REMARK ON CUP-PRODUCTS

KOHHEI YAMAGUCHI

1. INTRODUCTION.

Let L be finite dimensional CW complex and L_1 be a subcomplex of L given by

(1.1)
$$\begin{cases} L = L_1 \cup_{\alpha} e^n & (\alpha \in \pi_{n-1}(L_1)) \\ L_1 = S^q \cup \left(\bigcup_{\lambda \in \Lambda} e_{\lambda}^{m(\lambda)}\right), \end{cases}$$

where $n-2 \ge \dim e_{\lambda}^{m(\lambda)} = m(\lambda) \ge q+2 \ge 4$ are integers $(\lambda \in \Lambda)$. Let $i_q: S^q \to L_1$ and $\overline{\alpha} \in \pi_n(L, L_1)$ be an inclusion map and the characteristic map of the top cell e^n in L. Then it is known ([2], [4]) that

$$\begin{cases} \pi_k(L_1) = 0 & \text{if } k < q, \quad \pi_k(L,L_1) = 0 & \text{if } k < n, \\ \pi_q(L_1) = \mathbb{Z} \cdot i_q \cong \mathbb{Z}, \quad \pi_n(L,L_1) = \mathbb{Z} \cdot \overline{\alpha} \cong \mathbb{Z}, \quad \overline{\alpha} | S^{n-1} = \alpha, \\ \pi_{n+q-1}(L,L_1) = \mathbb{Z} \cdot [\overline{\alpha},i_q]_r \oplus \overline{\alpha}_* \pi_{n+q-1}(D^n, S^{n-1}) \cong \mathbb{Z} \oplus \pi_{n+q-1}(S^n), \end{cases}$$

where $[,]_r$ denotes the relative Whitehead product.

In this paper we study the relation between relative Whitehead products and cup-products on certain finite dimensional complexes. In particular, we shall prove some generalization of the result obtained by I. M. James in [3] concerning these relations, and it is as follows:

Theorem 1.1. Under the above assumption (1.1), let $\beta \in \pi_{n+q-1}(L)$ be an element such that

(1.2)
$$i_*(\beta) = m[\overline{\alpha}, i_q]_r + \overline{\alpha} \circ \rho \qquad (m \in \mathbb{Z}, \quad \rho \in \pi_{n+q-1}(D^n, S^{n-1})),$$

where $i_*: \pi_{n+q-1}(L) \to \pi_{n+q-1}(L, L_1)$ denotes the induced homomorphism.

Then if $K = L \cup_{\beta} e^{n+q}$ is the mapping cone of β and $e_k \in H^k(K, \mathbb{Z}) \cong \mathbb{Z}$ (k = q, n, n+q) denotes the corresponding generator, the following relation holds:

$$(1.3) e_n \cdot e_q = m \ e_{n+q}.$$

Mathematics Subject Classification. Primary 55Q15; Secondary 55N45, 55Q35.

Key words and phrases. CW complexes, coaction map, Whitehead product.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640067 (C)(2) and No. 16540056 (C)(2)), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

K. YAMAGUCHI

This kind of results was first obtained by I. M. James [3] for 3-complexes of the forms $K = S^p \cup e^q \cup e^{p+q}$. Although the above generalization should be well known on the basis of the result due to James, we could not find any literature and it may be worth-while to write this result. In fact, in the subsequent paper [5] we shall use this result to study the classifications of homotopy types of simply-connected 8 dimensional Poincaré complexes.

2. COACTION MAPS.

We take $M = L \vee S^n = (L_1 \cup_{\alpha} e^n) \vee S^n$ and let $\mu' : L \to M$ be the coaction map given by pinching the equator of the top cell e^n in L. Let

$$j_L: L \to M, \quad j_n: S^n \to M, \quad j_q: S^q \to M \quad j_M: M \to (M, L_1)$$

be corresponding natural inclusions, and let $r_L: M \to L$ be the retraction. Then we have

(2.1)
$$r_L \circ j_L = \mathrm{id}_L \simeq r_L \circ \mu'.$$

Lemma 2.1. Let $\mu'_* : \pi_*(L, L_1) \to \pi_*(M, L_1)$ be the induced homomorphism.

