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A STUDY OF F,-FUNCTIONS CONNECTED WITH
RAMANUJAN’S TENTH ORDER MOCK THETA
FUNCTIONS

BHASKAR SRIVASTAVA

ABSTRACT. We have defined generalized functions which reduce to Ra-
manujan’s mock theta functions of order ten. We have shown that they
are Fy-functions. We have given their integral representation and multi-
basic expansions.

1. INTRODUCTION

In this paper, we shall consider a generalization of Ramanujan’s tenth
order mock theta functions. The mock theta functions were briefly described
by Ramanujan in his last letter to Hardy [6, p.354-355]. In this letter,
Ramanujan gave a list of seventeen functions and called them mock theta
functions of order three, five and seven. Later in the Lost Notebook [7]
seven more mock theta functions were found and Andrews and Hickerson [2]
considered them and called them of order six. Recently Choi [3] considered
four more mock theta functions found in the Lost Notebook and called
them of order ten. However, these mock theta functions are mysterious
functions and no one including Ramanujan has ever proved that the mock
theta functions exist.

By placing these mock theta functions in the family of Fj-functions and
representing them as g-integrals and giving their series expansion, I feel,
will be helpful in knowing more about these functions. In a later paper, the
author has given a modular transformation for these mock theta functions.

Truesdell [8] in his book has tried to unify the theory of special functions-
n'™ derivative formulae, transformations, contour integrals, miscellaneous
relations etc. He calls the functions which satisfy the functional equation

(1.1) %F(z, a) =F(z,a+1),

F-functions.
The g-analogue of this is the ¢-differential difference equation

(1.2) Dy.F(z,a) = F(z,a+ 1),
where
(1.3) 2Dq  F(z,0) = F(z,a) — F(2q,a),
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and the functions which satisfy this equation are called Fj-functions.

In this paper (§5 and §6), we have defined four generalized functions which
reduce to Ramanujan’s mock theta functions of order ten and have shown
they are F-functions and deduced certain simple properties.

In §7, we give an integral representation for these functions.

In §8, we represent these functions as multibasic series.

2. NOTATIONS

We shall use the following usual basic hypergeometric notations:
For |¢*| < 1,

(a,qk)n =(1-a)(1- aqk) (11— CLq]“(TFl))7 n>1
(aaqk)o = 17
%
(CL, qk)oo - H(l - aqkj)7
j=0
(a1, a2, am; @) = (136" )n(az; @) -+ (am3 ¢,
(Q7Q)n = (a)n
ALy oy Qp 0171,...,017,«1 Do Cm,la---ycm,rm X X
¢|:b1,...,bs 261’1,...,617312"' :€m71,...,€m7sm’q’qu.”?qm’ Z:|
oo 14s5—
_ { (a1, 05 @)n_p [(_1)%”22”] s—r
n=0 (‘Lblw'-)bs;Q)n
m L .
" H (Cj71,...,cj,rj,q])n [(—1)”q"22"rj m}.
j=1 (63‘71, ceey ej,S]'; QJ>7L
A¢A71[a17a2""7aA;b17b27---7bA71;q1aZ]

o0

-y (a1;q1)n - (aa;q1)n2"

, |zl < 1.
(b1;q1)n - (ba—1;q1)n(q1; @1 )n 12

n=0
3. TENTH ORDER MOCK THETA FUNCTIONS

The four tenth order mock theta functions as defined by Ramanujan are

(3 1) q)( ) qn(n+1)/2
' R A,
o0 q(n+1)(n+2)/2
(32) W(g) =

= ()t
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2

(3.3) Z
and
© n g, (n+1)2
"q
3.4 : .
( ) Z —q; q 2n+1

n=0
4. GENERALIZED FUNCTIONS

We define the following four functions

1 & (Z)nq%n(nfl)+na

b 20 = e 2 P
% g3t tna
(4.2) U(z, nzo I
(4.3) X(z, i V(&g
n 2+natn
(4.4) x(za) = o Z p—e

For z =0, a = 1, these functions reduce to the four tenth order mock theta
functions ®(q), ¥(q), X(q), x(q)-

5. GENERALIZED FUNCTIONS AS Fy-FUNCTIONS
Theorem 1. ®(z,a), ¥(z,a), X(2,a), and x(z,a) are Fy-Functions.

Proof. .
00 (Z)nqgn(n—l)—i-na

1
(2)oo Z

O(z,a) =

By definition

1 o0 ( ) q2n(n 1)+na 1 o0 (Zq)nq%n(nfl)+noz
2Dy, ®(z,a) = —
202 0) (Z)ooT;) (4 ¢*)n+1 (ZQ)ooT;) (4 ¢*)n+1
1 0o ( ) q2”(” 1)+na .
= 1—-(1—-2¢q
G S v e G Gt )

( ) q2n(n 1)+n(a+1)

(q, q )n+1
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=z2P(z,a + 1).

