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EVEN-DIMENSIONAL MANIFOLDS STRUCTURED BY
A CONSTANT 7-PARALLEL CONNECTION

Fiip DEFEVER aND Rapu ROSCA

ABSTRACT. Geometrical and structural properties are proved for even-
dimensional manifolds which are equiped with a constant 7 -parallel con-
nection.

1. INTRODUCTION

Manifolds structured by a 7 -parallel connection have been defined in [17]
and have also been studied in [13]. The present paper continues the study
of the structural properties of manifolds endowed with a 7-parallel connec-
tion in the presence of additional geometric structures; as such the present
investigation can be situated in the prolongation of the recent publications
[3] [4] [5]. A general discussion of the geometrical structures which appear
here and in the sequel can be found in the standard references [16] and [26]
which also contain more background information and additional references
(see also [1] [7] [20] for further reading).

Let now M be a 2m-dimensional C*°-manifold and e,(a € {1,...,2m})
an orthonormal vector basis. We recall that if M carries a globally defined
vector field 7 and the connection forms satisfy

Oy = (T,ep Neq),

where A denotes the wedge product of vector fields, then one says that M
is structured by a 7 -parallel connection. In the present paper we assume
in addition that 7 is constant. Introducing the notation 3 = 7°, 8 will be
called the structural pfaffian. Defining 2t = || 7||?, we consequently see that
this quantity is also constant.
For the above mentioned structure, we prove the following properties:
(i): M is a hyperbolic space-form, i.e. for the curvature forms ©f one
has that
¢ — 9t W AW,
where {w®} denotes the cobasis of the vector basis {e,};
(ii): M carries a locally conformal symplectic form Q having §(= 77)
as covector of Lee [9], i.e.

a0 =28 A Q,
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and 7 defines a relative conformal transformation [19] [12] of €, i.e.
d(L7Q) = 8tB N Q;

(iii): 7 is torse forming [23] (see also [12] [19] [21]); moreover, with 7T
there is associated a second vector field X which defines an infini-
tesimal automorphism [10] (see also [11]) of €, i.e.

LxQ=0;
(iv): both vector fields 7 and X turn out to be biconcircular (in the

sense of Okumura [14], see also [24]) and exterior concurrent [18]. In
addition, 7 has also the property to be an affine vector field [16], i.e.

LVT = 0.
Finally, if we define the function s by s = (7, X)), one also finds that
ds = —spf3,
and one further derives that
grads = 2ts?
divgrads = 2t(2 —tm)s,

which shows that s is an isoparametric function [22].

In Section 4 we consider some properties of the tangent bundle manifold
TM having the manifold M, studied in Section 3, as basis. On T'M the
canonical vector field V(V%) (a = 1,...,2m) is called the Liouville vector
field [6]. We will denote the adapted cobasis in TM by B* = {w*, dV*}.
Then, the complete lift Q¢ [25] of the 2-form Q is given by

m
O° =) @V Aw” 0" AdVT),  a*=a+m.
a=1
One can deduce that
Q¢ = pAQC°,
which shows that the 2-form QC is, just as €, also a conformal symplectic
form. Next, since the Liouville vector field V' is given by

2m 8
V:Z;V“m/a,

the basic 1-form p (also called the Liouville form) associated with the canon-
ical vector field V (i.e. = V?) can be written as []

2m
W= Z Vews.
a=1
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Taking the Lie differential of Q€ one finds that
Ly =Q°,

which expresses that the 2-form Q¢ is a homogeneous 2-form of class 1 [8]
on T'M. Some further properties of the tangent bundle manifold TM are
also discussed.

