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REMARK ON CUP-PRODUCTS

Kohhei YAMAGUCHI

1. Introduction.

Let L be finite dimensional CW complex and L1 be a subcomplex of L
given by

(1.1)

{
L = L1 ∪α en (α ∈ πn−1(L1))
L1 = Sq ∪

(⋃
λ∈Λ e

m(λ)
λ

)
,

where n − 2 ≥ dim e
m(λ)
λ = m(λ) ≥ q + 2 ≥ 4 are integers (λ ∈ Λ). Let

iq : Sq → L1 and α ∈ πn(L,L1) be an inclusion map and the characteristic
map of the top cell en in L. Then it is known ([2], [4]) that




πk(L1) = 0 if k < q, πk(L,L1) = 0 if k < n,

πq(L1) = Z · iq ∼= Z, πn(L,L1) = Z · α ∼= Z, α|Sn−1 = α,

πn+q−1(L,L1) = Z · [α, iq]r ⊕ α∗πn+q−1(Dn, Sn−1) ∼= Z ⊕ πn+q−1(Sn),

where [ , ]r denotes the relative Whitehead product.
In this paper we study the relation between relative Whitehead products

and cup-products on certain finite dimensional complexes. In particular, we
shall prove some generalization of the result obtained by I. M. James in [3]
concerning these relations, and it is as follows:

Theorem 1.1. Under the above assumption (1.1), let β ∈ πn+q−1(L) be an
element such that

(1.2) i∗(β) = m[α, iq]r + α ◦ ρ (m ∈ Z, ρ ∈ πn+q−1(Dn, Sn−1)),

where i∗ : πn+q−1(L) → πn+q−1(L,L1) denotes the induced homomorphism.
Then if K = L ∪β en+q is the mapping cone of β and ek ∈ Hk(K, Z) ∼= Z

(k = q, n, n + q) denotes the corresponding generator, the following relation
holds:

(1.3) en · eq = m en+q.
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This kind of results was first obtained by I. M. James [3] for 3-complexes
of the forms K = Sp ∪ eq ∪ ep+q. Although the above generalization should
be well known on the basis of the result due to James, we could not find
any literature and it may be worth-while to write this result. In fact, in the
subsequent paper [5] we shall use this result to study the classifications of
homotopy types of simply-connected 8 dimensional Poincaré complexes.

2. Coaction maps.

We take M = L ∨ Sn = (L1 ∪α en) ∨ Sn and let µ′ : L → M be the
coaction map given by pinching the equator of the top cell en in L. Let

jL : L → M, jn : Sn → M, jq : Sq → M jM : M → (M, L1)

be corresponding natural inclusions, and let rL : M → L be the retraction.
Then we have

(2.1) rL ◦ jL = idL ' rL ◦ µ′.

Lemma 2.1. Let µ′
∗ : π∗(L, L1) → π∗(M, L1) be the induced homomor-

phism.

(i) µ′
∗(α) = jL∗(α) + jM ∗(jn).

(ii) µ′
∗([α, iq]r) = jL∗([α, iq]r) + [jM ∗(jn), iq]r.

(iii) µ′
∗(α ◦ ρ) = jL∗(α ◦ ρ) + jM ◦ jn ◦ ρ.

Proof. (i) The assertion (i) is clear.

(ii) µ′
∗([α, iq]r) = [µ′

∗(α), iq]r = [jL∗(α) + jM ∗(jn), iq]r (by (i))
= [jL∗(α), iq]r + [jM ∗(jn), iq]r
= jL∗([α, iq]r) + [jM ∗(jn), iq]r.

(iii) Since 2n − 3 ≥ n + q − 1, ρ ∈ πn+q−1(Dn, Sn−1) ∼= πn+q−2(Sn−1) =
Eπn+q−3(Sn−2) and we have

µ′
∗(α ◦ ρ) = µ′

∗(α) ◦ ρ = (jL∗(α) + jM ∗(jn)) ◦ ρ (by (i))
= jL∗(α ◦ ρ) + jM ∗(jn) ◦ ρ.

