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“HASSE PRINCIPLE” FOR FINITE p-GROUPS WITH
CYCLIC SUBGROUPS OF INDEX p2

Michitaku FUMA and Yasushi NINOMIYA

1. Introduction

Let G be a group. A map f : G −→ G satisfying f(xy) = f(x)f(y)x for
every x, y ∈ G, where f(y)x = xf(y)x−1, is called a cocycle of G. Let f be a
cocycle of G. If, for every x ∈ G, there exists a ∈ G such that f(x) = a−1ax

then f is called a local coboundary, and if there exists a ∈ G such that
f(x) = a−1ax for every x ∈ G then f is called a (global) coboundary.
G is said to enjoy “Hasse principle” if every local coboundary of G is a
coboundary. Abelian groups trivially enjoy “Hasse principle”. It is known
that a finite group G enjoys “Hasse principle” if and only if every conjugacy
preserving automorphism of G is an inner automorphism ([6], Theorem 3.1).

Some types of groups enjoying “Hasse principle” are known ([1], [2], [3],
[5], [6], [7], [8], [9]). For finite p-groups, it is known that the following groups
enjoy “Hasse principle”.

(1) finite p-groups with cyclic subgroups of index p ([1]);
(2) extraspecial p-groups ([1]);
(3) finite p-groups of order p4 ([2]).

Among the known results, the following are useful for our study:

Theorem 1 ([2]). Metacyclic groups enjoy “Hasse principle”.

Theorem 2 ([3]). Let H be a central subgroup of G. If G/H is generated by
xH and yH (x, y ∈ G) and every element of G/H can be written as xrysH,
then G enjoys “Hasse principle”.

Recently, M. Kumar and L. R. Vermani [3] proved that for an odd prime
p, every non-abelian finite p-group of order pm having a normal cyclic sub-
group of order pm−2 but having no element of order pm−1 enjoys “Hasse
principle”. Further they have described that there are fourteen 2-groups
(up to isomorphism) of order 2m of the above type and they showed that
twelve of them enjoy “Hasse principle” but remaining two do not enjoy
“Hasse principle”. In [4], for any prime p, all finite non-abelian p-groups
of order pm having cyclic subgroups of order pm−2 but having no element
of order pm−1 are classified. From the result we see that there is a missing
group in a description in [3], which is given by

〈a, b | a2m−2
= 1, b4 = a2m−3

, b−1ab = a−1〉

31



32 M. FUMA AND Y. NINOMIYA

(see [4], Remark 3 (1)). This group is metacyclic, and so enjoys “Hasse
principle”. Further, two groups given in [3], Theorem 3.4 are isomorphic
(see [4], Remark 3 (2)).

In this note we report that every non-abelian p-group of order pm having
a cyclic subgroup of order pm−2 but having no normal cyclic subgroup of
order pm−2 and no element of order pm−1 enjoys “Hasse principle”. From
now on suppose that G is a non-abelian p-group of this type.

(I) For an odd prime p, there are seven possibilities about G. Using
notation given in [4], we here list these groups:

G1 = 〈x, y, z | xpm−2
= 1, yp = zp = 1, xy = yx, z−1xz = xy,

yz = zy〉 (m ≥ 3);

G5 = 〈x, y, z | xpm−2
= 1, yp = zp = 1, xy = yx, z−1xz = xy,

z−1yz = xpm−3
y〉 (m ≥ 4);

G6 = 〈x, y, z | xpm−2
= 1, yp = zp = 1, xy = yx, z−1xz = xy,

z−1yz = xrpm−3
y〉 (m ≥ 4),

where r is a quadratic nonresidue mod p.

G7 = 〈x, y, z | xpm−2
= 1, yp = zp = 1, y−1xy = x1+pm−3

,
z−1xz = xy, yz = zy〉 (m ≥ 4);

G9 = 〈x, y | xpm−2
= 1, yp2

= 1, y−1xy = x1+p〉 (m ≥ 5);

G10 = 〈x, y | xp2
= 1, xpp−3

= yp2
, y−1xy = x1−p〉 (m ≥ 6);

G11 = 〈x, y, z | x9 = 1, y3 = 1, z3 = x3, xy = yx, z−1xz = xy,
z−1yz = x6y〉

By Theorem 2, G1 enjoys “Hasse principle”, and because G9 and G10 are
metacyclic by Theorem 1, they also enjoy “Hasse principle”.