2. PRELIMINARIES

Let (M, g) be a Riemannian C'*°-manifold and let V be the Levi-Civita
operator with respect to the metric tensor g. Let I'T'M = Z(M) be the set
of sections of the tangent bundle, and

b TM 5 T*M  and  ¢:TM & 1M

the classical isomorphisms defined by g (i.e. " is the index lowering operator,
and ¥ is the index raising operator).
Following [16], we denote by

AY(M,TM) = THom(AYT M, TM),

the set of vector valued g-forms (¢(dimM/), and we write for the covariant
derivative operator with respect to V

dvV . AY(M,TM) — AT (M, TM).

It should be noticed that in general dV? = dVod¥ #£ 0, unlike d?> = dod = 0.
We denote by dp € A'(M,TM) the canonical vector valued 1-form of M,
which is also called the soldering form of M [2]. Since V is symmetric one
has that dV (dp) = 0.

A vector field Z € Z(M) which satisfies

(1) dV(VZ)=V?Z =n Ndp € A>(M,TM); mwecA'M

is defined to be an exterior concurrent vector field [17] (see also [13]). The
1-form 7 in (4) is called the concurrence form and is defined by

(2) T=X2", XeA°M.

Let O = vect{eyla =1,...,2m} be a local field of adapted vectorial frames
over M and let O* = covect{w®} be its associated coframe. Then the
soldering form dp is expressed by

(3) dp = Zw“@ea,
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and E. Cartan’s structure equations can be written in indexless manner are

(4) Ve = 0®e,
(5) dv = —0Aw,
(6) dd = —0N0+6.

In the above equations 6 (respectively ©) are the local connection forms in
the tangent bundle TM (respectively the curvature 2-forms on M).

3. MANIFOLDS WITH CONSTANT 7 -PARALLEL CONNECTION

Let (M, g) be a 2m-dimensional C*°-manifold and
T =T%,,

be a globally defined vector field. Let 6§ (a,b € {1,...,2m}) be the local
connection forms in the tangent bundle T'M. Then, by reference to [17] [13],
(M, g) is said to be structured by a 7-parallel connection if the connection
forms 6 satisfy

(7) Oy = (T,ep Neq),

where A means the wedge product of vector fields. Making use of Cartan’s
structure equations (4), we can see that

(8) 08 = TOw® — TP,
In consequence of (8), the equations (4) take the form
9) Ve, =T%p—w*®T.

In the sequel we assume in addition that 7% are the components of a constant
vector field 7, called the structure vector field of M.
Let

2m
(10) T ==Y TWw
a=1

be the dual form of 7, then by E. Cartan’s structure equations (5) one
derives that

(11) dw® = 0 N w®.

Hence, by (11) it follows that all the elements w® of the covector basis O*
are exterior recurrent forms [2]. Consequently, the pfaffian 3 can be seen to
be in fact a closed form, i.e.

(12) df =dT’ =0.
Under the present conditions, by (8) and (11) one finds that
(13) 408 = 5 7 02,



MANIFOLDS STRUCTURED BY A CONSTANT 7-PARALLEL CONNECTION 137

which expresses that all the connection forms 6 are exterior recurrent [2]
with (3 as recurrence form. Under these conditions, the structure equations
(6) involving the curvature forms ©f are expressed by

(14) Of = —2t W A WP,

where we have set

(15) 2t = | T||> = const..

It is well known that the equation (14) thus shows that the manifold M
under consideration is a space form of hyperbolic type. We remark that in
view of (11), one derives that

(16) dO¢ = 23 A O,

which means that all curvature forms are exterior recurrent; we therefore
agree to call § the basic pfaffian on M.

In another perspective, we consider on M the local almost symplectic
form §2 given by

m
(17) Q:Zw“/\w“*, a* =a+m.
a=1

Taking the exterior derivative of 2, and in view of (11), one finds that
(18) dQY =208 N,

which shows that Q is a locally conformal symplectic form having (5 as
covector of Lee [9)].

