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ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

Dedicated to emeritus professor Kazuo Kishimoto on his seventieth birthday

Kaoru MOTOSE

In this paper, using properties of cyclotomic polynomial, we shall give
a new proof on some fundamental results in finite fields, a new method of
factorization of a number, and a suggestion about new cyclic codes.
Cyclotomic polynomials ®,,(z) of order n are defined by

ou(e) = [] @-¢h)

(k,n)=1

where ¢, = cos(2) ++/=T1sin(2%) and the product is extended over natural
numbers k which are relatively prime to n with 1 < k < n.

The character p represents a prime. All Latin characters mean natural
numbers.

1. BASIC RESULTS

In this section, we shall give some basic results on ®,(z). First, we give a
theorem about the order of an element in a commutative ring R of positive
characteristic.

Theorem 1. Let R be a commutative ring of characteristic £ > 0, namely,
containing a prime ring Z /Z. Assume ®,(a) = 0 for « € R. Then n =
0¢|aly where ||, means the order of o and e > 0.

Proof. Since ®,(z) divides 2™ — 1, we have o™ = 1. Hence |a| is a divisor
of n and so we can write n = £¢|a|y - t where ¢ does not divide ¢. We set
s = (°|ale and assume t > 1. Then a® = 1 and noting ®,(z)g(z) = % =
(%)=t - (2%)% + 2% + 1 for some g(z) € Z[z], we have a contradiction

that ¢ divides t from the next equation
0=dn(a)g(a) = (a*) 7" + (@) P+ + (@) +a +1 =1
O

Example 1. In this theorem, it is an important case such that ¢ is prime
and R = Fy. Since ®15(2) = 3 - 19, we have 18 = 32 - 2|3 = |2|19. For the
numbers 18 and 2, we can find a prime 19 with 18 = |2|19.
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From this result, we can prove a special case of Dirichlet theorem with
respect to arithmetic progressions, namely, the set A = {ns+1 | s =
1,2,--- } contains infinite primes. Setting py = 1, let py be a prime divisor
of &, n(pk—1n) for k =1,2,--- and set Ry = Z/pyZ. Then it follows from
the above theorem that py € A for k=1,2,--- .

We have an easy estimation for values of cyclotomic polynomials (see also
[1, Lemma 1]).

Lemma 1. (a +1)¥™ > &,(a) > (a — 1)?™ forn > 2,a > 2 where o(n)
is the number of positive integers k < n with (k,n) = 1.

Proof. 1t is trivial that ®,,(a) > 0 for a > 1 from the formula
®,(a) = H(ad — M)
din
where p is Mobius function. Thus we have for a > 1
Cu(a)= J]  la—gil.
1<k<n,(k,n)=1

Our result follows from drawing the unit circle and two concentric circles
with the same centre (a,0) and distinct radiuses a — 1,a + 1. O

Example 2. (a+1)?2 > ®g(a) =a®> —a+1> (a—1)% for a > 2.

Lemma 2 follows from the above lemma and it is necessary for Bang’s
theorem. For the numbers 18 and 2, we can find a prime 19 with 18 = |2|9.
But for number 6 and 2, we cannot find such a prime because ®¢(2) = 3.
Lemma 2 or Corollary 1 shows that this is the only exceptional case in
Theorem 2.

Lemma 2. Assume that a prime p is a divisor of n and p = ®,(a) forn > 2
and a > 2. Then we have n =6 and a = 2.

Proof. If a > 3, then we obtain a contradiction p > 2P~! from the next
inequality

p=">®,(a) > (a— 1) > 2¢(M) > 9p—1
Thus we have a = 2 and p is odd because 2" = 1 mod p. If e > 2 where
n = p°m and m = |2|, > 1, then p = ®,(2) = &, (2 ') and 27" > 4.
We have the same contradiction as the above. Thus we have n = p|2|, and
p > 2. Moreover, we have 3p + 1 > 2P from the next inequality

B, (20) (20 —1)\¥™ -1
D,,(2) 241 =3

Thus p = 3 and we obtain an exceptional case n = 3|2|3 = 6. O

p= (I)pm@) =
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The next corollary follows from the above lemma.

Corollary 1. If ®,(a) is a divisor of n for n > 3 and a > 2, then we have
n==6 and a = 2.

Proof. If p and ¢ are prime divisors of ®,,(a), then p and ¢ are the maximal
prime divisor of n by Theorem 1 and little Fermat theorem. Hence we have
p = q and ®,(a) is a power of a prime p. On the other hand, we set b = ar.
Then b = 1 mod p in case p > 2 and b = 1 mod 4 in case p = 2 because a

is odd and n = 2° > 4 from Theorem 1. In any case, ®,(b) = % has a

divisor p but has not a divisor p?. Thus ®,(a) = p because ®,(a) is a divisor
of 4=L = ®,(a?) = ®,(b). Hence our result follows from Lemma 2. O

aP—1

The following theorem is a basic result about value of cyclotomic polyno-
mials.

