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NONCRITICAL BELYI MAPS

Shinichi MOCHIZUKI

Abstract. In the present paper, we present a slightly strengthened ver-
sion of a well-known theorem of Belyi on the existence of “Belyi maps”.
Roughly speaking, this strengthened version asserts that there exist Be-
lyi maps which are unramified at [cf. Theorem 2.5] — or even near [cf.
Corollary 3.2] — a prescribed finite set of points.

1. Introduction

Write C for the complex number field; Q ⊆ C for the subfield of algebraic
numbers. Let X be a smooth, proper, connected algebraic curve over Q. If
F is a field, then we shall denote by P1

F the projective line over F .

Definition 1. We shall refer to a dominant morphism [of Q-schemes]

φ : X → P1
Q

as a Belyi map if φ is unramified over the open subscheme UP ⊆ P1
Q given

by the complement of the points “0”, “1”, and “∞” of P1
Q; in this case, we

shall refer to UX
def= φ−1(UP ) ⊆ X as a Belyi open of X.

In [1], it is shown that X always admits at least one Belyi open. From this
point of view, the main result (Theorem 2.5) of the present paper has as an
immediate formal consequence (pointed out to the author by A. Tamagawa)
the following interesting [and representative] result:

Corollary 1.1 (Belyi Opens as a Zariski Base). If VX ⊆ X is any open
subscheme of X containing a closed point x ∈ X, then there exists a Belyi
open UX ⊆ VX ⊆ X such that x ∈ UX . In particular, the Belyi opens of X
form a base for the Zariski topology of X.

Acknowledgment. The author wishes to thank A. Tamagawa for helpful dis-
cussions during November 1999 concerning the proof of Theorem 2.5 given
here.

2. The Main Result

We begin with some elementary lemmas:
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Lemma 2.1 (Separating Properties of Belyi Maps). Let C ∈ R be such that
C ≥ 2; let

S ⊆ P1(Q)
be a finite set of rational points such that:

(i) 0, 1,∞ ∈ S;
(ii) there exists an r ∈ S such that 0 < r < 1;
(iii) every α ∈ S such that α 6= 0, r, 1,∞ satisfies α > 1.

Suppose that β ∈ Q\S satisfies the following condition:

(iv) β/α ≥ C, for all α ∈ S\{0,∞}.

Write r = m/(m + n), where m, n ≥ 1 are integers. Then the function

f(x) def= xm · (x − 1)n

satisfies the following properties:

(a) f({0, r, 1,∞}) ⊆ {0, f(r),∞};
(b) f ′(x) = 0 (where x ∈ C) implies x ∈ {0, r, 1,∞} ⊆ S;
(c) f(β) /∈ f(S);
(d) (f(β)+f0)/(f(α)+f0) ≥ C for all α ∈ S\{∞} such that f(α)+f0 6=

0.

Here, we write f0
def= −minα {f(α)}, where α ranges over the elements of

S\{∞}.

Proof. Property (a) is immediate from the definitions. Property (b) follows
immediately from the fact that:

f ′(x) = xm−1 · (x − 1)n−1 · {(m + n)x − m}

This computation also implies that for real x > 1, we have f ′(x) > 0, hence
that f(x) is monotone increasing, for real x > 1. In particular, since, by
condition (iv), β ≥ C ·α ≥ 2 ·α > α, for all α ∈ S\{0,∞}, we conclude that
f(β) > f(α), for all α ∈ S\{∞} such that α > 1.

Next, observe that since 1 ∈ S\{0,∞}, condition (iv) implies that β ≥
C ≥ 2, so f(β) > 1. Since |f(x)| ≤ 1 for x ∈ [0, 1], we thus conclude that
f(β) /∈ f(S), i.e., that property (c) is satisfied.

Next, let us observe the following property:

(e) If α ∈ S\{∞} satisfies α > 1, then (β − 1)/(α − 1) ≥ β/α ≥ 1;
f(β)/f(α) ≥ (β/α)2 ≥ β/α.

