s3
,

K ′′(l) =
(1 − q−1)2{1 − (q−s3−s4−1)l}
(1 − q−s4−1)(1 − q−s3−s4−1)

+
(1 − q−1)2(q−s3−s4−1)l

(1 − q−1−s3)(1 − q−1−s4)
.

Since
K(0) =

(1 − q−1)2(1 − q−3−s2−s3−s4)
(1 − q−1−s2)(1 − q−1−s3)(1 − q−1−s4)

,

we can also apply Equation 4.2 to the case l = 0. Therefore by putting
together the above results, we get this lemma. ¤
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From Lemma 4.5, 4.6 and 4.7, we get the following lemma.

Lemma 4.8.

I(λ) =
4∏

i=2

1 − q−1

1 − q−si−1
× 1 − q−2m

1 − q−s2−2m
× w2m+2(q−1)

wm+1(q−2)

× q−2n(λ)Pλ(q−s1−s2−s3−s4−2m−1, q−s1−2m+1, . . . , q−s1−1; q−2).

By this lemma, Equation 4.1 and

(4.3)
∑

λ∈Λ+
n

tn(λ)Pλ(x1, x2, . . . , xn; t) =
n∏

i=1

(1 − xi)−1

(cf. [11, Chapter 3, Section 4, Example 1]), we get an explicit form of the
Igusa local zeta functions of the space (7).

4.4. The space (6). In the space (6), the group G = GL(1)4 × Sp(n) ×
SL(2m+1) acts on V = M(2n, 2m+1)⊕M(2n, 1)⊕M(2m+1, 1)⊕M(2m+
1, 1) by (x1, x2, z, w) 7→ (a1gx1

th, a2gx2, a3hz, a4hw) for (x1, x2, z, w) ∈ V
and (a1, a2, a3, a4, g, h) ∈ G. For y ∈ Alt(2m + 2), we denote by ∆(y) the
copfaffian of y, i.e. y∆(y) = ∆(y)y = −Pf(y)I2m+2, and we set ∆(y) =(

∆1(y) ∆2(y)
−t∆2(y) 0

)
, ∆1(y) ∈ Alt(2m + 1), ∆2(y) ∈ M(2m + 1, 1). For

(x1, x2, z, w) ∈ V and x = (x1|x2) ∈ M(2n, 2m+2), the basic relative invari-
ants f1, f2, f3 and f4 are given by f1 = Pf

(
txJnx

)
, f2 = tz∆1(txJnx)w,

f3 = tz∆2(txJnx), f4 = tw∆2(txJnx) (cf. [10]). Throughout this subsec-
tion, we assume that the notations dy, dz, dw, dg, Aλ and I(λ) are the same
as those of Subsection 4.3. By Lemma 4.2, we have

Z(s) =
wn(q−2)

wn−m−1(q−2)
(4.4)

×
∑

λ,µ,ν∈Λ+
m+1

fλ
µ,ν(q

−2)q2(n(λ)−n(µ)−n(ν))−(2n−2m−1)|µ|I ′(λ),

where we put

I ′(λ) =
∫

Aλ⊕M(2m+1,2;OK)

4∏

i=1

|f ′
i(y, z, w)|si

Kdydzdw,

f ′
1 = Pf(y), f ′

2 = tz∆1(y)w, f ′
3 = tz∆2(y), f ′

4 = tw∆2(y). Hence we have
only to calculate this integral I ′(λ). We put

τ = (|λ| − λm+1, |λ| − λm, . . . , |λ| − λ1) ∈ Λ+
m+1.

Since ∆(y) ∈ Aτ for y ∈ Aλ, we get I ′(λ) =
(∫

Aλ
dy

) (∫
Aτ

dy
)−1

I(τ). Then

from 4n(τ) + |τ | = m2|λ| + 4n(λ), Lemma 4.1 and Lemma 4.8, we get
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I ′(λ) =
4∏

i=2

1 − q−1

1 − q−si−1
× 1 − q−2m

1 − q−s2−2m
× w2m+2(q−1)

wm+1(q−2)
× q−2n(λ)

× Pλ(q−s1−1, q−(s1+s2+s3+s4+3), . . . , q−(s1+s2+s3+s4+2m+1); q−2).

Here we use the equality

Pτ (x1, x2, . . . , xm+1; t) = (x1x2 · · ·xm+1)|λ|Pλ(x−1
1 , x−1

2 , . . . , x−1
m+1; t).

Therefore by Equation 4.3 and 4.4, we get an explicit form of the Igusa local
zeta function of the space (6).