Theorem 2 (Bang). Ifn > 3,a > 2 and (n,a) # (6,2), then there ezists a
prime p with n = |al,.

Proof. There exists a prime divisor p of ®,(a) since ®,,(a) > 1. We may
assume from Theorem 1 that p is a divisor of n and p is the maximal divisor
of n. Hence, p is the only prime divisor of ®,(a), equivalently, ®,(a) is a
power of p. Hence ®,,(a) = p by the same method as in Corollary 1. We
have our result from Lemma 2. O

2. SOME FUNDAMENTAL RESULTS ON FINITE FIELDS

The next proposition shows that the multiplicative group of a finite field
is cyclic.

Proposition 1. Let G be a finite subgroup of the multiplicative group of a
field K. Then G is cyclic.

Proof. We set m = |G|. Then G is contained in the set of roots of 2™ — 1 in
K which has at most m elements. Thus, we obtain 2™ — 1 =[] cq(z — ).
Hence, ®,,(z) has a root § € G since ®,,(x) divides 2™ — 1. If K is of
characteristic p > 0, then p is not a divisor of m because ™ — 1 has no
multiple roots, and so m = ||, by Theorem 1. If K is of characteristic zero,
then our assertion is trivial. ([l

The next theorem is well known. However, it is very fundamental for
cyclotomic polynomials and we shall show this for completeness.

Theorem 3. Let p be a prime and let q be a power of a prime p. If p is not
a dwvisor of n, then ®,(x) € Fy[z] is the product of irreducible polynomials
of the same degree |q|.
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Proof. Let f(x) be an arbitrary irreducible factor of ®,(z) € Fy[z] and let ¢
be a root of f(x). Then ( is a root of ®,(z). Thus n = |(|, by Theorem 1 and
so we may assume ¢ € F 4, from Proposition 1. Since F,() = F e 1)
is a subfield of Fjq,,, deg f() is a divisor of |g|,. On the other hand |g|, is

a divisor of deg f(x) because ¢3°8/(*) = 1 mod n by ¢ € F Q)= F;degf(x).
Thus we have deg f(x) = |q|n. O

Concerning factorizations of cyclotomic polynomials modulo a prime, we
should be use Berlekamp and McEliece’s algorithm, and should pay attention
to results of G. Stein [see 3].

Example 3. If follows from 4 = |2|15 that ®15(z) mod 2 = 2® 4+ 27 4+ 2° +
st +r+1=(t+23+ 1) (2t +2+1).

We shall give an alternative proof of the next well-known theorem. This
means that there exist finite fields of arbitrary prime power orders.

Proposition 2. Let p be a prime and let q be a power of p. For an arbitrary
n, There exists an irreducible polynomial of degree n in Fylx].

Proof 1. It follows from n = |g|¢gn—1 that ®4n_1(x) € Fy[z] has an irreducible
factor of degree n. O

Proof 2. In case n > 3 and (n, q) # (6,2), then we can find a (prime) divisor
r of ®,(q) with n = |g|,. Hence ®,(z) € F,[z] has an irreducible factor of
degree n. In case n = 2, ®,41(x) € Fy[z] has an irreducible factor of degree
2 because 2 = |g|y+1. In case n = 6 and g = 2, we obtain ®g(z) = ®3(23) =
2% + 2% + 1 mod 2 is irreducible from 6 = |2|g. O

In this proposition, the smallest prime divisor r of ®,,(q) with r } n is best.
Unfortunately, if we can not find a proper divisor, then we set r = ®,(q).

Example 4. Proof 1 is very simple and it is practical to find a primitive
polynomial. For example, ®o1_;(z) = ®15(z) mod 2 = (z* + 23 +1)(2* +2+
1) (see Example 3). These polynomials are primitive polynomials of order
24 — 1 = 15. The class of z is a generator of Fyi. However, if we would like
to find an irreducible polynomial of degree n, Proof 2 is very useful. For
example, ®5(z) mod 2 = z* + 23 + 22 + 2 + 1 is irreducible because 4 = |25
by ®4(2) = 5.

3. A METHOD OF A FACTORIZATION OF A NUMBER

Let n be a number, let m be the product of distinct prime divisors of n,
let p be a fixed prime divisor of m and let m’ = %. We can see easily the
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next equation

m_

Oy () = By (x) and Bpy(z) = [ p(a)Ca).
d|m/’
The above equation and next lemma show us that factorizations of cy-

clotomic numbers ®,,(a), especially ®,(a) of a prime order p are essential in
factorizations of numbers.

Proposition 3. For a natural number n, let a and m be natural numbers
such that (am,n) =1 and a™ =1 mod n. Then n = []y,,(n, ®4(a)), where
(s,t) means the greatest common divisor of two numbers s and t.

Proof. We set sq = (n,®4(a)), where d is a divisor of m. If p is a common
prime divisor of s4 and sy, then d = |a|, = d’' from Theorem 1 because p

is not a divisor of both d and d’. Thus we can see (sq4,sq) = 1 for distinct
divisors d, d" of m. Hence we have

n= (n,am - 1) = (n7 H q)d(a)) = H(na q)d(a’))
dlm dm
g
If we use Proposition 3 to see a factor of a number, we should find m for

numbers n and a, and the factorization of m. So, we can only use this in
case n is a small number and m is a product of small primes.