[Indeed, as observed above, β ≥ α; thus, f(β)/f(α) = (β/α)m ·{(β−1)/(α−
1)}n ≥ (β/α)m+n ≥ (β/α)2 ≥ β/α.] Now we proceed to verify property (d)
as follows:
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Suppose that n is even. Then f(α) ≥ 0, for all α ∈ S\{∞}, so f(0) = 0
implies that f0 = 0. Thus, if (S\{∞}) 3 α > 1, then, by condition (iv)
and property (e), we have: f(β)/f(α) ≥ β/α ≥ C, as desired. Since f(0) =
f(1) = 0, to complete the proof of property (d) for n even, it suffices to
observe that 0 < f(r) ≤ 1, so f(β)/f(r) ≥ f(β) = βm · (β − 1)n ≥ β ≥ C
[since β ≥ C ≥ 2, as observed above].

Now suppose that n is odd. Then f(x) ≤ 0 for x ∈ [0, 1], so [since
f ′(x) = 0 for x ∈ (0, 1) ⇐⇒ x = r] we conclude that:

f0 = |f(r)| = {m/(m + n)}m · {n/(m + n)}n

Note, moreover, that this expression for f0 implies that 0 < f0 ≤ 1
4 . [Indeed,

this is immediate in the following three cases: m,n ≥ 2; m = n = 1; one of
m, n is = 1 and the other is ≥ 3. When one of m, n is = 1 and the other is
= 2, it follows from the fact that (1

3) · (2
3)2 ≤ 1

4 .] Then if α > 1, then either
f(α) ≥ f0, in which case

(f(β) + f0)/(f(α) + f0) ≥ f(β)/{2 · f(α)} ≥ 1
2
· (β/α)2 ≥ (β/α) ≥ C

[by property (e)] or f(α) ≤ f0, in which case

(f(β) + f0)/(f(α) + f0) ≥ f(β)/{2 · f0} ≥ 2 · f(β) = 2βm(β − 1)n ≥ β ≥ C

[since 0 < f0 ≤ 1
4 , β ≥ C ≥ 2]. On the other hand, if α ∈ {0, 1}, then

(f(β) + f0)/(f(α) + f0) = (f(β) + f0)/f0 ≥ f(β) ≥ βm · (β − 1)n ≥ β ≥ C

[since β ≥ C ≥ 2, as observed above]. This completes the proof of property
(d). ¤

Lemma 2.2 (Belyi Maps Noncritical at Prescribed Rational Points). Let

S ⊆ P1(Q)

be a finite set of rational points such that:

(i) 0,∞ ∈ S;
(ii) α ∈ S\{0,∞} implies α > 0.

Suppose that β ∈ Q\S satisfies the following condition:

(iii) β/α ≥ 2, for all α ∈ S\{0,∞}.

Then there exists a nonconstant polynomial f(x) ∈ Q[x] which defines a
morphism

φ : P1
Q → P1

Q

such that: (a) φ(S) ⊆ {0, 1,∞}; (b) φ(β) /∈ {0, 1,∞}; (c) φ is unramified
over P1

Q\{0, 1,∞}.
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Proof. Indeed, we induct on the cardinality |S| of S and apply Lemma 2.1
[with, say, C = 2] to the set λ · S ⊆ P1

Q, for some appropriate positive
rational number λ. Then, so long as |S| ≥ 4, the polynomial “f(x) + f0”
of Lemma 2.1 determines a morphism P1

Q → P1
Q, unramified away from the

image of S, that maps β, S to some β′, S′ that satisfy conditions (i), (ii),
(iii) of the present Lemma 2.2, but for which the cardinalities of S′, S satisfy
|S′| < |S|. Thus, by applying the induction hypothesis and composing the
resulting morphisms P1

Q → P1
Q, we conclude the existence of an “f”, “φ” as

in the statement of the present Lemma 2.2. ¤
Lemma 2.3 (Separation of Collections of Points). Let

S ⊆ P1(C)

be a finite set of complex points. Then for any real C > 0 and β ∈ C\S ⊆
P1(C)\S, there exists a λ ∈ C such that the rational function

f(x) = 1/(x − λ)

satisfies f(β) 6= 0,∞; f(α) 6= ∞; and |f(β)| ≥ C · |f(α)|, for all α ∈ S.
Moreover, if β ∈ Q, then one may take λ ∈ Q.

