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THE PERRON PROBLEM FOR C-SEMIGROUPS

Petre PREDA, Alin POGAN and Ciprian PREDA

Abstract. Characterizations of Perron-type for the exponential sta-
bility of exponentially bounded C-semigroups are given. Also, some
applications for the asymptotic behavior of the integrated semigroups
are obtained.

1. Introduction

Let X be a Banach space and V be a closed linear operator with the
domain D(V ) and range R(V ) in X. The abstract Cauchy problem

{
u′(t) = V u(t), t ≥ 0
u(0) = x

denoted by (V, x) is related to semigroup theory and, for this case, there are
various results concerning the exponential stability of solutions.

However, the applications of strongly continuous semigroups to partial
differential equations are limited since their generators must to have dense
domains. In order to deal with the cases while the generators satisfy weaker
conditions, it is necessary to have other classes of semigroups. So, in a
natural way, C-semigroups arise.

The notion C-semigroups was introduced by Da Prato [4] some decades
ago and by E.B. Davies [3] and M.M. Pang [3] independently.

The basic results of the theory of C-semigroups can be found in the book
of R. deLaubenfels [8]. Also, notable results in this field were obtained by
N. Tanaka [14,15,16,17,18] and I. Miyadera [12,15,16,17,18].

Generating a C-semigroup corresponds to the abstract Cauchy problem
having an unique solution, whenever x = Cy for some y ∈ D(V ), where C
is a bounded injective linear operator on X. It is well known that the class
of operators which generate C-semigroups is much larger than the class of
operators which generate a strongly continuous semigroup.

An interesting characterization of exponential stability was given in 1930
by O. Perron [13], which state that, if X is finite dimensional and V is a
matrix, then the solutions of the Cauchy problem (V, x) are exponentially
stable if for every continuous and bounded function f from IR+ into X the
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solution of the Cauchy problem
{

x′(t) = V x(t) + f(t)
x(0) = 0

is bounded. This result is classical now and it was generalized in many
directions. First R. Bellman [1] extend these results for the case when the
space X is infinite dimensional. Also, after Bellman, similar results were
obtained by M.G. Krein [2], J.L. Daleckij [2], J.L. Massera [10] and J.J.
Schäffer [10], even for the non-autonomous case, where the operator V is
replaced by a family {V (t)}t≥0 of operators. In recent years this subject
was reopened in the general case of evolutionary process by a large number
of researchers. We can mention here names as Y. Latushkin [9], T. Ran-
dolph [9], R. Schnaubelt [9,11], F. Räbiger [11], N. van Minh [11] and many
others. It is well-known that the C0-semigroup is in fact a particular case of
evolutionary processes, so the results above can be applied to obtain char-
acterizations of the asymptotic behavior of strongly continuous semigroups.
Using the Perron theorem, a number of long-standing open problems have
recently been solved and the theory of Perron-type seems to have obtained
a certain degree of maturity. Taking into account that C-semigroups are a
generalization of strongly continuous semigroups, but are different in essence
of these, the following question arise: Does there exists an analogue of the
Perron theorem for C-semigroups? In this paper an answer is given to the
above question and in this investigation we need to employ some new skills
and thus we obtain some new results.

Also we note that a C-semigroup is not, in general, a particular case of a
evolutionary process, so the results given by now for evolutionary processes
cannot be applied in this area. So, the aim of this paper is to give charac-
terizations of Perron’s type for the exponential stability of the solutions of
the some abstract Cauchy problem of (V, x) -type in the more general case
where one must deal with the theory of C-semigroups.

Our methods are different from the usual methods applied in the case of
evolutionary process because the C-semigroups does not posses a ”lucrative”
evolution property. Also as an application to our main result, using the
connections between C-semigroups and integrated semigroups (see [15] for
instance), we obtain some new results about the asymptotic behavior of the
integrated semigroups.

2. Preliminaries

In the beginning we will recall some standard notations. So, first we have:
• Cb( IR+, X) is the space of all bounded and continuous functions from

IR+ to X,
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• C0( IR+, X) is the space of all continuous functions f from IR+ to X
with lim

t→∞
f(t) = 0,

• BUC( IR+, X) is the space of all bounded and uniformly continuous
functions from IR+ to X,

• AP( IR+, X), is the linear closed hull in Cb( IR+, X) of the set of all
functions

t 7→ eiλtx : IR+ → X, λ ∈ IR, x ∈ X.

All these spaces are Banach spaces endowed with the supremum norm, de-
noted by ||| · |||.

Throughout in this paper, let C ∈ B(X) be an injective operator.

Definition 2.1. A family {S(t)}t≥0 of bounded linear operators is called a
C-semigroup if the following conditions hold:

s1) S(t + s)C = S(t)S(s) for all t, s ≥ 0 and S(0) = C;

s2) S(·)x : IR+ → X is continuous for all x ∈ X.