Hence ®(z, a) is a F-Function.
Similarly it can be proved that V(z,a), X(z,a) and x(z,a) are Fy-
Functions. O

6. SIMPLE PROPERTIES
Dy .®(z,a) =¥(z, ),
Dy ®(2, a)|2=0 = ¥(q),

(2)o0 2= (45 4% )nt1
=V(z, a),
which proves (i). O
proof of (ii). Put z =0, a =1, in (i). O

proof of (iii).
D;Z[X(z, a) —x(z,0)] = X(z,a+2) — x(z,a+ 2),

since

D2 F(z,a) = Dg.(Dy.F(z,a)) = Do .F(z,a+ 1) = F(z,a + 2).
So

LSS (1) (g et
D2Z X(z,a) — x(z,a)] =
el X () =X o] = = 30 =
e
B2 (~@2am
_ 1 0 (_1)n(z)nqn2+na+n (1 i q2n+1)
(Do 2 (~Q)20m1

1 L (—1)(2) g Tretdntl

= (=@)2n+1
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-1 °° (_1)n(z)nqn2+na+n+1

= (=@)2n+1

which proves (iii).

proof of (iv). Put z =0, a = 1, in (iii).

7. INTEGRAL REPRESENTATION

Thomae [4, p.19] and Jackson [4, p.19] defined the g-integral as
1 9]
| rode=a-0 @
n=0

Theorem 2.

) ; 1— q -1 1 .
(i) @(¢%,a)= ((q,q)io/o 771 (tq; 0) oo ®(0, at) dgt,
. . 1— -1 1 .
() wiaa) = 0 [ w0, at) d.
1— -1 1
(i) X(¢%, @) = ((qqq)) /0 71 (tq; 0)oo X (0, at) dyt,
. . 1— -1 1 L
(iv) x(¢* @) = ((q.qq))/o 7 (tq; 4)0x (0, at) dyt,
where
o Lp(n—1) ©  Llnmt1)
qz n _ q2 n
‘1>(0,at) = Z m(at) s \II(O,CLt) = Z m(at) 5
n=0 ! n n=0 ’ n
0o (_1)nqn(n—1) . 00 (_1)nqn(n+1) .
X00,a) =S 2T @)y, x(0,at) =S ~LL (at
(0.t nz:% (=& @)2n ()" x(0.a0 ,;) (—=¢; D2n+1 (at)
Proof. Limiting case of the g-beta integral [4, p.19(1.11.7)] is
1 (1 _Q)_l /1 -1
71 — 27t @)oo dot.
(1) (@0 (G2 Jo (80 @)oo

Now
In(n—1)+na

1 = 2)nq?2
2za) = (2) o0 Z< )(Z;qQ

n=0

)n+1
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Writing ¢® for z and ¢“ = a, we have

Ln(n—1)+na

o a) = ——3 (4°)ng?

(@)oo 2= (460t

0 n(n 1)+na

- Z n-l—z)oo

o0 ln(n—l)—i—noe 1— 1
q2 q z—
@D ((q,q)) "7 (tg; q)oo dgt, by (7.1)
0 n )
(

-
>

n=

(1 ) z—1 .
(7.2) N /t 45 q)oo

1

qz (n—1) ( ) p
A (at)" dt.
“ (¢3¢*)n+1 !

n—

>  lnn—1)+na

B(0,0) =Y L

= ()t

and since ¢ = a,

0 ( ) an(n 1)
®(0,a) = R
( ) nz:% (qu )n+1
Hence
0 q%n(n—l)
7.3 ®(0,at) = —(at)".
( ) ( ) ,;O(Q;QQ)nﬂ( )

By (7.3), (7.2) can be written as
(1-q)! /1 -1
(¢ ) = ~—F— | "7 (14, ) oo ®(0, at) dyt,
(@0 Jo !
which proves (i).