Proof. Indeed, it suffices to take λ such |λ − β| is sufficiently small. ¤

Lemma 2.4 (Reduction to the Rational Case). Write Q ⊆ C for the subset
of algebraic numbers. Let

S ⊆ P1(Q) ⊆ P1(C)

be a finite set of Q-rational points. Suppose that β ∈ Q\S. Then there exists
a nonconstant rational function f(x) ∈ Q(x) which defines a morphism

φ : P1
Q → P1

Q

such that, for some Sφ ⊆ P1(Q), we have: (a) φ(S) ⊆ Sφ; (b) φ(β) ∈
P1(Q)\Sφ; (c) φ is unramified over P1

Q\Sφ. Moreover, if S, β are defined
over a number field F , then φ may be taken to be defined over F .

Proof. First of all, we observe that by applying the automorphism x 7→
x−β, we may assume that β ∈ P1(Q). Moreover, under the hypothesis that
β ∈ P1(Q), we shall construct a f(x) satisfying the required conditions such
that f(x) ∈ Q(x). Also, we may replace S by the union of all Gal(Q/Q)-
conjugates of S and assume, without loss of generality, that S is Gal(Q/Q)-
stable.

If F is a finite extension of Q, then let us refer to the number [F : Q]− 1
as the reduced degree of F . Write

m(S)
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for the maximum of the reduced degrees of the fields of definition of the
various points contained in S and

d(S)

for the sum of those reduced degrees of the fields of definition of the various
points contained in S which are equal to m(S). Thus, d(S) = 0 if and only
if m(S) = 0 if and only if S ⊆ P1(Q).

Now we perform a “nested induction” on m(S), d(S): That is to say, we
induct on m(S), and, for each fixed value of m(S), we induct on d(S). If
m(S), d(S) 6= 0, then let α0 ∈ S\P1(Q) be such that d0

def= [Q(α0) : Q]
is equal to m(S) + 1. Then by applying an automorphism (with rational
coefficients!) as in Lemma 2.3 and then multiplying by some positive rational
number, we may assume that |α| ≤ 1, for all α ∈ S\{∞}, while |β| ≥ C,
for some sufficiently large C, where “sufficiently large” is relative to d0. Let
f0(x) ∈ Q[x] be the monic minimal polynomial for α0 over Q. Then one
verifies immediately that all of the coefficients of f0(x) have absolute value
≤ dd0

0 . In particular, it follows that the value of f0 at every α ∈ S\{∞},
as well as at every element of the set S0 of roots of the derivative f ′

0(x) has
absolute value bounded by some fixed expression in d0. Thus, for a suitable
choice of C, it follows that f0(β) /∈ S′ def= f0(S)

⋃
f0(S0). Moreover, since

f0(α0) = 0; [Q(α′) : Q] < d0 for every α′ ∈ f0(S0) [since f0(x), f ′
0(x) ∈ Q[x];

f ′
0(x) has degree ≤ d0−1], it follows that S′ is Gal(Q/Q)-stable and satisfies

the property that either
m(S′) < m(S)

or
m(S′) = m(S); d(S′) < d(S)

— thus completing the induction step. In particular, replacing S by S′, β
by f0(β), applying the induction hypothesis, and composing the resulting
morphisms yields a morphism φ as in the statement of Lemma 2.4. ¤

Theorem 2.5 (Belyi Maps Noncritical at Prescribed Points). Let X be a
smooth, proper, connected curve over Q and

S, T ⊆ X(Q)

finite sets of Q-rational points such that S
⋂

T = ∅. Then there exists a
morphism

φ : X → P1
Q

such that: (a) φ is unramified over P1
Q\{0, 1,∞}; (b) φ(S) ⊆ {0, 1,∞}; (c)

we have φ(T )
⋂
{0, 1,∞} = ∅. Moreover, if X, S, and T are defined over a

number field F , then φ may be taken to be defined over F .
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Proof. Since X(Q) is infinite, we may always adjoin to T extra points of
X(Q) that do not lie in S; in particular, we may assume, without loss of
generality, that T has cardinality ≥ 2gX + 1, where gX is the genus of X.
Write