If in addition {S(t)}t≥0 satisfies the condition:

s3) there are M, ω > 0 such that

‖S(t)‖ ≤ Meωt, for all t ≥ 0.

Then it is called an exponentially bounded C-semigroup.

Remark 2.1. In [3] it is shown that there exist C-semigroups which are
not exponentially bounded.

The generator A of a C-semigroup {S(t)}t≥0 is defined by:




D(A) =
{

x ∈ X : there exists lim
t→0+

1
t
(S(t)x − Cx) ∈ R(C)

}

Ax = C−1 lim
t→0+

1
t
(S(t)x − Cx) for x ∈ D(A).

It is known (see for example [6]) that the generator A of a C-semigroup
{S(t)}t≥0 has the following properties:

i) S(t)x − Cx =
∫ t

0
S(s)Axds for x ∈ D(A) and t ≥ 0;

ii) S(t)x ∈ D(A) and AS(t)x = S(t)Ax for x ∈ D(A) and t ≥ 0.

For the generator A of a C -semigroup {S(t)}t≥0 and a continuous function
f from IR+ to X, we will denote by (A, f) the Cauchy problem

{
u′(t) = Au(t) + f(t)
u(0) = 0.
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By a classical solutions for (A, f) we understand that u is an application
of C1 class, u(t) ∈ D(A) for all t ≥ 0, and the two equalities of (A, f) are
satisfied.

Proposition 2.1. If u is a classical solution of (A, f), then

Cu(t) =
∫ t

0
S(t − s)f(s)ds, for all t ≥ 0.

Proof. For a fixed t ≥ 0 we consider the function vt : [0, t] → X,

vt(s) = S(t − s)u(s).

It is easy to see that vt is a function of class C1 and

v′t(s) = −S(t − s)Au(s) + S(t − s)u′(s) = S(t − s)f(s)

for all s ∈ [0, t]. It follows that

Cu(t) = vt(t) − vt(0) =
∫ t

0
S(t − s)f(s)ds.

¤
This result suggest us to give the following definition:

Definition 2.2. By the mild solution of the problem (A, f) we understand
a continuous functions uf : IR+ → X with the property

Cuf (t) =
∫ t

0
S(t − s)f(s)ds, for all t ≥ 0

Remark 2.2. The injectivity of C implies that for all f ∈ Cb( IR+, X) there
is no more than one mild solution.

Definition 2.3. A subspace E of Cb( IR+, X) is said to be continuously sec-
tionable if for all a > 0 and all continuous functions f from [0, a] to X there
exists g ∈ E with |||g||| = sup

t∈[0,a]
‖f(t)‖ and g|[0,a] = f .

Example 2.1. C0( IR+, X), BUC( IR+, X), AP ( IR+, X) are continuously sec-
tionable. For a given a > 0 and a continuous function f from [0, a] to X we
define g : IR+ → X given by

g(t) =





f(t), t ∈ [0, a]
(a + 1 − t)f(a), t ∈ (a, a + 1)
0, t ≥ a + 1

Then g ∈ C0( IR+, X) ⊂ BUC( IR+, X), g|[o,a] = f and

|||g||| = sup
t∈[0,a]

‖f(t)‖
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In order to prove that AP ( IR+, X) is also continuously sectionable we con-
sider again a > 0 and a continuous function f from [0, a] to X. We construct
now g : [0, 2a] → X defined by

g(s) =

{
f(s), s ∈ [0, a]
f(2a − s), s ∈ (a, 2a]

Then it is easy to check that g is continuous, g(0) = g(2a) and sup
s∈[0,2a]

‖g(s)‖

= sup
t∈[0,a]

‖f(t)‖. Now it is clear that there is h a continuous function from IR

to X, 2a periodic, such that h|[0,2a] = g. By a classic Fourier theory result
we have that h ∈ AP ( IR, X). But h|[0,a] = f and

|||h||| = sup
s∈[0,2a]

‖h(s)‖ = sup
s∈[0,2a]

‖g(s)‖ = sup
t∈[0,a]

‖f(t)‖.

Definition 2.4. A C-semigroup {S(t)}t≥0 is said to be exponentially stable
if there are N, ν > 0 two constants such that

‖S(t)‖ ≤ Ne−νt, for all t ≥ 0.

Definition 2.5. A subspace E of Cb( IR+, X) is admissible to a C-semigroup
with the generator A if for all f ∈ E the abstract Cauchy problem (A, f) has
a mild solution which lies in Cb( IR+, X).

Proposition 2.2. If E is a closed subspace admissible to a C-semigroup
{S(t)}t≥0 with the generator A, then there exists K > 0 such that

|||uf ||| ≤ K|||f |||, for all f ∈ E.

