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SEMIGROUPS OF LOCALLY LIPSCHITZ OPERATORS

Yoshikazu KOBAYASHI and Naoki TANAKA

1. Introduction

In the previous paper [3] we characterized the continuous infinitesimal
generators of semigroups of Lipschitz operators and applied the character-
ization to the Cauchy problem for a quasi-linear wave equation with dissi-
pative term. The problem of characterizing the infinitesimal generator A of
a semigroup of Lipschitz operators is closely related to the abstract Cauchy
problem for A:

(CP;x) u′(t) = Au(t) for t ≥ 0, and u(0) = x.

In [3] the operator A was assumed to be continuous from a closed subset D
of a real Banach space X into X satisfying a dissipative condition defined
by means of a metric-like functional.

The purpose of this paper is to extend the previous result to the case
where A is continuous and dissipative in a local sense with respect to a
lower semicontinuous functional ϕ on X such that the domain of A is the
effective domain of ϕ. In Section 2, we give the main result (Theorem 2.1) of
this paper. The present situation is considered to treat systems of nonlinear
partial differential equations and the lower semicontinuous functionals are
supposed to be constructed according to the nature of the nonlinear systems.
In fact, Section 5 presents how the result obtained here is applied to the
Cauchy problem for Kirchhoff equation with real analytic initial data.

2. Main theorem

Let X be a real Banach space with norm ‖·‖, D a subset of X and ϕ
a nonnegative, lower semicontinuous functional on X such that D is the
effective domain of ϕ. For each α > 0, the level set {x ∈ X; ϕ(x) ≤ α} of ϕ
is denoted by D(α). A nonnegative continuous function g on [0,∞) is called
a comparison function if for each α ≥ 0 the Cauchy problem

w′(t) = g(w(t)) for t ≥ 0, and w(0) = α

has a maximal solution m(t; α) on [0,∞). Such a comparison function was
used in [5] to characterize quasi-contractive semigroups associated with semi-
linear evolution equations.

2000 Mathematics Subject Classification. Primary 34G20; Secondary 47H20.
This research was partially supported by the Grant-in-Aid for Scientific Research (C)(2)

No. 14540175, Japan Society for the Promotion of Science.

155



156 Y. KOBAYASHI AND N. TANAKA

Let us choose a comparison function g and introduce a class of semigroups
of locally Lipschitz operators on D. A one-parameter family {S(t); t ≥ 0} of
locally Lipschitz operators from D into itself is called a semigroup of locally
Lipschitz operators on D with respect to the functional ϕ if it satisfies the
following conditions:

(S1) S(0)x = x for x ∈ D, and S(t + s)x = S(t)S(s)x for t, s ≥ 0 and
x ∈ D.

(S2) For each x ∈ D, S(t)x is continuous on [0,∞) in X.
(S3) For each τ > 0 and α > 0 there exists L(τ, α) > 0 such that

‖S(t)x − S(t)y‖ ≤ L(τ, α)‖x − y‖ for x, y ∈ D(α) and t ∈ [0, τ ].

(S4) ϕ(S(t)x) ≤ m(t; ϕ(x)) for x ∈ D and t ≥ 0.
Let E be an open subset of X such that D ⊂ E. A nonnegative functional

V on E×E satisfying the following conditions is employed to define a general
type of dissipative condition.

(V1) There exists L > 0 such that

|V (x, y) − V (x̂, ŷ)| ≤ L(‖x − x̂‖ + ‖y − ŷ‖) for (x, y), (x̂, ŷ) ∈ E × E.

(V2) For each α > 0 there exist C(α) ≥ c(α) > 0 such that

c(α)‖x − y‖ ≤ V (x, y) ≤ C(α)‖x − y‖ for x, y ∈ D(α).

Throughout this paper, we assume that an operator A from D into X
satisfies the following three conditions:

(A1) For each α > 0, the operator A is continuous on the level set D(α).
(A2) For each α > 0 there exists ω(α) ≥ 0 such that

D+V (x, y)(Ax,Ay) ≤ ω(α)V (x, y) for x, y ∈ D(α),

where the symbol D+V is defined by

D+V (x, y)(ξ, η) = lim inf
h↓0

(V (x + hξ, y + hη) − V (x, y))/h

for (x, y) ∈ E × E and (ξ, η) ∈ X × X.
(A3) For each x ∈ D and ε > 0 there exist δ ∈ (0, ε] and xδ ∈ D such

that ‖(xδ − x)/δ − Ax‖ ≤ ε and (ϕ(xδ) − ϕ(x))/δ ≤ g(ϕ(x)) + ε.
Let J be an interval of the form [0, τ) or [0, τ ]. By a solution to (CP;x)

on J we mean a differentiable function u from J into X such that u(t) ∈ D
for t ∈ J and equation (CP;x) is satisfied for t ∈ J . The main result of this
paper is given by

Theorem 2.1. There exists a semigroup {S(t); t ≥ 0} of locally Lipschitz
operators on D with respect to ϕ such that for each x ∈ D, S(t)x is a unique
solution to (CP;x) on [0,∞).
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By the following propositions, to prove Theorem 2.1 it suffices to show
the existence of local solutions satisfying the growth condition for all x ∈ D.
The proof will be divided into two parts. One is the construction of approx-
imate solutions and the other is the convergence of approximate solutions
for the Cauchy problem (CP;x). They will be discussed in Sections 3 and 4
respectively, by slightly modified methods in the previous paper [3].