(i) $\mu'_*(\overline{\alpha}) = j_{L_*}(\overline{\alpha}) + j_{M_*}(j_n).$ (ii) $\mu'_*([\overline{\alpha}, i_q]_r) = j_{L_*}([\overline{\alpha}, i_q]_r) + [j_{M_*}(j_n), i_q]_r.$ (iii) $\mu'_*(\overline{\alpha} \circ \rho) = j_{L_*}(\overline{\alpha} \circ \rho) + j_M \circ j_n \circ \rho.$

Proof. (i) The assertion (i) is clear.

$$(ii) \ \mu'_{*}([\overline{\alpha}, i_{q}]_{r}) = [\mu'_{*}(\overline{\alpha}), i_{q}]_{r} = [j_{L_{*}}(\overline{\alpha}) + j_{M_{*}}(j_{n}), i_{q}]_{r} \quad (by \ (i))$$

$$= [j_{L_{*}}(\overline{\alpha}), i_{q}]_{r} + [j_{M_{*}}(j_{n}), i_{q}]_{r}$$

$$= j_{L_{*}}([\overline{\alpha}, i_{q}]_{r}) + [j_{M_{*}}(j_{n}), i_{q}]_{r}.$$

(*iii*) Since $2n - 3 \ge n + q - 1$, $\rho \in \pi_{n+q-1}(D^n, S^{n-1}) \cong \pi_{n+q-2}(S^{n-1}) = E\pi_{n+q-3}(S^{n-2})$ and we have

$$\mu'_*(\overline{\alpha} \circ \rho) = \mu'_*(\overline{\alpha}) \circ \rho = (j_{L_*}(\overline{\alpha}) + j_{M_*}(j_n)) \circ \rho \quad (by \ (i))$$

= $j_{L_*}(\overline{\alpha} \circ \rho) + j_{M_*}(j_n) \circ \rho.$

Lemma 2.2. Under the same assumption as Theorem 1.1,

(2.2)
$$\mu'_{*}(\beta) = j_{L_{*}}(\beta) + m[j_{n}, j_{q}] + j_{n} \circ \rho \quad in \ \pi_{n+q-1}(M),$$

where $\mu'_*: \pi_{n+q-1}(L) \to \pi_{n+q-1}(M)$ denotes the induced homomorphism.

116

Proof. Consider the commutative diagram

$$(2.3) \qquad \begin{array}{cccc} \pi_r(L) & \xrightarrow{\mu'_{*}} & \pi_r(M) & \xrightarrow{r_{L_{*}}} & \pi_r(L) & \xrightarrow{j_{L_{*}}} & \pi_r(M) \\ i_{*} \downarrow & & j_{*} \downarrow & & i_{*} \downarrow & & j_{*} \downarrow \\ \pi_r(L,L_1) & \xrightarrow{\mu'_{*}} & \pi_r(M,L_1) & \xrightarrow{r_{L_{*}}} & \pi_r(L,L_1) & \xrightarrow{j_{L_{*}}} & \pi_r(M,L_1). \end{array}$$

We take $\theta = j_{L_*}(\beta) + m[j_n, j_q] + j_n \circ \rho - \mu'_*(\beta)$. It suffices to show $\theta = 0$. For this purpose, it is sufficient to prove the following two equations:

(2.4)
$$j_*(\theta) = 0$$
, and $r_{L_*}(\theta) = 0$

In fact, let $i_{L_1}: L_1 \to L$ be an inclusion and consider the exact sequence

$$\pi_{n+q-1}(L_1) \xrightarrow{(j_L \circ i_{L_1})_*} \pi_{n+q-1}(M) \xrightarrow{j_*} \pi_{n+q-1}(M, L_1).$$

Because $j_*(\theta) = 0$, there exists some element $\phi \in \pi_{n+q-1}(L_1)$ such that $\theta = (j_L \circ i_{L_1})_*(\phi)$. Hence, using $r_{L_*}(\theta) = 0$, we have

$$\theta = (j_L \circ i_{L_1})_*(\phi) = j_L \circ (r_L \circ j_L) \circ i_{L_1*}(\phi)$$
 (by (2.1))
= $j_L \circ r_L \circ (j_L \circ i_{L_1})_*(\phi) = j_L \circ r_{L*}(\theta) = 0.$

So it remains to prove (2.4). First, we show $j_*(\theta) = 0$. We note that

$$j_*\mu'_*(\beta) = \mu'_*(i_*(\beta)) \quad (by (2.3))$$

$$= \mu'_*(m[\overline{\alpha}, i_q]_r + \overline{\alpha} \circ \rho) \quad (by (1.2))$$

$$= m\mu'_*([\overline{\alpha}, i_q]_r) + \mu' \circ \overline{\alpha} \circ \rho$$

$$= m(j_{L_*}([\overline{\alpha}, i_q]_r + [j_M \circ j_n, i_q]_r))$$

$$+ (j_L \circ \overline{\alpha} \circ \rho + j_M \circ j_n \circ \rho) \quad (by \text{ Lemma 2.1})$$

$$= j_{L_*}(m[\overline{\alpha}, i_q]_r + \overline{\alpha} \circ \rho) + m[j_M \circ j_n, i_q]_r + j_M \circ j_n \circ \rho$$

$$= j_{L_*}(i_*(\beta)) + m[j_M \circ j_n, i_q]_r + j_M \circ j_n \circ \rho \quad (by (1.2)).$$