(II) For p = 2, there are twelve possibilities about G. Again, using nota-
tion in [4], we list these groups:

G5 = 〈x, y, z | x2m−2
= 1, y2 = z2 = 1, xy = yx, z−1xz = xy,

yz = zy〉 (m ≥ 4);

G9 = 〈x, y | x2m−2
= 1, y4 = 1, x−1yx = y−1〉 (m ≥ 5);

G13 = 〈x, y, z | x2m−2
= 1, y2 = z2 = 1, xy = yx, z−1xz = x−1y,

yz = zy〉 (m ≥ 5);

G14 = 〈x, y, z | x2m−2
= 1, y2 = 1, z2 = x2m−3

, xy = yx,
z−1xz = x−1y, yz = zy〉 (m ≥ 5);
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G17 = 〈x, y, z | x2m−2
= 1, y2 = z2 = 1, y−1xy = x1+2m−3

,
z−1xz = xy, yz = zy〉 (m ≥ 5);

G18 = 〈x, y, z | x2m−2
= 1, y2 = 1, z2 = y, y−1xy = x1+2m−3

,
z−1xz = x−1y〉 (m ≥ 5);

G21 = 〈x, y | x2m−2
= 1, x2m−3

= y4, x−1yx = y−1〉 (m ≥ 6);

G22 = 〈x, y, z | x2m−2
= 1, y2 = z2 = 1, xy = yx,

z−1xz = x1+2m−4
y, z−1yz = x2m−3

y〉 (m ≥ 6);

G23 = 〈x, y, z | x2m−2
= 1, y2 = z2 = 1, xy = yx,

z−1xz = x−1+2m−4
y, z−1yz = x2m−3

y〉 (m ≥ 6);

G24 = 〈x, y, z | x2m−2
= 1, y2 = z2 = 1, y−1xy = x1+2m−3

,

z−1xz = x−1+2m−4
y, yz = zy〉 (m ≥ 6);

G25 = 〈x, y, z | x2m−2
= 1, y2 = 1, z2 = x2m−3

, y−1xy = x1+2m−3
,

z−1xz = x−1+2m−4
y, yz = zy〉 (m ≥ 6);

G26 = 〈x, y, z | x8 = 1, y2 = 1, z2 = x4, y−1xy = x5,
z−1xz = xy, yz = zy〉

By Theorem 2, G5, G13 and G14 enjoy “Hasse principle”. Because G9

and G21 are metacyclic, they also enjoy “Hasse principle”.
In what follows, we denote by Autc G and InnG the set of automorphisms

which preserves each conjugacy class of G and the inner automorphism group
of G, respectively.

2. The case p odd

In [2], it has been shown that if every f ∈ Autc G that fixes one of the
generating elements of G is in InnG, then G enjoys “Hasse principle”. Let p
be an odd prime. We here show that the groups G5, G6, G7 and G11 given
in (I) enjoy “Hasse principle”.

G5 and G6 enjoy “Hasse principle”.

Proof. Let f ∈ Autc G5 such that f(z) = z. Then there exist a = xiyjzk,
b = xryszt ∈ G5 with 0 ≤ i, r < pm−2, 0 ≤ j, k, s, t < p such that f(x) =
a−1xa, f(y) = b−1yb, and so

f(x) = z−ky−jx−i · x · xiyjzk = z−kxzk,

f(y) = z−ty−sx−r · y · xryszt = z−tyzt.
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As z−1xz = xy and z−1yz = xpm−3
y we have

z−kxzk = x1+(1+2+···+(k−1))pm−3
yk = x1+

k(k−1)
2

pm−3
yk.