Proposition 2.2. For each i = 1, 2, let ui be a solution to (CP;xi) on
[0, τ ] such that ui(t) ∈ D(α) for t ∈ [0, τ ]. Then we have V (u1(t), u2(t)) ≤
eω(α)tV (x1, x2) for t ∈ [0, τ ].

Proposition 2.2 is shown similarly to the proof of [3, Proposition 1.1].

Proposition 2.3. Assume that for each x ∈ D, there exists τ > 0 such
that the (CP;x) has a solution u on [0, τ ] satisfying ϕ(u(t)) ≤ m(t; ϕ(x))
for t ∈ [0, τ ]. Then for each x ∈ D, the (CP;x) has a solution u on [0,∞)
satisfying the growth condition ϕ(u(t)) ≤ m(t; ϕ(x)) for t ≥ 0.

Proof. Let x ∈ D. If τ is defined by the supremum of τ > 0 such that the
(CP;x) has a solution u on [0, τ ] satisfying ϕ(u(t)) ≤ m(t; ϕ(x)) for t ∈ [0, τ ],
then we have τ > 0 by assumption. By uniqueness (Proposition 2.2) there
exists a solution u to (CP;x) on [0, τ) satisfying

(2.1) ϕ(u(t)) ≤ m(t; ϕ(x)) for t ∈ [0, τ).

If τ = ∞ then the proof is complete. Assume to the contrary that τ < ∞.
Proposition 2.2 then shows that V (u(t + h), u(t)) ≤ eω(α)τV (u(h), x) for
t, t + h ∈ [0, τ) and h > 0, where α = m(τ ; ϕ(x)). It follows that the limit
y := limt↑τ u(t) exists and is in D(α). By assumption, the (CP;y) has a
solution w on [0, δ] satisfying

(2.2) ϕ(w(t)) ≤ m(t; ϕ(y)) for t ∈ [0, δ].

The function u can be extended to [0, τ + δ], by defining u(t) = w(t− τ) for
t ∈ [τ , τ + δ]. Clearly, it is a solution to (CP;x) on [0, τ + δ]. By the lower
semicontinuity of ϕ we have ϕ(y) ≤ m(τ ; ϕ(x)) by (2.1). This inequality
together with (2.2) implies ϕ(u(t)) ≤ m(t; ϕ(x)) for t ∈ [τ , τ + δ], since
m(t;ϕ(x)) = m(t − τ ; m(τ ; ϕ(x))) for t ∈ [τ , τ + δ]. These facts together
contradict the definition of τ . ¤

3. Construction of approximate solutions

In this section we discuss the construction of approximate solutions for
the abstract Cauchy problem (CP;x).

The following two lemmas are proved in the same way as the verification
of [3, Lemmas 2.1 and 2.2]. The symbol B[z0, r] stands for the closed ball
with center z0 and radius r.
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Lemma 3.1. Let α > 0 and z0 ∈ D(α). Assume r > 0 and M > 0 to
be chosen such that ‖Ax‖ ≤ M for x ∈ B[z0, r] ∩ D(α). Let ε > 0 and
σ ∈ (0, r/(M + ε)]. If a sequence {(si, zi)}n

i=0 in [0, σ] × D(α) satisfies

0 = s0 < s1 < · · · < sn ≤ σ,(3.1)

‖zi−1 + (si − si−1)Azi−1 − zi‖ ≤ ε(si − si−1) for i = 1, 2, . . . , n,(3.2)

then we have ‖zi−zj‖ ≤ (M +ε)(si−sj) for 0 ≤ j ≤ i ≤ n, and ‖Azi‖ ≤ M
for 0 ≤ i ≤ n.

Lemma 3.2. Let α > 0 and z0 ∈ D(α). Assume r > 0, M > 0 and η > 0 to
be chosen such that ‖Ax‖ ≤ M and ‖Ax−Az0‖ ≤ η for x ∈ B[z0, r]∩D(α).
Let ε > 0 and σ ∈ (0, r/(M + ε)]. Then the following assertions hold :

(i) If a sequence {(si, zi)}n
i=0 in [0, σ] × D(α) satisfies (3.1) and (3.2),

then
‖z0 + snAz0 − zn‖ ≤ (ε + η)sn.

(ii) If a sequence {(si, zi)}∞i=0 in [0, σ) × D(α) satisfies

0 = s0 < s1 < · · · < si < · · · < σ, and lim
i→∞

si = σ,(3.3)

‖zi−1 + (si − si−1)Azi−1 − zi‖ ≤ ε(si − si−1) for i = 1, 2, . . . ,(3.4)

then the limit z = limi→∞ zi exists and is in D(α), and

‖z0 + σAz0 − z‖ ≤ (ε + η)σ.

To construct approximate solutions, we use the nonextensible maximal
solution mε(t; α) to the Cauchy problem w′(t) = g(w(t)) + ε for t ≥ 0,
and w(0) = α, where ε > 0 and α ≥ 0. Let [0, τε(α)) denote the maximal
interval of existence of maximal solution mε(t; α). Then it is known that
the following assertions hold:

(m1) If β ≥ α ≥ 0 then τε(β) ≤ τε(α) and mε(t; α) ≤ mε(t; β) for
t ∈ [0, τε(β)).

(m2) If s ∈ [0, τε(α)) then τε(mε(s;α)) = τε(α) − s and mε(t + s; α) =
mε(t; mε(s;α)) for t ∈ [0, τε(α) − s).

(m3) limε↓0 τε(α) = ∞ and limε↓0 mε(t; α) = m(t; α) uniformly on every
compact subinterval of [0,∞).