5. The space (1)

In this section, we calculate explicitly the Igusa local zeta function of one
variable for each basic relative invariant of the space (1). In this space,
the group G = GL(1)3 × SL(5) × SL(2) acts on V = Alt(5) ⊕ Alt(5) ⊕
M(5, 1)⊕M(5, 1) by (x, y, z, w) 7→ (a1(gx tg, gy tg) th, a2

tg−1z, a3
tg−1w) for

(x, y, z, w) ∈ V and (a1, a2, a3, g, h) ∈ G. Let x(i) ∈ Alt(4) be the alternating
matrix obtained from x ∈ Alt(5) by subtracting the i-th row and column
(1 ≤ i ≤ 5). Then the basic relative invariants f1, f2 and f3 are given by

f1 = det
(

β(x)yz β(x)yw
−β(y)xz −β(y)xw

)
,

f2 = det
(

β(x)yz tzxw
−β(y)xz tzyw

)
, f3 = det

(
β(x)yw tzxw
−β(y)xw tzyw

)
,

where we put β(x) = t(β1(x), . . . , β5(x)), βi(x) = (−1)i−1Pf(x(i)) (cf. [10]).
We set Zf1(s1) = Z(s1, 0, 0), Zf2(s2) = Z(0, s2, 0), Zf3(s3) = Z(0, 0, s3).

Proposition 5.1.

Zf1(s) =
(1 − q−1)(1 − q−2)2(1 − q−3)(1 − q−4)(1 − q−5)

(1 − q−1−s)(1 − q−2−s)2(1 − q−3−s)(1 − q−4−2s)(1 − q−5−2s)
,

Zf2(s) = Zf3(s)

=
(1 − q−1)(1 − q−2)(1 − q−3)(1 − q−4)(1 − q−5)

(1 − q−1−s)(1 − q−2−s)(1 − q−3−s)(1 − q−4−2s)(1 − q−5−2s)
.

Proof. Let dx, dy be the Haar measure on Alt(5; K) normalized by∫
Alt(5;OK) dx =

∫
Alt(5;OK) dy = 1, dz, dw the Haar measure on M(5, 1;K)

normalized by
∫
M(5,1;OK) dz =

∫
M(5,1;OK) dw = 1, dg′ the Haar measure

on GL(5;K) normalized by
∫
GL(5;OK) dg′ = 1, and dg the Haar measure

on GL(4; K) normalized by
∫
GL(4;OK) dg = 1. First we shall calculate
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the integral Zf1(s) For λ ∈ Λ+
2 , we put A′

λ = GL(5;OK) · (πλ)5 and
V (λ) = A′

λ ⊕ Alt(5;OK) ⊕ M(5, 2;OK). Then we have

Zf1(s) =
∑

λ∈Λ+
2

∫

V (λ)

∫

GL(5;OK)
|f1(g′(πλ)5 tg′, y, z, w)|sKdg′dxdydzdw

=
∑

λ∈Λ+
2

∫

V (λ)

∫

GL(4;OK)
|f1(x0, y, z, w)|sKdgdxdydzdw

=
1 − q−4

1 − q−4−2s

×
∑

λ∈Λ+
2

∫

V (λ)

∫

GL(4;OK)
|f1(x0,

(
yij e4

−e4 0

)
, z, w)|sKdgdxdydzdw

=
1 − q−4

1 − q−4−2s

1 − q−3

1 − q−3−s

×
∑

λ∈Λ+
2

∫

V (λ)

∫

GL(4;OK)
|f1(x0, y0, z, w)|sKdgdxdydzdw,

where we put

x0 =
(

g(πλ)4 tg
0

)
, y0 =




0 1 0 y14 0
−1 0 0 y24 0
0 0 0 y34 0

−y14 −y24 −y34 0 1
0 0 0 −1 0




.

If we put g = t(g1|g2|g3|g4) ∈ GL(4;OK), then we have

f(x0, y0, z, w)

= det
(

z4 z2 · tg1(πλ)4 g2 + z3 · tg1(πλ)4 g3 + z4 · tg1(πλ)4 g4

w4 w2 · tg1(πλ)4 g2 + w3 · tg1(πλ)4 g3 + w4 · tg1(πλ)4 g4

)
.

Hence we have∫

V (λ)

∫

GL(4;OK)
|f(x0, y0, z, w)|sKdgdxdydzdw

= q−s|λ|
∫

V (λ)

∫

GL(4;OK)
|detA|sKdgdxdydzdw,

where A =
(

z4 z2 · tg1(πλ)4 g2 + z3 · tg1(πλ)4 g3

w4 w2 · tg1(πλ)4 g2 + w3 · tg1(πλ)4 g3

)

= q−s|λ| 1 − q−2

1 − q−2−s

∫

V (λ)

∫

GL(4;OK)
|z2 · tg1(πλ)4 g2

+ z3 · tg1(πλ)4 g3|sdgdxdydzdw
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= q−s|λ| (1 − q−2)2

(1 − q−2−s)2

(∫

A′
λ

dx

)∫

GL(4;OK)
| tg1(πλ)4 g2|sdg

= q−s|λ| (1 − q−2)2

(1 − q−2−s)2

(∫

A′
λ

dx

)
ζ4((πλ)4; s, 0).