We also have z−tyzt = xtpm−3
y. Therefore f(x) = x1+

k(k−1)
2

pm−3
yk, f(y) =

xtpm−3
y. Since f is an automorphism,

f(z)−1f(x)f(z) = f(z−1xz) = f(xy) = f(x)f(y).

We have

f(z)−1f(x)f(z) = z−1(x1+
k(k−1)

2
pm−3

yk)z

= (z−1xz)1+
k(k−1)

2
pm−3

(z−1yz)k

= x1+(k+
k(k−1)

2
)pm−3

y1+k,

f(x)f(y) = x1+
k(k−1)

2
pm−3

ykxtpm−3
y

= x1+(t+
k(k−1)

2
)pm−3

y1+k.

Therefore the following congruence holds:

1 +
(
k +

k(k − 1)
2

)
pm−3 ≡ 1 +

(
t +

k(k − 1)
2

)
pm−3 (mod pm−2).

From this it follows that k ≡ t (mod p). Then because 0 ≤ k, t < p, we
have k = t. Thus we have f(x) = z−kxzk, f(y) = z−kxzk, f(z) = z−kzzk.
This shows that f ∈ InnG5, and so G5 enjoys “Hasse principle”. By an
analogous argument we can show that G6 enjoys “Hasse principle”. ¤

In the rest of the paper, we proceed with a similar argument as above.
Given f ∈ Autc G, the image f(g) of g ∈ G will be denoted by g.

G7 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G7 such that z = z. Then there exist a = xiyjzk,
b = xryszt ∈ G7 with 0 ≤ i, r < pm−2, 0 ≤ j, k, s, t < p such that x = a−1xa,
y = b−1yb. We then have x = x1+jpm−3

yk, y = x−rpm−3
y, z = z. Since

f is an automorphism, z−1x z = x y. Because x y = x1+(j−r)pm−3
yk+1,

z−1x z = x1+jpm−3
yk+1, we have

z−1x z = x y ⇐⇒ rpm−3 ≡ 0 (mod pm−2).

Thus we have x = x1+jpm−3
yk, y = y, z = z. Therefore setting u = yjzk, we

have
f(x) = u−1xu, f(y) = u−1yu, f(z) = u−1zu,

and so f ∈ InnG7. ¤
G11 enjoys “Hasse principle”.
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Proof. Let f ∈ Autc G11 such that z = z. Then there exist a = xiyjzk,
b = xryszt ∈ G11 with 0 ≤ i, r < 9, 0 ≤ j, k, s, t < 3 such that x = a−1xa,
y = b−1yb. We then have x = x1+3k(k−1)yk, y = x6ty, z = z. Since
f is an automorphism, z−1x z = x y. Because x y = x1+6t+3k(k−1)yk+1,
z−1x z = x1+6k+3k(k−1)yk+1, we have z−1x z = x y ⇐⇒ k = t. Thus we have
x = x1+3k(k−1)yk, y = x6ky, z = z. Therefore setting u = zk, we have

f(x) = u−1xu, f(y) = u−1yu, f(z) = u−1zu,

and so f ∈ InnG11. ¤

3. The case p = 2

We here show that the groups G17, G18, G22, G24, G25 and G26 given in
(II) enjoy “Hasse principle”.

G17 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G17 such that z = z. Then there exist a = xiyjzk, b =
xryszt ∈ G17 with 0 ≤ i, r < 2m−2, 0 ≤ j, k, s, t < 2 such that x = a−1xa,
y = b−1yb. We then have x = x1+j2m−3

yk, y = xr2m−3
y, z = z. Since f is

an automorphism, we have z−1x z = x y. Because x y = x1+(j+r)2m−3
yk+1,

z−1x z = x1+j2m−3
yk+1, z−1x z = x y ⇐⇒ r ≡ 0 (mod 2). Thus we have

x = x1+j2m−3
yk, y = y, z = z. Therefore setting u = yjzk, we have

x = u−1xu, y = u−1yu, z = u−1zu, and so f ∈ InnG17. ¤

G18 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G18 such that z = z. Then there exist a = xiyjzk,
b = xryszt ∈ G18 with 0 ≤ i, r < 2m−2, 0 ≤ j, k, s, t < 2 such that
x = a−1xa, y = b−1yb. We then have x = xj2m−3+(−1)k(1+k2m−4)+k22m−4