Lemma 3.3. For each ε > 0 and x ∈ D there exist δ ∈ (0, ε] and xδ ∈ D
such that ‖(xδ − x)/δ − Ax‖ ≤ ε and ϕ(xδ) ≤ mε(δ;ϕ(x)).

Proof. Let x ∈ D and ε > 0, and consider the function r on [0,∞) defined
by

r(t) = ϕ(x) + t(g(ϕ(x)) + ε/2)
for t ≥ 0. Then we have r(0) = mε(0;ϕ(x)) and r′(0) < m′

ε(0; ϕ(x)), and
so there exists τ ∈ (0, τε(ϕ(x))) such that r(t) ≤ mε(t;ϕ(x)) for t ∈ [0, τ ].
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By (A3) there exist a sequence {xn} in D and a null sequence {δn} of positive
numbers such that ‖(xn − x)/δn − Ax‖ ≤ 1/n and (ϕ(xn) − ϕ(x))/δn ≤
g(ϕ(x))+1/n for n ≥ 1. Choose an integer n such that 1/n ≤ ε/2 and δn ≤
(τ ∧ ε). Then the pair (xn, δn) is the desired one because ϕ(xn) ≤ r(δn). ¤
Proposition 3.4. Let α > 0 and z0 ∈ D(α). Assume r > 0, M > 0, η > 0
and ε ∈ (0, 1] to be chosen such that ‖Ax‖ ≤ M and ‖Ax − Az0‖ ≤ η for
x ∈ B[z0, r] ∩ D(α), r/(M + 1) < τε(ϕ(z0)) and mε(r/(M + 1);ϕ(z0)) ≤ α.
Set τ = r/(M + 1). Then for each σ ∈ (0, τ ] there exists y0 ∈ D(α) such
that ‖z0 + σAz0 − y0‖ ≤ (η + ε)σ and ϕ(y0) ≤ mε(σ; ϕ(z0)).

Proof. Let σ ∈ (0, τ ]. We begin by proving the existence of a sequence
{(si, zi)}∞i=1 in [0, σ) × D(α) satisfying (3.3), (3.4) and

(3.5) ϕ(zi) ≤ mε(si − si−1; ϕ(zi−1)) for i = 1, 2, . . . .

To do this, let k ≥ 1 and assume that a sequence {(si, zi)}k−1
i=0 in [0, σ)×D(α)

is chosen so that (3.3) through (3.5) are satisfied for 0 ≤ i ≤ k − 1. Then
we define hk by the supremum of all h ≥ 0 such that h < σ − sk−1 and
there exists xh ∈ D satisfying ‖xh − zk−1 − hAzk−1‖ ≤ εh and ϕ(xh) ≤
mε(h; ϕ(zk−1)). By Lemma 3.3 we have hk > 0. A positive number hk can
be chosen so that hk/2 < hk < σ − sk−1 and there exists zk ∈ D satisfying
‖zk − zk−1 − hkAzk−1‖ ≤ εhk and ϕ(zk) ≤ mε(hk; ϕ(zk−1)). If we define
sk = sk−1 + hk then sk−1 < sk < σ, and (3.4) and (3.5) are satisfied with
i = k. Notice that zk ∈ D(α) by (3.5).

It remains to prove that limi→∞ si = σ. For this purpose, assume to the
contrary that s = limi→∞ si < σ. Since zi ∈ D(α) for i = 0, 1, . . . , we
deduce from Lemma 3.1 that the limit z := limi→∞ zi exists and is in D(α).
Lemma 3.3 ensures the existence of a number h > 0 such that h < σ − s
and there exists xh ∈ D satisfying ‖(xh − z)/h − Az‖ ≤ ε/2 and

(3.6) ϕ(xh) ≤ mε/2(h;ϕ(z)).

Now, we set γi = s + h − si−1 for i ≥ 1. Since hi < 2hi = 2(si − si−1) → 0,
zi → z and γi → h as i → ∞, there exists an integer i0 ≥ 1 such that
hi < γi < σ−si−1 and ‖(xh−zi−1)/γi−Azi−1‖ ≤ ε for all i ≥ i0. Moreover,
we have by (3.5), ϕ(zi) ≤ mε(si−sj ;ϕ(zj)) for i ≥ j ≥ 0. By taking the limit
as i → ∞, the lower semicontinuity of ϕ implies ϕ(z) ≤ mε(s − sj ; ϕ(zj))
for j ≥ 0. This inequality and (3.6) together imply ϕ(xh) ≤ mε(γi; ϕ(zi−1))
for i ≥ 1, which is impossible by the definition of hi. Hence limi→∞ si = σ.

Since a sequence {(si, zi)}∞i=1 in [0, σ)×D(α) satisfying (3.3) and (3.4) is
shown to exist, we see by Lemma 3.2 that the limit y0 := limi→∞ zi ∈ D(α)
exists and satisfies ‖z0 + σAz0 − y0‖ ≤ (ε + η)σ. The desired inequality
ϕ(y0) ≤ mε(σ; ϕ(z0)) follows from (3.5) and the lower semicontinuity of ϕ.