D
def=

∑

t∈T

[t]

for the effective divisor on X obtained by taking the formal sum of the
points in T , each with multiplicity one; denote the associated line bundle
OX(D) by L and the canonical bundle of X by ωX . Also, we shall write
s0 ∈ Γ(X,L) for the section [uniquely determined up to a Q×-multiple]
whose zero divisor is D. Thus, the degree deg(L) of L is ≥ 2gX + 1 ≥ 1. In
particular, if x ∈ X(Q), then

deg(ωX ⊗ L−1(x)) ≤ (2gX − 2) − (2gX + 1) + 1 = −2

so Γ(X, ωX ⊗ L−1(x)) = 0. Since, by Serre duality, Γ(X, ωX ⊗ L−1(x))
is dual to H1(X,L(−x)), we thus conclude that H1(X,L(−x)) = 0. Now
if we consider the long exact cohomology sequence associated to the exact
sequence of coherent sheaves on X

0 → L(−x) → L → L⊗ k(x) → 0

[where k(x) is the residue field of X at x] we obtain an exact sequence

. . . → Γ(X,L) → L⊗ k(x) → H1(X,L(−x)) → . . .

— i.e., we have a surjection Γ(X,L) ³ L ⊗ k(x). Since Q is infinite, it
thus follows that there exists an s1 ∈ Γ(X,L) such that s1(t) 6= 0 for all
t ∈ T . Thus, the linear series determined by the sections s0, s1 of L has no
basepoints, hence determines a finite morphism

ψ : X → P1
Q

such that the pull-back by ψ of the unique [up to isomorphism] line bundle
of degree 1 on P1

Q is isomorphic to L; ψ maps every t ∈ T to the point “0”
of P1

Q. Moreover, since every point of the support of D has multiplicity one
in D, ψ is unramified over the point “0” of P1

Q; since no point of S lies in
the support of D, this point “0” of P1

Q does not lie in the set ψ(S).
Thus, in summary, by replacing X by P1

Q, T by the point “0” of P1
Q, and S

by the union of ψ(S) and the points of P1
Q over which ψ ramifies, we conclude

that we may reduce to the case X = P1
Q, T = {β}, for some β ∈ P1(Q)\{∞}.

Next, by applying Lemma 2.4, one reduces to the case X = P1
Q, S ⊆ P1(Q),

T = {β}, for some β ∈ P1(Q)\{∞}. Finally, by applying an automorphism
as in Lemma 2.3 [for, say, C = 4], followed by a suitable automorphism of



NONCRITICAL BELYI MAPS 111

the form x 7→ ν · x + µ, where ν ∈ {±1} and µ ∈ Q, gives rise to a situation
in which the hypotheses of Lemma 2.2 are valid. Thus, Theorem 2.5 follows
from Lemma 2.2. ¤

3. Some Generalizations

Corollary 3.1 (Belyi Maps Noncritical at Arbitrary Sets of Prescribed
Cardinality). Let n ≥ 1 be an integer; X a smooth, proper, connected curve
over Q and

S ⊆ X(Q)

a finite set of Q-rational points. Then there exists a finite collection of
morphisms

φ1, . . . , φN : X → P1
Q

such that: (a) φi is unramified over P1
Q\{0, 1,∞}, for all i = 1, . . . , N ; (b)

φi(S) ⊆ {0, 1,∞}, for all i = 1, . . . , N ; (c) for any subset T ⊆ X(Q) of
cardinality n for which S

⋂
T = ∅, there exists an i ∈ {1, . . . , N} such that

φi(T )
⋂
{0, 1,∞} = ∅.

Proof. Note that we may think of T as a Q-valued point of the n-fold product
Y

def= (X\S)n of (X\S) over Q. Then observe that for any φ : X → P1
Q such

that: (a) φ is unramified over P1
Q\{0, 1,∞}; (b) φ(S) ⊆ {0, 1,∞}, the subset

Uφ ⊆ Y (Q)

of y ∈ Y (Q) for which φ(y)
⋂
{0, 1,∞} = ∅ [where, by abuse of notation, we

write φ(y) for the subset of P1
Q(Q) which is the image under φ of the subset

of X(Q) determined by y] is nonempty and open [in the Zariski topology].
Moreover, by Theorem 2.5, the Uφ cover Y (Q) [i.e., as φ varies over those
morphisms satisfying the conditions (a), (b)]. Since Y is quasi-compact, we
thus conclude that there exist finitely many φ1, . . . , φN such that Y (Q) is
covered by Uφ1 , . . . , UφN

, as desired. ¤

In the following, we shall refer to as a locally compact field any completion
of a number field at an archimedean or nonarchimedean place.