yk,
y = xr2m−3

y, z = z. Since f is an automorphism, we have z2 = y. Be-
cause y = z2 = xr2m−3

y, z2 = y ⇐⇒ r ≡ 0 (mod 2). Thus we have x =
xj2m−3+(−1)k(1+k2m−4)+k22m−4

yk, y = y, z = z. Therefore setting u = yjzk,
we have x = u−1xu, y = u−1yu, z = u−1zu, and so f ∈ InnG18. ¤

G22 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G22 such that z = z. Then there exist a = xiyjzk, b =
xryszt ∈ G22 with 0 ≤ i, r < 2m−2, 0 ≤ j, k, s, t < 2 such that x = a−1xa,
y = b−1yb. We then have x = x1+k2m−4

yk, y = xt2m−3
y, z = z. Since f is

an automorphism, we have z−1x z = x1+2m−4
y. Because

x1+2m−4
y = x1+t2m−3+(1+k)2m−4

y1+k, z−1x z = x1+k2m−3+(1+k)2m−4
y1+k,

z−1x z = x1+2m−4
y ⇐⇒ k = t.



36 M. FUMA AND Y. NINOMIYA

Thus we have x = x1+k2m−4
yk, y = xk2m−3

y, z = z. Therefore setting
u = zk, we have x = u−1xu, y = u−1yu, z = u−1zu, and so f ∈ InnG22. ¤

G23 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G23 such that z = z. Then there exist a = xiyjzk, b =
xryszt ∈ G23 with 0 ≤ i, r < 2m−2, 0 ≤ j, k, s, t < 2 such that x = a−1xa,
y = b−1yb. We then have

x =

{
x (k = 0)
x−1+2m−4

y (k = 1)
, y = xt2m−3

y, z = z.

Since f is an automorphism, we have z−1x z = x−1+2m−4
y. If k = 0,

x−1+2m−4
y = x−1+2m−4+t2m−3

y, z−1x z = x−1+2m−4
y.

Therefore z−1x z = x−1+2m−4
y ⇐⇒ t = 0. If k = 1,

x−1+2m−4
y = x1+(t−1)2m−3

, z−1x z = x.

Therefore z−1x z = x−1+2m−4
y ⇐⇒ t = 1. Thus we have

x =

{
x (k = 0)
x−1+2m−4

y (k = 1)
, y = xk2m−3

y, z = z.

Therefore setting u = zk, we have x = u−1xu, y = u−1yu, z = u−1zu, and
so f ∈ InnG23. ¤

G24 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G24 such that z = z. Then there exist a = xiyjzk, b =
xryszt ∈ G24 with 0 ≤ i, r < 2m−2, 0 ≤ j, k, s, t < 2 such that x = a−1xa,
y = b−1yb. We then have

x =

{
x1+j2m−3

(k = 0)
x−1+2m−4+j2m−3

y (k = 1)
, y = xr2m−3

y, z = z.

Since f is an automorphism, we have z−1x z = x−1+2m−4
y. If k = 0,

x−1+2m−4
y = x−1+2m−4+(r−j)2m−3

y, z−1x z = x−1+2m−4+j2m−3
y.

Therefore z−1x z = x−1+2m−4
y ⇐⇒ r ≡ 0 (mod 2). If k = 1,

x−1+2m−4
y = x1+(r−j)2m−3

= x1+(r+j)2m−3
, z−1x z = xj2m−3

x = x1+j2m−3
.