¤
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The existence of a forward difference approximate solution for (CP;x) is
established by

Proposition 3.5. Let α > 0 and x0 ∈ D(α). Assume r > 0, M > 0
and ε ∈ (0, 1] to be chosen such that ‖Ax‖ ≤ M for x ∈ B[x0, r] ∩ D(α),
r/(M+1) < τε(ϕ(x0)) and mε(r/(M+1);ϕ(x0)) ≤ α. Let τ ∈ (0, r/(M+1)].
Then there exists a sequence {(tj , xj)}∞j=0 in [0, τ) × D(α) such that

(i) 0 = t0 < t1 < · · · < tj < · · · < τ ,
(ii) tj − tj−1 ≤ ε for j = 1, 2, . . . ,
(iii) ‖xj−1 + (tj − tj−1)Axj−1 − xj‖ ≤ (ε/4)(tj − tj−1) for j = 1, 2, . . . ,
(iv) if x ∈ B[xj−1, (M + 1)(tj − tj−1)] ∩ D(α), then

‖Ax − Axj−1‖ ≤ ε/8 for j = 1, 2, . . . ,

(v) ϕ(xj) ≤ mε(tj − tj−1;ϕ(xj−1)) for j = 1, 2, . . . ,
(vi) limj→∞ tj = τ .

Proof. Let i be a positive integer and assume that a sequence {(tj , xj)}i−1
j=0

is chosen so that conditions (i) through (v) are satisfied for 0 ≤ j ≤ i − 1.
If we define hi by the supremum of all h ∈ [0, ε] such that h < τ − ti−1

and ‖Ax − Axi−1‖ ≤ ε/8 for x ∈ B[xi−1, (M + 1)h] ∩ D(α), then we have
hi > 0 by the continuity of A on D(α). Let us choose hi ∈ (0, ε] so that
hi/2 < hi < τ − ti−1 and

‖Ax − Axi−1‖ ≤ ε/8

for x ∈ B[xi−1, (M+1)hi]∩D(α). If we put ti = ti−1+hi, then conditions (i),
(ii) and (iv) hold for j = i.

We need to show that conditions (iii) and (v) are satisfied with j = i. By
Lemma 3.1 we have ‖xi−1 −x0‖ ≤ (M +1)ti−1, which implies B[xi−1, (M +
1)hi] ⊂ B[x0, r]. It follows that ‖Ax‖ ≤ M for x ∈ B[xi−1, (M+1)hi]∩D(α).
Since ϕ(xi−1) ≤ mε(ti−1; ϕ(x0)) by condition (v), we have by (m1) and (m2)

τε/8(ϕ(xi−1)) ≥ τε(mε(ti−1; ϕ(x0))) = τε(ϕ(x0)) − ti−1 > hi,

mε/8(hi; ϕ(xi−1)) ≤ mε(hi; mε(ti−1; ϕ(x0))) ≤ mε(τ ; ϕ(x0)) ≤ α.

Applying Proposition 3.4 with z0 = xi−1, r = (M + 1)hi and η = ε/8, one
finds xi ∈ D(α) satisfying condition (iii) and (v) with j = i.

The proof will be complete if condition (vi) is checked. By using the conti-
nuity of A on D(α) into X and the closedness of the set D(α), condition (vi)
is verified by the same argument as in the proof of [3, Proposition 2.5]. ¤
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4. Convergence of approximate solutions
and proof of main theorem

The following plays an important role in comparing between two approx-
imate solutions to (CP;x).

Proposition 4.1. Let α > 0 and (z0, ẑ0) ∈ D(α) × D(α). Assume r > 0,
M > 0, η, η̂ ∈ (0, 1) and ε, ε̂ ∈ (0, 1/2) to be chosen such that

‖Ax‖ ≤ M and ‖Ax − Az0‖ ≤ η/4 for x ∈ B[z0, r] ∩ D(α);

‖Ax̂‖ ≤ M and ‖Ax̂ − Aẑ0‖ ≤ η̂/4 for x̂ ∈ B[ẑ0, r] ∩ D(α);

r/(M + 1) < τε(ϕ(z0)) and r/(M + 1) < τε̂(ϕ(ẑ0));

mε(r/(M + 1);ϕ(z0)) ≤ α and mε̂(r/(M + 1);ϕ(ẑ0)) ≤ α.

Let σ ∈ (0, r/(M +1)]. Then there exists a pair (y0, ŷ0) ∈ D(α)×D(α) such
that

‖z0 + σAz0 − y0‖ ≤ (η + ε)σ and ‖ẑ0 + σAẑ0 − ŷ0‖ ≤ (η̂ + ε̂)σ;(4.1)

V (y0, ŷ0) ≤ exp(ω(α)σ)(V (z0, ẑ0) + L(η + η̂ + ε + ε̂)σ);(4.2)

ϕ(y0) ≤ mε(σ;ϕ(z0)) and ϕ(ŷ0) ≤ mε̂(σ; ϕ(ẑ0)).(4.3)

Proof. We first show that there exist a sequence {sj}∞j=0 in [0, σ) and a
sequence {(zj , ẑj)}∞j=0 in D(α) × D(α) such that

0 = s0 < s1 < · · · < sj < · · · < σ and lim
j→∞

sj = σ,

‖zj−1 + (sj − sj−1)Azj−1 − zj‖ ≤ (η/2 + ε)(sj − sj−1),

‖ẑj−1 + (sj − sj−1)Aẑj−1 − ẑj‖ ≤ (η̂/2 + ε̂)(sj − sj−1),(4.4)

ϕ(zj) ≤ mε(sj − sj−1; ϕ(zj−1)),

ϕ(ẑj) ≤ mε̂(sj − sj−1; ϕ(ẑj−1)),(4.5)

(V (zj , ẑj) − V (zj−1, ẑj−1))/(sj − sj−1)