¤

Lemma 2.2. Under the same assumption as Theorem 1.1,

(2.2) µ′
∗(β) = jL∗(β) + m[jn, jq] + jn ◦ ρ in πn+q−1(M),

where µ′
∗ : πn+q−1(L) → πn+q−1(M) denotes the induced homomorphism.
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Proof. Consider the commutative diagram

(2.3)

πr(L)
µ′
∗−−−−→ πr(M)

rL∗−−−−→ πr(L)
jL∗−−−−→ πr(M)

i∗

y j∗

y i∗

y j∗

y

πr(L,L1)
µ′
∗−−−−→ πr(M,L1)

rL∗−−−−→ πr(L, L1)
jL∗−−−−→ πr(M,L1).

We take θ = jL∗(β) + m[jn, jq] + jn ◦ ρ − µ′
∗(β). It suffices to show θ = 0.

For this purpose, it is sufficient to prove the following two equations:

(2.4) j∗(θ) = 0, and rL∗(θ) = 0.

In fact, let iL1 : L1 → L be an inclusion and consider the exact sequence

πn+q−1(L1)
(jL◦iL1

)∗−−−−−−→ πn+q−1(M)
j∗−−−−→ πn+q−1(M, L1).

Because j∗(θ) = 0, there exists some element φ ∈ πn+q−1(L1) such that
θ = (jL ◦ iL1)∗(φ). Hence, using rL∗(θ) = 0, we have

θ = (jL ◦ iL1)∗(φ) = jL ◦ (rL ◦ jL) ◦ iL1∗(φ) (by (2.1))
= jL ◦ rL ◦ (jL ◦ iL1)∗(φ) = jL ◦ rL∗(θ) = 0.

So it remains to prove (2.4). First, we show j∗(θ) = 0. We note that

j∗µ
′
∗(β) = µ′

∗(i∗(β)) (by (2.3))
= µ′

∗(m[α, iq]r + α ◦ ρ) (by (1.2))
= mµ′

∗([α, iq]r) + µ′ ◦ α ◦ ρ

= m(jL∗([α, iq]r + [jM ◦ jn, iq]r))
+(jL ◦ α ◦ ρ + jM ◦ jn ◦ ρ) (by Lemma 2.1)

= jL∗(m[α, iq]r + α ◦ ρ) + m[jM ◦ jn, iq]r + jM ◦ jn ◦ ρ

= jL∗(i∗(β)) + m[jM ◦ jn, iq]r + jM ◦ jn ◦ ρ (by (1.2)).

Because [jM ◦jn, iq]r = j∗([jn, jq]) and jM ◦jn ◦ρ = j∗(jn ◦ρ), we can rewrite

j∗µ
′
∗(β) = j∗(jL∗(β)) + mj∗([jn, jq]) + j∗(jn ◦ ρ).

Hence,
j∗(θ) = j∗(jL∗(β) + m[jn, jq] + jn ◦ ρ − µ′

∗(β)) = 0.

Next we prove rL∗(θ) = 0. Since rL : M → L is a retraction, rL ◦ jn = 0
and we have

(2.5)

{
rL∗(jn ◦ ρ) = (rL ◦ jn) ◦ ρ = 0,
rL∗([jn, jq]) = [rL ◦ jn, rL ◦ jq] = 0.
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Hence,

rL∗(θ) = rL∗(jL∗(β) + m[jn, jq] + jn ◦ ρ − µ′
∗(β))

= rL∗jL∗(β) + m · rL∗([jn, jq]) + rL∗(jn ◦ ρ) − rL∗µ
′
∗(β)

= rL∗jL∗(β) − rL∗µ
′
∗(β) (by (2.5))

= β − β (by (2.1))
= 0.

¤

3. Proof of Theorem 1.1.

First, recall the function first defined by I. M. James [3].

Definition. Let p, q ≥ 2 be integers and let X be a finite dimensional CW
complex with dimX ≤ p + q − 1 such that Hp+q−1(X, Z) is a finite group.