Because $[j_M \circ j_n, i_q]_r = j_*([j_n, j_q])$ and $j_M \circ j_n \circ \rho = j_*(j_n \circ \rho)$, we can rewrite

$$j_*\mu'_*(\beta) = j_*(j_{L_*}(\beta)) + mj_*([j_n, j_q]) + j_*(j_n \circ \rho).$$

Hence,

$$j_*(\theta) = j_*(j_{L_*}(\beta) + m[j_n, j_q] + j_n \circ \rho - \mu'_*(\beta)) = 0.$$

Next we prove $r_{L_*}(\theta) = 0$. Since $r_L : M \to L$ is a retraction, $r_L \circ j_n = 0$ and we have

(2.5)
$$\begin{cases} r_{L_*}(j_n \circ \rho) = (r_L \circ j_n) \circ \rho = 0, \\ r_{L_*}([j_n, j_q]) = [r_L \circ j_n, r_L \circ j_q] = 0. \end{cases}$$

Hence,

$$\begin{aligned} r_{L*}(\theta) &= r_{L*}(j_{L*}(\beta) + m[j_n, j_q] + j_n \circ \rho - \mu'_*(\beta)) \\ &= r_{L*}j_{L*}(\beta) + m \cdot r_{L*}([j_n, j_q]) + r_{L*}(j_n \circ \rho) - r_{L*}\mu'_*(\beta) \\ &= r_{L*}j_{L*}(\beta) - r_{L*}\mu'_*(\beta) \quad (by \ (2.5)) \\ &= \beta - \beta \quad (by \ (2.1)) \\ &= 0. \end{aligned}$$

3. Proof of Theorem 1.1.

First, recall the function first defined by I. M. James [3].

Definition. Let $p, q \ge 2$ be integers and let X be a finite dimensional CW complex with dim $X \le p + q - 1$ such that $H^{p+q-1}(X, \mathbb{Z})$ is a finite group.

We fix the elements $0 \neq e_k \in H^k(X, \mathbb{Z})$ (k = p, q). Since dim $X \leq p+q-1$, $e_p \cdot e_q = 0 \in H^{p+q}(X, \mathbb{Z})$. We define the function $h : \pi_{p+q-1}(X) \to \mathbb{Z}$ as follows. For any element $\lambda \in \pi_{p+q-1}(X)$, we take $X^* = X \cup_{\lambda} e^{p+q}$. We denote by e'_{p+q} the generator of $H^{p+q}(X^*, X; \mathbb{Z}) \cong \mathbb{Z}$ corresponding to the top cell in X^* . Let $\tilde{i} : X \to X^*$ be an inclusion and let $e'_k \in H^k(X^*, \mathbb{Z})$ (k = p, q) be corresponding elements such that $\tilde{i}^*(e'_k) = e_k$.

In this situation, consider the exact sequence

$$H^{p+q}(X^*, X; \mathbb{Z}) \xrightarrow{\tilde{j}^*} H^{p+q}(X^*, \mathbb{Z}) \xrightarrow{\tilde{i}^*} H^{p+q}(X, \mathbb{Z}).$$

Since $0 = e_p \cdot e_q = \tilde{i}^*(e'_p) \cdot \tilde{i}^*(e'_q) = \tilde{i}^*(e'_p \cdot e'_q)$, there exists an integer $m' \in \mathbb{Z}$ such that $e'_p \cdot e'_q = m'e'_{p+q}$. Then we define the function $h : \pi_{p+q-1}(X) \to \mathbb{Z}$ by $h(\lambda) = m'$ (cf. [3], page 378).

Lemma 3.1 ([3]). $h: \pi_{p+q-1}(X) \to \mathbb{Z}$ is a homomorphism.

Proof. This follows from Theorem 4.1 of [3].