≤ ω(α)V (zj−1, ẑj−1) + L(η + η̂ + ε + ε̂)
(4.6)

for j = 1, 2, . . . . To do this, let i ≥ 1 and assume that a sequence {sj}i−1
j=0

in [0, σ) and a sequence {(zj , ẑj)}i−1
j=0 in D(α)×D(α) are chosen so that the

desired conditions are satisfied for 0 ≤ j ≤ i−1. Let us consider the number
hi defined by the supremum of all h ≥ 0 such that h < σ − si−1 and

V (zi−1 + hAzi−1, ẑi−1 + hAẑi−1) − V (zi−1, ẑi−1)

≤ (ω(α)V (zi−1, ẑi−1) + (L/4)(η + η̂))h.
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Then we have hi > 0 by condition (A2), so that one finds a number hi > 0
satisfying hi/2 < hi < σ − si−1 and

(V (zi−1 + hiAzi−1, ẑi−1 + hiAẑi−1) − V (zi−1, ẑi−1))/hi

≤ ω(α)V (zi−1, ẑi−1) + (L/4)(η + η̂).

Set si = si−1 + hi. Then it is obvious that si−1 < si < σ ≤ r/(M + 1).
To show the existence of the desired pair (zi, ẑi), we verify that all as-

sumptions of Proposition 3.4 are satisfied with z0, r and η replaced by
zi−1, (M + 1)hi and η/2. Since η/2 + ε < 1 we apply Lemma 3.1 to
obtain ‖zi−1 − z0‖ ≤ (M + η/2 + ε)si−1. This inequality implies that
B[zi−1, (M + 1)hi] ⊂ B[z0, r], by the choice of σ. It follows that ‖Ax‖ ≤ M
and ‖Ax − Az0‖ ≤ η/4 for x ∈ B[zi−1, (M + 1)hi] ∩ D(α). By the second
inequality we have ‖Ax − Azi−1‖ ≤ η/2 for x ∈ B[zi−1, (M + 1)hi] ∩ D(α).
Since ϕ(zi−1) ≤ mε(si−1; ϕ(z0)) we have by (m1) and (m2)

τε(ϕ(zi−1)) ≥ τε(mε(si−1; ϕ(z0))) = τε(ϕ(z0)) − si−1 > hi,

mε(hi;ϕ(zi−1)) ≤ mε(si−1 + hi; ϕ(z0)) ≤ α.

Proposition 3.4 then ensures the existence of an element zi ∈ D(α) such that
‖zi−1 +hiAzi−1− zi‖ ≤ (η/2+ ε)hi and ϕ(zi) ≤ mε(hi; ϕ(zi−1)). It is shown
similarly that there exists ẑi ∈ D(α) satisfying the inequalities (4.4) and
(4.5). The desired inequality (4.6) with j = i and the fact that limi→∞ si = σ
are obtained similarly to the proof of [3, Proposition 3.1].

Now, we apply (ii) of Lemma 3.2 to show that y0 = limj→∞ zj and ŷ0 =
limj→∞ ẑj exist and are in D(α) and that they satisfy (4.1). It is easily seen
that the pair (y0, ŷ0) is the desired one satisfying (4.2) and (4.3). ¤

Proposition 4.2. Let α > 0 and x0 ∈ D(α). Assume R > 0, M > 0 and
λ, µ ∈ (0, 1/2) to be chosen such that ‖Ax‖ ≤ M for x ∈ B[x0, R] ∩ D(α)
and such that τε(ϕ(x0)) > R/(M + 1) and mε(R/(M + 1); ϕ(x0)) ≤ α for
ε = λ, µ. Let τ ∈ (0, R/(M + 1)], and suppose that for each ε = λ, µ, a
sequence {(tεi , xε

i )}∞i=0 in [0, τ) × D(α) satisfies the following conditions :

(i) 0 = tε0 < tε1 < · · · < tεi < · · · < τ .
(ii) tεi − tεi−1 ≤ ε for i = 1, 2, . . . .
(iii) ‖xε

i−1 + (tεi − tεi−1)Axε
i−1 − xε

i‖ ≤ (ε/4)(tεi − tεi−1) for i = 1, 2, . . . ,
where xε

0 = x0.
(iv) If x ∈ B[xε

i−1, (M + 1)(tεi − tεi−1)] ∩ D(α), then

‖Ax − Axε
i−1‖ ≤ ε/8 for i = 1, 2, . . . .

(v) ϕ(xε
i ) ≤ mε(tεi − tεi−1; ϕ(xε

i−1)) for i = 1, 2, . . . .
(vi) limi→∞ tεi = τ .
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Let P = {tλi ; i = 0, 1, 2, . . . } ∪ {tµj ; j = 0, 1, 2, . . . }. Set s0 = 0 and define
sk = inf(P \{s0, s1, . . . , sk−1}) for k = 1, 2, . . . . Then there exists a sequence
{(zλ

k , zµ
k )}∞k=0 in D(α) × D(α) with three properties listed below.

(a) If sk = tλi then zλ
k = xλ

i ; and if sk = tµj then zµ
k = xµ

j .
(b) For each ε = λ, µ, we have

k∑
j=q

‖zε
j−1 + (sj − sj−1)Azε

j−1 − zε
j‖

≤ 2ε(sk − sq−1) + 3ε
∑

tεi∈{sq ,...,sk}

(tεi − tεi−1)

for 1 ≤ q ≤ k and k = 1, 2, . . . .
(c) For each ε = λ, µ we have ϕ(zε

k) ≤ mε(sk; ϕ(x0)) for k = 0, 1, 2, . . . .
(d) For k = 0, 1, 2, . . . we have

V (zλ
k , zµ

k ) ≤ exp(ω(α)sk)(2L(λ + µ)sk + ηk(λ, µ)).