Taking first the Lie derivative of 2 with respect to the vector field 7', we
get

m m
L7 = Z Lrw® A wa* + Z w® A ﬁTwa*,
a=1 a=1

where L7w?® can be calculated as follows.
Lrw®=(i(T)od+doi(T))w* (a=1,---,2m)

Taking into account equation (11) for dw® and the definition (15) of 2¢, it
follows that
Lrw® =2tw* =276, (a=1,---,2m).

Continuing now the calculation of L7 leads to
LrQ=40+28NA T,

where
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Exterior differentiation of £ gives
d(L7Q) = 4tdQ + 2dB A °T — 28 A d(°T).
One can verify directly that d( *7) = 0, and recalling that the 1-form 3 = 7°
is closed, the above expression reduces to
d(L7Q) = 4tdS.
Replacing df2 through equation (18), finally yields
(19) d(LrQ) =8tB N Q.

Hence, following a known definition [19] (see also [12]), the above equation
means that 7 defines a relative conformal transformation of 2.
Further, consider the vector field

2m
(20) X=> X,
a=1
Taking the Lie differential of Q w.r.t. X, yields
(21) LxQ == (dX"+BX)Aw” + Y (X7 +BX7) A"
a=1 a=1

Therefore, the necessary and sufficient condition for X to define an infini-
tesimal automorphism [10] (see also [11]) of 2, namely

(22) LxQ=0,
can be seen to be
(23) dX*+ X =0.
We now introduce the notation
2m
(24) a=X" =) X%"
a=1

for the dual form of X.
Taking the exterior derivative of (24) gives

2m 2m
da = ZdX“ Aw® + ZX“dw“.
a=1 a=1

Replacing in the above formula dX® using (23), and dw® using (11), yields

dao == BX“Nw*+) X°BAw"

a=1 a=1
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From this it follows that
(25) do =0,

which shows that X is also a closed vector field.
Further, calculating the covariant differentials of the vector fields 7 and
X under consideration and invoking (15), one obtains that

(26) VT =2tdp — 287,
and
(27) VX =sdp—a®T -0 X,

where we have put
(28) s=g(X,T).

Equation (26) expresses that the structure vector field 7 is torse forming
[23] (see also [12] [19] [21]); in this context we will call X an almost torse
forming vector field, and by standard terminology [21] 2t = || 7|? is the
energy of the torse forming vector field 7.

Moreover, we notice that any 2 vector fields Z, Z’ € Z(M) satisfy

<VZTv Z/> = <VZ’Ta Z>7
V2 X, 2" = (VuT,2).

According to Okumura [14] (see also [24]), the relations (29) show that 7
and X are gradient vector fields. On the other hand, since V acts inductively
one also derives that

(30) dV(VT) = 2T Adp, (T’ =:p)
(31) dV(VX) = 2X°Adp. (X’ =:q)

(29)

The above equations mean that both 7 and X are exterior concurrent vector
fields [18]. Therefore, if R denotes the Ricci curvature, it follows from (30),
(31) and [15] that

R(T,Z) = —(2m—1)2ty9(T,Z2),

(32) R(X,Z) = —(2m—1)2tg(X, 7).

We remark that calculating the Lie differential of V7 with respect to 7
reveals that

(33) L7VT =0,

which shows that 7 is an affine vector field [16]. We recall that with respect
to an orthonormal vector basis {e,} the divergence of a vector field Z is
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calculated according to the formula

2m
(34) divZ = (Ve,Z,eq);
a=1
when applied to the case under consideration, this gives

(35) div7T = (2m — 1)2t = const..

Furthermore, since the components 7% are constant, one finds by differen-
tiation of the equality s = ¢g(7, X) that

(36) ds = —sf3.
Consequently one may write that
(37) grads = —sT = |lgrads|* = 2ts?,

from which one also derives that
(38) div(grad s) = 2t(2 — tm)s.

We remind that a function f : R™ — R is called isoparametric [22] if both
|lgrad f||? and div(grad f) are functions of f. We may therefore conclude
that s is an isoparametric function.