Lemma 3.2. Under the same assumption as Theorem 1.1, we denote by $h: \pi_{p+q-1}(M) \to \mathbb{Z}$ the linear function given as above. Then we have

- (i) $h(j_{L_*}(\beta)) = h(j_n \circ \rho) = 0$
- (ii) $h([j_n, j_q]) = 1$

Proof. (i) Let us consider the mapping cone $M_1^* = M \cup_{j_{L_*}(\beta)} e^{n+q}$. Since $M_1^* \cong (L \cup_{\beta} e^{n+q}) \vee S^n$, clearly $a' \cdot b' = 0$, where $a' \in H^n(M_1^*, \mathbb{Z}) \cong \mathbb{Z}$ and $b' \in H^q(M_1^*, \mathbb{Z}) \cong \mathbb{Z}$ denote the generators corresponding to S^n and S^q . Hence, $h(j_{L_*}(\beta)) = 0$. Similar method also shows $h(j_n \circ \rho) = 0$.

(ii) Consider the mapping cone $M_2^* = M \cup_{[j_n, j_q]} e^{n+q}$. Then $M_2^* = (L \vee S^n) \cup_{[j_n, j_q]} e^{n+q}$ contains the subcomplex $S^q \vee S^n \cup_{[i_q, i_n]} e^{n+q} = S^q \times S^n$.

118

So if $a' \in H^n(M_2^*, \mathbb{Z}) \cong \mathbb{Z}$ and $b' \in H^q(M_2^*, \mathbb{Z}) \cong \mathbb{Z}$ denote the generators corresponding to S^n and S^q , the product $a' \cdot b'$ represents the generator of $H^{n+q}(M_2^*, \mathbb{Z})$ and we have $h([j_n, j_q]) = 1$.

Proof of Theorem 1.1. Let N be a mapping cone of $\mu'_*(\beta)$ given by $N = M \cup_{\mu'_*(\beta)} e^{n+q} = (L \vee S^n) \cup_{\mu'_*(\beta)} e^{n+q}$. Define the map $f: K = L \cup_{\beta} e^{n+q} \to M \cup_{\mu'_*(\beta)} e^{n+q} = N$ by

 $\begin{cases} f|L = \mu' : L \to M\\ f|e^{n+q} = \text{degree one map on the top cell } e^{n+q}. \end{cases}$

If $f^*: H^*(N,\mathbb{Z}) \to H^*(K,\mathbb{Z})$ denotes the induced homomorphism and let $e'_k \in H^k(N,\mathbb{Z}) \cong \mathbb{Z}$ (k = q, n, n+q) be the generators corresponding to cells S^q, S^n or e^{n+q} , then $f^*(e'_k) = e_k$ for k = q, n or n+q. Now consider the homomorphism $h: \pi_{n+q-1}(M) \to \mathbb{Z}$. Then we have

(3.1)
$$e'_n \cdot e'_q = h(\mu'_*(\beta))e'_{n+q}.$$

Hence,

$$e_n \cdot e_q = f^*(e'_n) \cdot f^*(e'_q) = f^*(e'_n \cdot e'_q) = f^*(h(\mu'_*(\beta))e'_{n+q})$$

= $h(\mu'_*(\beta))f^*(e'_{n+q}) = h(\mu'_*(\beta))e_{n+q}.$

So it remains to show that $h(\mu'_*(\beta)) = m$. Since h is a homomorphism, it follows from Lemma 2.2 and 3.2 that

$$h(\mu'_{*}(\beta)) = h(j_{L_{*}}(\beta) + m[j_{n}, j_{q}] + j_{n} \circ \rho)$$

= $h(j_{L_{*}}(\beta)) + m \cdot h([j_{n}, j_{q}]) + h(j_{n} \circ \rho)$
= $0 + m \cdot 1 + 0 = m$

and this completes the proof of Theorem 1.1.

Acknowledgements. The author is indebted to Professor J. Mukai for numerous helpful conversations concerning relative Whitehead products and unstable homotopy theory.

References

- A. L. BLAKERS AND W. S. MASSEY, Products in homotopy theory, Annals of Math. 58(1953) 295–324.
- [2] I. M. JAMES, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford 5(1954) 260-270.
- [3] I. M. JAMES, Note on cup-products, Proc. Amer. Math. Soc. 8(1957) 374–383.
- W. S. MASSEY, Exact couples in algebraic topology (Parts I and II), Annals of Math. 56(1952) 363–396.
- [5] J. MUKAI AND K. YAMAGUCHI, Homotopy classification of twisted complex projective spaces of dimension 4, to appear in J. Math. Soc. Japan.

K. YAMAGUCHI

Kohhei Yamaguchi Department of Information Mathematics University of Electro-Communications Chofugaoka, Chofu, Tokyo 182-8585 Japan *e-mail address*: kohhei@im.uec.ac.jp

(Received September 30, 2003)