Here the symbol ηk(λ, µ) is defined by

ηk(λ, µ) = 3L

(
λ

∑
tλi ∈{s1,...,sk}

(tλi − tλi−1) + µ
∑

tµj ∈{s1,...,sk}

(tµj − tµj−1)

)
.

Proof. Set zε
0 = x0 for each ε = λ, µ. Let l ≥ 1 and assume that a sequence

{(zλ
k , zµ

k )}l−1
k=0 in D(α) × D(α) is defined so that conditions (a) through (d)

are satisfied for 0 ≤ k ≤ l − 1. We shall apply Proposition 4.1 to find the
desired pair (zλ

l , zµ
l ) in D(α) × D(α). To do this, let i and j be positive

integers such that tλi−1 < sl ≤ tλi and tµj−1 < sl ≤ tµj . Then we begin by
showing that

B[zλ
l−1, (M + 1)(sl − sl−1)] ⊂ B[xλ

i−1, (M + 1)(tλi − tλi−1)],(4.7)

B[xλ
i−1, (M + 1)(tλi − tλi−1)] ⊂ B[x0, R].(4.8)

The set inclusion (4.8) follows from Lemma 3.1. By the definition of {sl}
we have tλi−1 ≤ sl−1 < sl ≤ tλi and tλi−1 = sp for some p, and then xλ

i−1 = zλ
p

by hypothesis (a) of induction. Since the set {sp+1, . . . , sl−1} has no points
tλi , hypothesis (b) of induction implies that

(4.9) ‖zλ
j−1 + (sj − sj−1)Azλ

j−1 − zλ
j ‖ ≤ 2λ(sj − sj−1)

for j = p+1, . . . , l−1. By (4.8) we have ‖Ax‖ ≤ M for x ∈ B[zλ
p , (M+1)(tλi −

sp)]∩D(α). It follows from Lemma 3.1 that ‖zλ
l−1−zλ

p ‖ ≤ (M +1)(sl−1−sp),
which implies that (4.7) is true.

By (4.7) and (4.8) we have ‖Ax‖ ≤ M and ‖Ax − Azλ
l−1‖ ≤ λ/4 for

x ∈ B[zλ
l−1, (M + 1)(sl − sl−1)] ∩ D(α). We apply the above argument
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again, with i replaced by j, to show that the above inequalities hold with
λ replaced by µ. Since ϕ(zε

l−1) ≤ mε(sl−1; ϕ(x0)) we have τε(ϕ(zε
l−1)) ≥

τε(ϕ(x0))− sl−1 > sl − sl−1 and mε(sl − sl−1; ϕ(zε
l−1)) ≤ mε(sl;ϕ(x0)) ≤ α.

We therefore deduce from Proposition 4.1 that there exists a pair (yλ
l , yµ

l )
in D(α) × D(α) satisfying

‖zε
l−1 + (sl − sl−1)Azε

l−1 − yε
l ‖ ≤ 2ε(sl − sl−1) for ε = λ, µ,(4.10)

V (yλ
l , yµ

l ) ≤ exp(ω(α)(sl − sl−1))(V (zλ
l−1, z

µ
l−1)

+ 2L(λ + µ)(sl − sl−1)),
(4.11)

ϕ(yε
l ) ≤ mε(sl − sl−1; ϕ(zε

l−1)) for ε = λ, µ.(4.12)

Now, we define (zλ
l , zµ

l ) in D(α) × D(α) by

zλ
l =

{
yλ

l if sl < tλi ,

xλ
i if sl = tλi ,

and zµ
l =

{
yµ

l for sl < tµj ,

xµ
j for sl = tµj .

By hypothesis (c) of induction and (4.9) we have ϕ(yε
l ) ≤ mε(sl; ϕ(x0)) for

ε = λ, µ. This together with condition (v) implies that condition (c) is
satisfied with k = l.

We prove that (b) is true for k = l. Since the sequence {(sj , z
λ
j )}l−1

j=p+1

and (sl, y
λ
l ) satisfy (4.9) and (4.10) with ε = λ, we have

‖zλ
p + (sl − sp)Azλ

p − yλ
l ‖ ≤ ((λ/8) + 2λ)(sl − sp)

by (i) of Lemma 3.2 with z0 = zλ
p (= xλ

i−1), r = (M + 1)(tλi − tλi−1), η =
λ/8 and ε = 2λ. If sl = tλi , then the above inequality combined with
condition (iii) implies ‖yλ

l − xλ
i ‖ ≤ 3λ(tλi − tλi−1). It is thus shown that

(4.13) ‖zλ
l −yλ

l ‖ ≤ 3λ
∑

tλi =sl

(tλi −tλi−1) and ‖zµ
l −yµ

l ‖ ≤ 3µ
∑

tµj =sl

(tµj −tµj−1).

Combining this inequality and (4.10), and adding the resultant inequality
to the inequality (b) with k = l− 1 we obtain the desired property (b) with
k = l.