Summing up, we state the following

Theorem 3.1. Let M(Q,7,g) be a 2m-dimensional manifold with almost
symplectic form Q, and structure constant vector field T, such that the con-
nection forms satisfy
Oy = (T, ep N eg).
Then the following properties hold:
(1): M is a hyperbolic space-form;
(ii): Q is a conformally symplectic form and has 3(= T") as covector
of Lee;
(iii): the differential of the Lie derivative with respect to T defines a
relative conformal transformation of 0, i.e.

d(LTQ) =8tBAQ, 2t=|T|*
(iv): a vector field X which satisfies

dX*+pX*=0
defines an infinitesimal automorphism of ), i.e.
LxQ=0;

(v): T is a torse forming vector field, as well as an exterior concurrent
vector field;
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(vi): the vector field X is also an exterior concurrent vector field, and
both T and X are gradient vector fields;
(vii): the scalar s = (T, X) is an isoparametric function.

4. GEOMETRY OF THE TANGENT BUNDLE

In this section we will discuss some properties of the tangent bundle man-
ifold T'M having as basis the manifold M studied in Section 3. Denote by
V(V%) (A =1,...,2m) the Liouville vector field (or the canonical vector
field on T'M [8]). Accordingly, one may consider the set

B* ={w* dV*a=1,...,2m}

as an adapted cobasis in T M (see also [13]). Following [25] the complete lift
QC of the conformal symplectic form Q of M is the 2-form of rank 4m on
TM given by

m
(39) Q¢ = Z(dV“ Aw® + W AdVY), @ =a+m.

a=1

On the other hand, the Liouville vector field V is expressed by

2m
0
40 = a .
( ) V Z V 8Va
a=1
It is also known that the associated basic 1-form
2m
(41) p=> Vo
a=1

is called the Liouville form (see also [8]). (Alternatively, one can also write
that 4 = V®.) Then, on behalf of (11), the exterior differential of Q€ is
given by

(42) dc =g AQC.

Hence, the complete lift Q¢ of Q defines on TM a conformal symplectic
structure, as {2 does on M; this result is meaningful, since it should be

stressed that conformal properties are not preserved by complete lifts in
general. On behalf of (40) one has that

(43) ivQC = Z(V“w“* — Vw9,
a=1

and in view of (42) and (43) one gets

(44) Ly =0°.

Equation (44) shows that Q¢ is a homogeneous 2-form of class 1 [8] on TM.
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Further, taking the exterior differential of the Liouville form p, one derives
by (41) that

(45) dp=BANp+1,

where we have introduced the notation
2m

(46) p=) dV*Aw.
a=1

By reference to (46) and (11), it follows that
(47) dip = BN,

which shows that 1 is an exterior recurrent form with 3 as recurrence form.

Since the 2-form 1 is of maximal rank, we will refer to ¢ as the canonical
conformal symplectic form of M. One finally gets that

(48) Ly =1,
which shows that, as QC, the form ¢ is also a homogeneous 2-form of class
1.

We remind that the vertical operator iy in the sense of [6] possesses by
definition the following properties (see also [8]):

(49) WwA=0, dpwt=0, iydV?=w?,
from which one calculates by (46) that
(50) ivab = 0.

Together with (47) we conclude from this that ¢ is a Finslerian form [6].

Theorem 4.1. Let TM be the tangent bundle manifold having as basis the
manifold M(Q,T,[3) considered in Section 3. Let V, and u, be the Liouville
vector field, and the Liouville form of T M respectively. One has the following
properties:

(i): the complete lift Q¢ on TM is a conformally symplectic form, and
is a homogeneous 2-form of class 1, i.e.
LyQ° =Q°;
(ii): p satisfies
2m
du:ﬂ/\,u—i-ZdVa/\wa,
a=1
where
2m
=Y dV* Aw’,

a=1
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s the canonical conformal symplectic form and turns out to be a
Finslerian form.
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