We fix the elements 0 6= ek ∈ Hk(X, Z) (k = p, q). Since dimX ≤ p+q−1,
ep · eq = 0 ∈ Hp+q(X, Z). We define the function h : πp+q−1(X) → Z as
follows. For any element λ ∈ πp+q−1(X), we take X∗ = X ∪λ ep+q. We
denote by e′p+q the generator of Hp+q(X∗, X; Z) ∼= Z corresponding to the
top cell in X∗. Let ĩ : X → X∗ be an inclusion and let e′k ∈ Hk(X∗, Z)
(k = p, q) be corresponding elements such that ĩ∗(e′k) = ek.

In this situation, consider the exact sequence

Hp+q(X∗, X; Z)
j̃∗−−−−→ Hp+q(X∗, Z) ĩ∗−−−−→ Hp+q(X, Z).

Since 0 = ep · eq = ĩ∗(e′p) · ĩ∗(e′q) = ĩ∗(e′p · e′q), there exists an integer m′ ∈ Z
such that e′p · e′q = m′e′p+q. Then we define the function h : πp+q−1(X) → Z
by h(λ) = m′ (cf. [3], page 378).

Lemma 3.1 ([3]). h : πp+q−1(X) → Z is a homomorphism.

Proof. This follows from Theorem 4.1 of [3]. ¤
Lemma 3.2. Under the same assumption as Theorem 1.1, we denote by
h : πp+q−1(M) → Z the linear function given as above. Then we have

(i) h(jL∗(β)) = h(jn ◦ ρ) = 0
(ii) h([jn, jq]) = 1

Proof. (i) Let us consider the mapping cone M∗
1 = M ∪jL∗(β) en+q. Since

M∗
1
∼= (L ∪β en+q) ∨ Sn, clearly a′ · b′ = 0, where a′ ∈ Hn(M∗

1 , Z) ∼= Z and
b′ ∈ Hq(M∗

1 , Z) ∼= Z denote the generators corresponding to Sn and Sq.
Hence, h(jL∗(β)) = 0. Similar method also shows h(jn ◦ ρ) = 0.

(ii) Consider the mapping cone M∗
2 = M ∪[jn,jq ] en+q. Then M∗

2 = (L ∨
Sn) ∪[jn,jq ] en+q contains the subcomplex Sq ∨ Sn ∪[iq ,in] en+q = Sq × Sn.
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So if a′ ∈ Hn(M∗
2 , Z) ∼= Z and b′ ∈ Hq(M∗

2 , Z) ∼= Z denote the generators
corresponding to Sn and Sq, the product a′ · b′ represents the generator of
Hn+q(M∗

2 , Z) and we have h([jn, jq]) = 1. ¤

Proof of Theorem 1.1. Let N be a mapping cone of µ′
∗(β) given by N =

M ∪µ′
∗(β) en+q = (L∨Sn)∪µ′

∗(β) en+q. Define the map f : K = L∪β en+q →
M ∪µ′

∗(β) en+q = N by
{

f |L = µ′ : L → M

f |en+q = degree one map on the top cell en+q.

If f∗ : H∗(N, Z) → H∗(K, Z) denotes the induced homomorphism and let
e′k ∈ Hk(N, Z) ∼= Z (k = q, n, n+ q) be the generators corresponding to cells
Sq, Sn or en+q, then f∗(e′k) = ek for k = q, n or n + q. Now consider the
homomorphism h : πn+q−1(M) → Z. Then we have

(3.1) e′n · e′q = h(µ′
∗(β))e′n+q.

Hence,

en · eq = f∗(e′n) · f∗(e′q) = f∗(e′n · e′q) = f∗(h(µ′
∗(β))e′n+q)

= h(µ′
∗(β))f∗(e′n+q) = h(µ′

∗(β))en+q.

So it remains to show that h(µ′
∗(β)) = m. Since h is a homomorphism, it

follows from Lemma 2.2 and 3.2 that

h(µ′
∗(β)) = h(jL∗(β) + m[jn, jq] + jn ◦ ρ)

= h(jL∗(β)) + m · h([jn, jq]) + h(jn ◦ ρ)
= 0 + m · 1 + 0 = m

and this completes the proof of Theorem 1.1. ¤
Acknowledgements. The author is indebted to Professor J. Mukai for nu-
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