The proof is completed by induction on k, since condition (d) is shown to
be true for k = l, by substituting the inequality (d) with k = l − 1 into the
inequality

V (zλ
l , zµ

l ) ≤ exp(ω(α)(sl − sl−1))(V (zλ
l−1, z

µ
l−1) + 2L(λ + µ)(sl − sl−1))

+ 3L

(
λ

∑
tλi =sl

(tλi − tλi−1) + µ
∑

tµj =sl

(tµj − tµj−1)

)

which is obtained by (4.11) and (4.13). ¤
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Proof of Theorem 2.1. Let x0 ∈ D and choose α > 0 such that ϕ(x0) < α.
By condition (A1) there exist r > 0 and M > 0 such that ‖Ax‖ ≤ M for
x ∈ B[x0, r] ∩ D(α). Let us choose a > 0 so that m(a; ϕ(x0)) < α, and put
R = r ∧ ((M + 1)a). Then we have ‖Ax‖ ≤ M for x ∈ B[x0, R] ∩ D(α) and
m(R/(M +1); ϕ(x0)) < α. By property (m3), there exists ε0 ∈ (0, 1/2) such
that τε(ϕ(x0)) > R/(M + 1) and mε(R/(M + 1); ϕ(x0)) ≤ α for ε ∈ (0, ε0].

Let τ ∈ (0, R/(M + 1)]. Proposition 3.5 asserts that for each ε ∈ (0, ε0],
there exists a sequence {(tεi , xε

i )}∞i=0 in [0, τ)×D(α) satisfying conditions (i)
through (vi) in Proposition 4.2. Let us define a step function uε : [0, τ) → X
by uε(t) = xε

i for t ∈ [tεi , t
ε
i+1) and i = 0, 1, 2, . . . . Then we want to show

that there exists a function u on [0, τ ] such that

(4.14) sup
t∈[0,τ)

‖uε(t) − u(t)‖ → 0

as ε ↓ 0. For this purpose, let λ, µ ∈ (0, ε0] and {sk}∞k=0 the sequence
defined as in Proposition 4.2. Then there exists a sequence {(zλ

k , zµ
k )}∞k=0 in

D(α) × D(α) satisfying properties (a) through (d) of Proposition 4.2.
Let t ∈ [0, τ), and let k ≥ 1 be an integer such that t ∈ [sk−1, sk). If i and

j are positive integers such that tλi−1 ≤ sk−1 < sk ≤ tλi and tµj−1 ≤ sk−1 <

sk ≤ tµj , then we have by (4.7), ‖zλ
k−1 − xλ

i−1‖ ≤ (M + 1)(tλi − tλi−1) and
‖zµ

k−1 − xµ
j−1‖ ≤ (M + 1)(tµj − tµj−1). Combining these estimates with (d) of

Proposition 4.2 we find, by property (V1),

V (uλ(t), uµ(t)) ≤ 5L exp(ω(α)τ)(λ + µ)τ + L(M + 1)(λ + µ).

It follows from condition (V2) that the sequence {uε(t)} converges to a
function u(t) uniformly on [0, τ) as ε ↓ 0. Since ‖u(t) − u(s)‖ ≤ M |t − s|
for t, s ∈ [0, τ) (by Lemma 3.1), there exists a continuous function u defined
on [0, τ ] satisfying (4.14). Finally, it is easily seen that u is a solution to
(CP;x0) on [0, τ ], by condition (iii) of Proposition 4.2. ¤

5. Application

We study the Cauchy problem for quasi-linear equation

(5.1)

{
∂tu = ∂xv

∂tv = β′(‖u‖2)∂xu

with periodic boundary condition

(5.2) u(x + 2π, t) = u(x, t), v(x + 2π, t) = v(x, t)

for (x, t) ∈ R× [0,∞). Here β ∈ C2([0,∞); R) is a convex function satisfying
β′(r) ≥ c2 > 0 for r ≥ 0 and β(0) = 0, and the symbol ‖u‖ is defined
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by ‖u‖2 =
∫ 2π
0 |u(x)|2 dx. Without loss of generality we may assume that

0 < c ≤ 1.
It is known ([2], [4] and [6]) that there exists a unique global solution (u, v)

of the above problem for real analytic initial data. In this section we give an
operator-theoretical approach to the above problem, by using Theorem 2.1.

Let L2
2π be the space of all measurable functions w such that ‖w‖ < ∞

and w(x + 2π) = w(x) for x ∈ R. This space is a Hilbert space equipped
with inner product 〈·, ·〉 and the associated norm ‖·‖. By Hk

2π we denote the
subspace of L2

2π consisting of w such that ∂j
xw ∈ L2

2π for 1 ≤ j ≤ k, and set
H∞

2π =
∩∞

k=1 Hk
2π.

Let X be the Hilbert space L2
2π×L2

2π with inner product 〈(u, v), (w, z)〉 =
〈u,w〉 + 〈v, z〉. Let R > 0 and δ > 0, and define a subset D of X by the
set of all elements (u, v) ∈ H∞

2π × H∞
2π such that β(‖u‖2) + ‖v‖2 ≤ R2 and

|u|2 + |v|2 < ∞, where the functional |w| on H∞
2π is defined by

|w| =
( ∞∑

k=1

(2δ)2k

(2k)!
‖∂k

xw‖2

)1/2

.

It should be noticed by Lemma 6.1 that w ∈ H∞
2π is real analytic if and only

if it satisfies |w| < ∞ for some δ > 0. (See also [1] and [4].) By considering
the operator A from D into X defined by

A(u, v) = (∂xv, β′(‖u‖2)∂xu) for (u, v) ∈ D,

the problem is converted into the abstract Cauchy problem for A.
Let E = {(u, v) ∈ X; β(‖u‖2) + ‖v‖2 < (2R)2}. It is obvious that E is

open in X such that D ⊂ E. To check condition (A2) we use the nonnegative
functional V on E × E defined by

V ((u, v), (w, z)) =
(
β′(‖u‖2)‖u − w‖2 + ‖v − z‖2

)1/2
.