Similarly we can prove (ii), (iii) and (iv). O

Putting a = ¢, ®(0, at) reduces to the mock theta function ®(g). Similarly
for other functions.

8. MULTIBASIC EXPANSIONS

By using the summation formula [4, p.71, (3.6.7)] and [5, Lemma 10, p.57],
we have the multibasic expansion

o

(1 —ap®q®)(1 — bp*q %) (a, b;p)i(c, a/be; )rg"
1 m
1) Y (T — a)(1 = b)(g, aq/b; q)x(ap/c, bep; p) Z ek

k=0



A STUDY OF Fg-FUNCTIONS 137

ap/c bcz?, ) (¢,0q/b;@)m
Corollary 1. Letting ¢ — ¢* and ¢ — oo in (8.1), we have
o apkq%)(l _ bpkq_zk)(a b'p)quQ +k
k=0 1—@)(1—6)(q aq®/b; ) m=0
Z (ap,bp: p)mg™ ™
= -
0 (¢%, aq? /b3 ) bmp ™
Corollary 2. Letting ¢ — ¢> and ¢ — oo in (8.1), we have
a2 -
(3 i a"phg™) (1 = bptg= ) (a,biphrg” 7 5
Am+k
k2 +k
k=0 (1—a)(1—0)(¢* aq®/b;q*)kbFp
00 3m243m
-y (ap,bp;p)mq 2 N
2, dm
m=0 (¢%, a4 /b5 ¢*)m 3
Theorem 3.
K2k
() ®(za)= 19" ! Z (=g M (@) z T
D & 0= e
0,0 : pg2k g2k+2
X qb[ B2 . 2k43 Ca, 4% 4 |,
- K24k
(i) U(x,a)= (1-9~" Z (A = g (@)g—1g 2 T
Do & 0= D P
q,0 :aq®, ¢*M*?
¢ I:qk+2 . q2k+370 3 g, q ; qOZ+1
2_
(i) X(a, i Lo g e T
oo 0 1 - qk+2 f _Zf ZQ) Z(Ja )
k. . 3k+3
q,xq 070 - q 2 3
¢ [qk+3 _ Rl g2 $ 97 —qa} ,

g1—q)* i (—DF(L = g' =) () g™ Hh ke

() xtwm o) =05 (1 — ") (iq, —iq,iq%/?, —ig®/%; @)k

k=0
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. 3k+3
q,2¢": 0,0 iq 2 3. 1
X ¢ [ b2 : q2k:+2 BT 0.0, q7; —¢*t

Proof of (i). Taking a = %, b=gq,p=gqand a, = % in (8.2), we
have
2

k2 -k
i (1—2¢**H(1 - ¢ ") (2/q,¢;Q)kq 2

= (I—z/q)(1 = q)(z, 4% ¢*)k
m2
y i 30" ) m+k(4%: )m+kq (mk)e i z e
—~ (@ Dmak (@5 @)k — @*)m
X (1 — 2a3k—1)(1 — g—k+1 . Kok |k
LHS=Y (1 —2¢™ )1 — ¢ ")(x/q, 4 D)rq
— (1 —=2/q)(1 = q)(¢* Dr(a®; ¢*)k
N @)@ ) mg™
2 (G ) (5 )
k2—k
_ f: (1-2g™ (1 — g ") (@ q)kag =
2 1= )%
q,0 :xg*, g+
X ¢ [qk+2 2R3 .45 ¢
o0 1. Q) q 22m+ma
RHS=(1-gq) Z m
=(1- Q)(ﬂf;Q)oo‘I’(%a)-
Hence the Theorem 3(i). O
Proof of (ii). Taking a = %, b=gq,p=qand o, = % in (8.2)
and after a little simplification, we have the Theorem 3(ii). O
Proof of (iii). Taking a = 0, b = ¢, p = ¢ and «,, = @ (@50 )n (4" )

(qs)n(_Q)Zn
(8.3), we have the Theorem 3(iii).

Proof of (iv). Taking a =0, b =¢, p = ¢ and «a,, = (x)”((q_gégjizgzq)?l)n in
(8.3), we have the Theorem 3(iv).

For z = 0, « = 1, we have the multibasic expansion of the tenth order
mock theta functions.
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