Example 5. Setting a = 2 for the number n = 1111111111, we have
1111111111 = 11 -41 - 271 - 9091 for m = 54540 = 22 -33 .5 - 101.

Lemma 3. Let n be a divisor of ®,,(a) and (m,n) = 1. If m > \/n, then n
1S prime.
Proof. Let p be a minimum prime divisor of n. Then p is a divisor of ®,,(a)
and so m = |a|p, is a divisor of p — 1. Thus n = p is prime because
p > lal, =m > /n.
O
Example 6. ®4(6) = ®5(2) = 31 and 6 > /31 implies that 31 is prime by

the above lemma but v/31 > 5 shows that the converse of the above lemma
does not hold.

Pocklington’s theorem is easily proved using the values of cyclotomic poly-
nomials.

Proposition 4 (Pocklington). Let n, f and r be natural numbers such that
n—1= fr with (f,r) = 1, where the factorization of f is well known, every
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divisor £ of r is larger than ¢ and fc > \/n. If there exists a number a > 1
such that

(1) a" ! =1 mod n and (2) (anTi1 —1,n)=1

for every prime divisor q of f, then n is prime.

Proof. 1t follows from the condition (2) that

n =[] a(a")) = (n. @(a"))
dlf

and so n is a divisor of ®s(a”). On the other hand n = [, (n, ®y(al)).
Let p be the smallest divisor of n. Then f = |a”|, is a divisor of p — 1 and
= |af|p is a divisor of p — 1 for some £. Thus f¢ is a divisor of p — 1 and

p> fl> fe>+/n. O

Example 7. We can see n = $17(976) is prime from this theorem and
program by Yuji Kida written in UBASIC. His program found numbers
a=3,f=2"17-61-73-977- 7177 - 12433 - 13049, and ¢ = 131071 and
showed n = ®17(976) is prime.

4. A SUGGESTION ABOUT CYCLIC CODES

In this section, we consider cyclic codes like a Golay code. A generator
polynomial of the Golay code is one of two factors in ®93(z) mod 2. We
choose one of two factors in cyclotomic polynomials over finite fields and
we use this as generator polynomials of cyclic codes. For this purpose, we
should find a pair (¢,r) such that r is a power of a prime and ¢ is a divisor
of @, (r). If we find such a pair, ®,(x) over F, is factorized into two

2
irreducible polynomials.

Example 8. We find a pair (¢,r) satisfying the above conditions where
¢ <50, r < 10.

r=2; {="17,17,23,41,47

r=3; {=11,23,37,47

r=4; £ =3,5,7,11,13,19, 23,29, 37,47

r=2>5; £ =4,11,19,21,29,41

r=7, £=3,6,831,47

r=28; £=17,23,41,47

r=9; £=4,5"7,10,11,17,19, 23,29, 31, 34,43, 47

A special case of our consideration can be written in the quadratic resi-
dues. This is showed in Lemma 4. We shall represent Legendre symbol by

(5)
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Lemma 4. Let p be an odd prime and let q,r be natural numbers such that
p=2q+1>r>1. Then clearly |r|, > 1 and

(1) <i> =1 if and only if |r|, is a divisor of q.

p
(2) If q,r are odd primes, then (=2) = 1 if and only if |r|, = q. In
particular, if ¢ = —1 mod r, then |r|, = gq.

(3) If q is an odd prime, then ¢ = —1 mod 4 if and only if |2|, = ¢.

Proof. The assertion (1) follows from r? = P = (%) mod p.

The assertion (2) is clear from

(5) === ()= (2)= (),

The (3) follows from that (1) and the next equation

%) = () = () = ()
(5

O

It follows from this lemma that for a prime r, the cyclotomic polynomial
®,,(x) mod r factorizes two irreducible polynomials f(x), g(z) of same degree
g. This fact suggests that (p, ¢+1, d) code over F, with generator polynomial
g(x) of degree ¢ where ¢ + 1 is the dimension of a code subspace C' of the
vector space F?, and d is the minimum distance of C.

Example 9.

qg p r d g()

3 72 3 2B4a+1, 22+22+1

5 11 3 5 28— 4+a22—z—1, 254+ —23+22 -1

11 23 2 7 a4+ 294+ 2"+ + 25+ +1

11 23 2 7 24290425 425+t + 2241

23 47 2 11 x23+x19+x18+x14—|—x13+x12—|—x10+x9
+a'+ab S+ a3+ 2?41

23 47 2 11 $23+$22+l’21+$20+CL’18+.’I]17+.’IJ16+$14

+a3 + ol + 20+ 2% 4 a2d 42t + 1
Concerning computations in this paper, we used some programs written
in UBASIC and a personal computer IBM Intellistation E Pro. The program

language UBASIC was designed by Professor Yuji Kida, Rikkyo University,
Tokyo, Japan.
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