Proof. Let us define the application VE : E → Cb( IR+, X) given by VEf =
uf . Obviously VE is a linear operator. Next, let {fn}n∈ IN be a sequence in
E, f ∈ E, g ∈ Cb( IR+, X) with the properties

fn
E−→ f, VEfn

Cb−→ g.

Then

‖C(VEfn)(t) − C(VEf)(t)‖ =
∥∥∥∥
∫ t

0
S(t − s)(fn(s) − f(s))ds

∥∥∥∥
≤ t sup

v∈[0,t]
‖S(v)‖ |||fn − f |||,

for all t ≥ 0 and every n ∈ IN .
It results that C(VEf)(t) = Cg(t), for all t ≥ 0, and hence VEf = g. This

implies that VE is also bounded and so

|||uf ||| = |||VEf ||| ≤ ‖VE‖ |||f |||, for all f ∈ E.

¤
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3. The main result

Theorem 3.1. If E is a closed, continuously sectionable subspace of
Cb( IR+, X) and E is admissible to an exponentially bounded C-semigroup
{S(t)}t≥0, then {S(t)}t≥0 is exponentially stable.

Proof. Step 1. In this section of the proof we will prove that S is bounded.
Consider t ≥ 0, x ∈ X and the function f : [0, t] → X defined by f(s) =
e−ωsS(s)x. Then there is g ∈ E such that

g|[0,t] = f and |||g||| = sup
s∈[0,t]

‖f(s)‖ ≤ M‖x‖.

C(ug)(t) =
∫ t

0
S(t − s)g(s)ds

=
∫ t

0
e−ωsS(t − s)S(s)xds =

1
ω

(1 − e−ωt)CS(t)x.

Using Proposition 2.2, we obtain that
1
ω

(1 − e−ωt)‖S(t)x‖ = ‖(ug)(t)‖ ≤ |||ug||| ≤ K|||g||| ≤ MK‖x‖

and so
‖S(t)‖ ≤ L, for all t ≥ 0,

where L = M(Kω + 1).
Step 2. In this section we will prove inductively that

tn

n!
‖S(t)‖ ≤ LKn, for all t ≥ 0 and all n ∈ IN.

From step 1 it follows that the inequality above is true for n = 0. Next,
if we assume that the inequality above is true for a fixed n ∈ IN and if

we define fn : [0, t] → X, fn(s) =
sn

n!
S(s)x, where t ≥ 0 and x ∈ X

are arbitrarily chosen, then there exists gn ∈ E such that gn|[0,t]
= fn and

|||gn||| = sup
s∈[0,t]

‖fn(s)‖ ≤ LKn‖x‖.

It results that

C(ugn)(t) =
∫ t

0
S(t − s)

(
sn

n!
S(s)x

)
ds

=
∫ t

0

sn

n!
dsCS(t)x =

tn+1

(n + 1)!
CS(t)x,

and using again the Proposition 2.2 we have that

tn+1

(n + 1)!
‖S(t)x‖ = ‖(ugn)(t)‖ ≤ |||ugn ||| ≤ K|||gn||| ≤ LKn+1‖x‖.
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which implies that

tn+1

(n + 1)!
‖S(t)‖ ≤ LKn+1, for all t ≥ 0.

With this it is now clear that
tn

n!
‖S(t)‖ ≤ LKn, for all t ≥ 0 and every n ∈ IN.

Let now ν =
1

2K
and N = 2L. One can easily verify that

eνt‖S(t)‖ =
∞∑

n=0

νntn

n!
‖S(t)‖

≤
∞∑

n=0

L(νK)n = L

∞∑

n=0

1
2n

= 2L = N, for all t ≥ 0

The proof is now complete. ¤

Theorem 3.2. If {S(t)}t≥0 is an exponentially bounded C-semigroup then
it is exponentially stable if one of the following conditions hold

1) C0( IR+, X) is admissible to {S(t)}t≥0;
2) BUC( IR+, X) is admissible to {S(t)}t≥0;
3) AP ( IR+, X) is admissible to {S(t)}t≥0.

Proof. Follows easily from Theorem 3.1. and Example 2.1. ¤

In what follows we will apply the above results to obtain some properties
of the asymptotic behavior of the so-called integrated semigroups. We recall
that a family of bounded linear operators {U(t)}t≥0 acting on a Banach
space X is called a n-times integrated semigroup if the following statements
hold:

i1) U(·)x : IR+ → X is continuous for all x ∈ X ;

i2) U(t)U(s)x = 1
(n−1)! [

t+s∫
t

(t+s−r)n−1U(r)xdr−
s∫
0

(t+s−r)n−1U(r)dr,

for all t, s ≥ 0, x ∈ X, and U(0) = 0.
i3) U(t)x = 0, for all t > 0 implies that x = 0.
i4) there are M > 0 and ω ∈ IR such that ‖U(t)‖ ≤ Meωt, for all t ≥ 0.