Therefore z−1x z = x−1+2m−4
y ⇐⇒ r ≡ 0 (mod 2). Thus we have

x =

{
x1+j2m−3

(k = 0)
x−1+2m−4+j2m−3

y (k = 1)
, y = y, z = z.
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Therefore setting u = yj , we have x = u−1xu, y = u−1yu, z = u−1zu, and
so f ∈ InnG24. ¤

G25 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G25 such that z = z. Then there exist a = xiyjzk, b =
xryszt ∈ G25 with 0 ≤ i, r < 2m−2, 0 ≤ j, k, s, t < 2 such that x = a−1xa,
y = b−1yb. We then have

x =

{
x1+j2m−3

(k = 0)
x−1+2m−4+j2m−3

y (k = 1)
, y = xr2m−3

y, z = z.

Since f is an automorphism, we have z−1x z = x−1+2m−4
y. If k = 0,

x−1+2m−4
y = x−1+2m−4+(j+r)2m−3

y, z−1x z = x−1+2m−4+j2m−3
y.

Therefore z−1x z = x−1+2m−4
y ⇐⇒ r ≡ 0 (mod 2). If k = 1,

x−1+2m−4
y = x1+(r−j)2m−3

= x1+(r+j)2m−3
, z−1x z = x1+j2m−3

.

Therefore z−1x z = x−1+2m−4
y ⇐⇒ r ≡ 0 (mod 2). Thus we have

x =

{
x1+j2m−3

(k = 0)
x−1+2m−4+j2m−3

y (k = 1)
, y = y, z = z.

Therefore setting u = yj , we have x = u−1xu, y = u−1yu, z = u−1zu, and
so f ∈ InnG25. ¤

G26 enjoys “Hasse principle”.

Proof. Let f ∈ Autc G26 such that z = z. Then there exist a = xiyjzk,
b = xryszt ∈ G26 with 0 ≤ i, r < 8, 0 ≤ j, k, s, t < 2 such that x = a−1xa,
y = b−1yb. We then have x = x1+4jyk, y = x4ry, z = z. Since f is
an automorphism, we have z−1x z = x y. Because x y = x1+4j+4ry1+k,
z−1x z = x1+4jy1+k, z−1x z = x y ⇐⇒ r ≡ 0 (mod 2). Thus we have
x = x1+4jyk, y = y, z = z. Therefore setting u = yjzk, we have x = u−1xu,
y = u−1yu, z = u−1zu, and so f ∈ InnG26. ¤

Acknowledgement. The authors thank the referee for his or her com-
ments.

References

[1] M. Kumar and L. R. Vermani, “Hasse principle” for extraspecial p-groups, Proc.
Japan Acad. 76A (2000), 123–125.

[2] M. Kumar and L. R. Vermani, “Hasse principle” for groups of order p4, Proc. Japan
Acad. 77A (2001), 95–98.

[3] M. Kumar and L. R. Vermani, On automorphisms of some p-groups, Proc. Japan
Acad. 78A (2002), 46–50.



38 M. FUMA AND Y. NINOMIYA

[4] Y. Ninomiya, Finite p-groups with cyclic subgroups of index p2, Math. J. Okayama
Univ. 36 (1994), 1–21.

[5] T. Ono, “Hasse principle” for PSL2(Z) and PSL2(Fp), Proc. Japan Acad. 74A
(1998), 130–131.

[6] T. Ono, Shafarevich-Tate sets for profinite groups, Proc. Japan Acad. 75A (1999),
96–97.

[7] T. Ono and H. Wada, “Hasse principle” for free groups, Proc. Japan Acad. 75A
(1999), 1–2.

[8] T. Ono and H. Wada, “Hasse principle” for symmetric and alternating groups, Proc.
Japan Acad. 75A (1999), 61–62.

[9] H. Wada, “Hasse principle” for SLn(D), Proc. Japan Acad. 75A (1999), 67–69.

Michitaku Fuma
Department of Mathematical Sciences

Faculty of Science
Shinshu University

Matsumoto 390-8621, Japan

Yasushi Ninomiya
Department of Mathematical Sciences

Faculty of Science
Shinshu University

Matsumoto 390-8621, Japan

e-mail address: ysninom@gipac.shinshu-u.ac.jp

(Received December 2, 2003 )