Corollary 3.2 (Belyi Maps Noncritical Near Arbitrary Points of Prescribed
Degree). Let c, d ≥ 1 be integers; X a smooth, proper, connected curve
over a number field F ⊆ Q; V a finite set of valuations (archimedean or
nonarchimedean) of F . If v ∈ V , then we denote by Fv the completion of F
at v. Then there exists a finite collection of morphisms

φ1, . . . , φN : X → P1
Q
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and, for each v ∈ V , a locally compact field Lv and a compact set

Hv ⊆ (P1\{0, 1,∞})(Lv) ⊆ P1(Lv)

satisfying the following properties:

(i) F ⊆ Fv ⊆ Lv [i.e., Lv is a topological field extension of Fv];
(ii) Lv contains all Q-conjugates of all extensions of F of degree ≤ d;
(iii) every φi (where i ∈ {1, . . . , N}) is defined over every Lv (where

v ∈ V );
(iv) φi is unramified over P1

Q\{0, 1,∞}, for all i = 1, . . . , N ;

(v) for any subset T ⊆ X(Q) of cardinality ≤ c consisting of points
x ∈ T whose field of definition is of degree ≤ d over F , there exists an
i ∈ {1, . . . , N} such that φi(xσ) ∈ Hv, for all x ∈ T , σ ∈ Gal(Q/F ),
v ∈ V .

Proof. As in the proof of Corollary 3.1, write Y
def= Xn for the n-fold product

X over F , where we set n
def= c · d. Thus, for any T ⊆ X(Q) as in the

statement of Corollary 3.2, (v), the conjugates over F of the various x ∈ T [in
any order, with possible repetition] form a point ∈ Y (Q). Let Lv be a locally
compact field containing Fv, as well as all Q-conjugates of all extensions of
F of degree ≤ d. Then observe that for any φ : X → P1

Q which is defined
over all of the Lv [as v ranges over the elements of V ] and unramified over
P1

Q\{0, 1,∞}, the subset

Uφ ⊆ Y (LV ) def=
∏

v∈V

Y (Lv)

of y ∈ Y (LV ) for which φ(y)
⋂
{0, 1,∞} = ∅ [by abuse of notation, as in

the proof of Corollary 3.1] is nonempty and open relative to the product
topology of the Zariski topologies on the Y (Lv), hence a fortiori, relative to
the product topology of the topologies on the Y (Lv) determined by the Lv.
Moreover, by arguing as in the proof of Corollary 3.1 using Theorem 2.5
and the Zariski topology, we may assume that the Lv are sufficiently large
that [in fact, finitely many] such Uφ cover Y (LV ). Now since each Uφ is
locally compact and contains a countable dense subset, it follows that each
Uφ admits an exhaustive chain of open subsets

Vφ,1 ⊆ Vφ,2 ⊆ . . . ⊆ Uφ

[i.e.,
⋃

j Vφ,j = Uφ] such that the closure V φ,j in Uφ of each Vφ,j is compact.
On the other hand, since Y is proper, it follows that Y (LV ) is compact. We
thus conclude that there exist finitely many φ1, . . . , φN such that Y (LV ) is
covered by Vφ1,j1 ; . . . ; VφN ,jN

, where [by abuse of notation, as in the proof of
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Corollary 3.1, we write]

φi(Vφi,ji
) ⊆ φi(V φi,ji

) ⊆ φi(Uφi
) ⊆

∏

v∈V

(P1\{0, 1,∞})(Lv)

for i = 1, . . . , N . Thus, we may take Hv to be the image in the factor
(P1\{0, 1,∞})(Lv) of the union of the compact subsets φi(V φi,ji

) of the
product

∏
v∈V (P1\{0, 1,∞})(Lv). ¤
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