By Lemma 4.1 and 4.3, we have

Zf1(s) =
(1 − q−1)(1 − q−2)2(1 − q−3)(1 − q−4)(1 − q−5)

(1 − q−1−s)(1 − q−2−s)2(1 − q−4−2s)

×
∑

λ∈Λ+
2

q−2n(λ)Pλ(q−2s−5, q−s−3; q−2).

By Equation 4.3, we get an explicit form of Zf1(s).
Next we shall calculate the integral Zf2(s). For λ ∈ Λ+

2 , we put

A′′
λ = GL(2;OK)

(
πλ1 0 0 0
0 πλ2 0 0

)
GL(4;OK) ⊂ M(2, 4;OK),

z0 = t(1, 0, 0, 0, 0),

x(λ1) =




0 πλ1 0 0 0
−πλ1 0 x23 x24 x25

0 −x23 0 x34 x35

0 −x24 −x34 0 x45

0 −x25 −x35 −x45 0




,

y(λ2) =




0 0 πλ2 0 0
0 0 y23 y24 y25

−πλ2 −y23 0 y34 y35

0 −y24 −y34 0 y45

0 −y25 −y35 −y45 0




.

We identify Alt(5)⊕2 as Alt(4)⊕2 ⊕ M(2, 4). Then we have

Zf2(s) =
1 − q−5

1 − q−5−2s

×
∑

λ∈Λ+
2

∫

Alt(4;OK)⊕2⊕A′′
λ⊕M(5,1;OK)

|f(x(λ1), y(λ2), z0, w)|sKdxdydw

=
1 − q−5

1 − q−5−2s

∑

λ∈Λ+
2

q−|λ|s

(∫

A′′
λ

dv

) ∫

O4
K

|πλ2x45w3

+ πλ1y45w2|sKdx45dy45dw2dw3,
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where dv is the Haar measure on M(2, 4;K) normalized by
∫
M(2,4;OK) dv =

1. Put τ = λ1 − λ2 ≥ 0. From [18, Section 3], we have
∫

A′′
λ

dv =
w4(q−1)

w
(2)
λ (q−1)

· q−3|λ|−2n(λ)

=
{

(1 + q−1)(1 − q−3)(1 − q−4)q−8λ2−3τ (τ ≥ 1)
(1 − q−3)(1 − q−4)q−8λ2 (τ = 0)

.

By simple calculation, for τ ≥ 1 we have
∫

O4
K

|x45w3 + πτy45w2|sKdx45dy45dw2dw3

=
(1 − q−1)2

(1 − q−1−s)2
+

q(−1−s)τ−1(1 − q−1)2(1 − q−s)
(1 − q−1−s)2(1 − q−2−s)

.

Therefore if we put together the above results, we get an explicit form of
Zf2(s). We also have Zf3(s) = Zf2(s) since f2(x, y, z, w) = −f3(x, y, w, z).

¤

Finally we shall discuss the Igusa local zeta function of several variables
for the space (1). K. Sugiyama communicated to the author an explicit
form of the b-function. The author heard that he calculated the b-function
by using the method of [16] and contractions of this space. The author
also calculated explicitly this b-function by using the method of [16] and
the computer soft Mathematica. The b-function of the space (1) is given by
bm(s) =

∏8
j=1 Γ(ηj(s + m))/Γ(ηj(s)), where

{ηj(s); j = 1, . . . , 8} =





s1 + 1, s1 + 2, s2 + 1, s3 + 1,
s1 + s2 + s3 + 2, s1 + s2 + s3 + 3,

2s1 + 2s2 + 2s3 + 4, 2s1 + 2s2 + 2s3 + 5



 .

By [7] and [12], we see that this explicit form of the b-function must cor-
respond to an explicit form of the b-function, which is given by an explicit
form of the Igusa local zeta function Z(s). From this relation, we expect
that the factors of the denominator of Z(s) are expressed by 1 − q−(si+a),
1 − q−(s1+s2+s3+a) or 1 − q−(2(s1+s2+s3)+a) (a ∈ Z>0). Furthermore for each
known space with a universally transitive open orbit, we have a certain
set {ηj(s)} such that Z(s) =

∏
(1 − q−ηj(0))/(1 − q−ηj(s)) and bm(s) =∏

Γ(ηj(s+m))/Γ(ηj(s)). Therefore we expect that the Igusa local zeta func-
tion of the space (1) is also given by Z(s) =

∏8
j=1(1− q−ηj(0))/(1− q−ηj(s))

for the above set {ηj(s)}, and the p-adic Γ-factor of the space (1) is given
by γ(s) =

∏8
i=1 γT (ηj(s − κ)), where κ = (2, 1, 1).
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