The generator of a n-times integrated semigroup is defined as the unique
closed linear operator A which satisfy the following conditions:

1) (ω,∞) ⊂ ρ(A)

2) R(λ,A)x =
∞∫
0

λne−λtU(t)xdt, for all x ∈ X, λ ≥ ω.
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In [15] it is proved that for a densely defined, closed A with ρ(A) 6= ∅, c ∈
ρ(A), n ∈ IN∗ the following conditions are equivalent:

1) A is the generator of a n-times integrated semigroup {U(t)}t≥0;
2) A is the generator of a C-semigroup {S(t)}t≥0 with C = R(c, A)n;
3) there exist M > 0, a ∈ IR such that (a,∞) ⊂ ρ(A) and

‖R(λ,A)mR(c, A)n‖ ≤ M
(λ−a)m for all m ∈ IN∗, λ > a.

In this case we have that:

U(t)x = (cI − A)n

t∫

0

t1∫

0

...

tn−1∫

0

S(tn)xdtn...dt1, for all t ≥ 0, x ∈ X.

In the next example we show that there exist closed linear operators which
generates a C- semigroup exponentially stable and a n-times integrated semi-
group which don’t have a limit when t tends to ∞ and n ≥ 2.

Example 3.1. Let X = IR, Ax = −x. Then A generates the C-semigroup
T (t) = e−t (here Cx = x) and the 2-times integrated semigroup U(t) =
t∫
0

t1∫
0

e−t2dt2dt1 = t + e−t − 1. It is easy to see that lim
t→∞

U(t)x does not exist

except the case when x = 0.

We recall that for a strongly continuous family of bounded linear operators
{W (t)}t≥0 and for a continuous function f : IR+ → X we denote by W ∗ f
the map defined by:

(W ∗ f)(t) =

t∫

0

W (t − s)f(s)ds.

Lemma 3.1. If {U(t)}t≥0 is a 1-times integrated semigroup, with the gen-
erator A, c ∈ ρ(A), C = R(c, A), the C-semigroup {S(t)}t≥0 having also the
generator A, f ∈ Cb( IR+, X), then:

t∫

0

(S ∗ f)(s)ds = C(U ∗ f)(t) for all t ≥ 0.

Proof.
t∫
0

(S ∗ f)(s)ds =
t∫
0

s∫
0

S(s − τ)f(τ)dτds =
t∫
0

t∫
τ

S(s − τ)f(τ)dsdτ =

t∫
0

t−τ∫
0

S(v)f(τ)dvdτ =
t∫
0

CU(t − τ)f(τ)dτ = C(U ∗ f)(t), for all t ≥ 0. ¤



THE PERRON PROBLEM FOR C-SEMIGROUPS 149

Theorem 3.3. If {U(t)}t≥0 is a 1-times integrated semigroup, E is a closed
continuously sectionable subspace of Cb( IR+, X) with the property that U ∗ f
is of C1 class and (U ∗ f)′ ∈ Cb( IR+, X) for all f ∈ E, then there exists
lim
t→∞

U(t)x, for all x ∈ X.

Proof. Let A be the generator of {U(t)}t≥0, c ∈ ρ(A), C = R(c, A), {S(t)}t≥0

the C-semigroup which has the generator A. If f ∈ E and if we set uf =
(U ∗ f)′ ∈ Cb( IR+, X), then by Lemma 3.1 we have that:

t∫

0

Cuf (s)ds = C

t∫

0

(U ∗ f)′(s)ds

= C(U ∗ f)(t) =

t∫

0

(S ∗ f)(s)ds, for all t ≥ 0,

which implies that:

Cuf (t) = (S ∗ f)(t) =

t∫

0

S(t − s)f(s)ds, for all t ≥ 0.

This shows that E is admissible to {S(t)}t≥0 and hence by Theorem 3.1
we obtain that {S(t)}t≥0 is exponentially stable.

It follows that there exists

lim
t→∞

t∫

0

S(s)xds, for all x ∈ X.

Having in mind that

U(t)x = (cI − A)

t∫

0

S(s)xds

= c

t∫

0

S(s)xds − S(t)x + Cx, for all t ≥ 0, x ∈ X,

it results what is to prove. ¤
Theorem 3.4. If {U(t)}t≥0 is a 1-times integrated semigroup, then there
exists lim

t→∞
U(t)x, for all x ∈ X, if one of the following conditions hold:

1) U ∗ f has a derivative in Cb( IR+, X), for all f ∈ C0( IR+, X).
2) U ∗ f has a derivative in Cb( IR+, X), for all f ∈ BUC( IR+, X).
3) U ∗ f has a derivative in Cb( IR+, X), for all f ∈ AP ( IR+, X).

Proof. It follows from Theorem 3.3 and Example 2.1. ¤
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