Since

(5.3) ‖u‖ < 2R/c and ‖v‖ < 2R for (u, v) ∈ E,

we have

c‖(u, v) − (w, z)‖ ≤ V ((u, v), (w, z)) ≤
(
β′((2R/c)2) ∨ 1

)1/2‖(u, v) − (w, z)‖

for (u, v), (w, z) ∈ E, which means that condition (V2) is satisfied. To verify
condition (V1), let (u, v), (û, v̂), (w, z), (ŵ, ẑ) ∈ E. By the triangle inequality
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we have

V ((u, v), (w, z)) − V ((û, v̂), (ŵ, ẑ))

≤
(
β′(‖u‖2)‖u − û‖2 + ‖v − v̂‖2

)1/2

+
(
β′(‖u‖2)‖w − ŵ‖2 + ‖z − ẑ‖2

)1/2

+
∣∣∣√β′(‖u‖2) −

√
β′(‖û‖2)

∣∣∣ ‖û − ŵ‖2.

Since
√

β′(r) is locally Lipschitz continuous on [0,∞) and β′(r) is locally
bounded on [0,∞), we see by (5.3) that the right-hand side is bounded by
L(‖(u, v) − (û, v̂)‖ + ‖(w, z) − (ŵ, ẑ)‖) for some positive constant L.

Let us employ the lower semicontinuous functional ϕ defined by ϕ(u, v) =
β′(‖u‖2) |u|2 + |v|2 for (u, v) ∈ D, and ∞ otherwise. Let α > 0. If ϕ(u, v) ≤
α then we have ‖u‖ ≤ R/c, ‖∂k

xu‖ ≤ ((2k)!α)1/2(c(2δ)k) and ‖∂k
xv‖ ≤

((2k)!α)1/2(2δ)k for k = 1, 2, . . . . The continuity of A from D(α) into X
follows from Landau’s inequality ‖∂xu‖2 ≤ ‖u‖‖∂2

xu‖ for u ∈ L2
2π. Since

V ((u, v), (w, z))D+V ((u, v), (w, z))(A(u, v), A(w, z))

= β′′(‖u‖2)〈u, ∂xv〉‖u − w‖2 + (β′(‖u‖2) − β′(‖w‖2))〈∂xw, v − z〉

for (u, v), (w, z) ∈ D(α), condition (A2) is easily seen to be satisfied. To
check condition (A3) we first show that for each (u0, v0) ∈ D and λ > 0,
there exists (uλ, vλ) ∈ H1

2π × H1
2π such that

uλ − u0 = λ∂xvλ,(5.4)

vλ − v0 = λβ′(‖uλ‖2)∂xuλ.(5.5)

To do this, let β(‖u0‖2)+ ‖v0‖2 ≤ R2 and define β̃(r) =
∫ r
0 β′(s ∧ (R/c)2)ds

for r ≥ 0. It should be noticed that β̃ is convex. Let us define a sequence
{(un, vn)} ∈ H1

2π × H1
2π inductively by un − u0 = λ∂xvn and vn − v0 =

λβ̃′(‖un−1‖2)∂xun for n = 1, 2, . . . . Taking the inner products of the first
equation and the second one with β̃′(‖un−1‖2)un and vn respectively, we
have

(5.6) β̃′(‖un−1‖2)(‖un‖2 − ‖u0‖2) + (‖vn‖2 − ‖v0‖2) ≤ 0,

so that c2‖un‖2 + ‖vn‖2 ≤ β′((R/c)2)‖u0‖2 + ‖v0‖2 for n ≥ 1. By τh we
denote the operator on L2

2π defined by (τhu)(x) = u(x + h) for x ∈ R. Then
we have τhun − τhu0 = λ∂xτhvn and τhvn − τhv0 = λβ̃′(‖un−1‖2)∂xτhun for
n = 1, 2, . . . . Applying the above argument again, with un, vn replaced by
τhun − un, τnvn − vn we find

c2‖τhun − un‖2 + ‖τhvn − vn‖2 ≤ β′((R/c)2)‖τhu0 − u0‖2 + ‖τhv0 − v0‖2
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for n ≥ 1. It follows that the sequence {(un, vn)} has a convergent subse-
quence in X. The limit (uλ, vλ) satisfies uλ − u0 = λ∂xvλ and vλ − v0 =
λβ̃′(‖uλ‖2)∂xuλ. By an argument similar to the derivation of (5.6) and
the convexity of β̃ we have β̃(‖uλ‖2) + ‖vλ‖2 ≤ R2, which implies that
c2‖uλ‖2 ≤ R2 and then β̃′(‖uλ‖2) = β′(‖uλ‖2). The desired claim is thus
shown. The above argument also shows that

(5.7) β(‖uλ‖2) + ‖vλ‖2 ≤ β(‖u0‖2) + ‖v0‖2.

Now, let (u0, v0) ∈ D and let (uλ, vλ) ∈ H1
2π ×H1

2π satisfy (5.4) and (5.5).
Then it is easily seen that (uλ, vλ) ∈ H∞

2π × H∞
2π and

∂k
xuλ − ∂k

λu0 = λ∂k
x∂xvλ, ∂k

xvλ − ∂k
xv0 = λβ′(‖uλ‖2)∂k

x∂xuλ

for k = 1, 2, . . . . Similarly to the derivation of (5.6) we have

(5.8) β′(‖uλ‖2)‖∂k
xuλ‖2 + ‖∂k

xvλ‖2 ≤ β′(‖uλ‖2)‖∂k
xu0‖2 + ‖∂k

xv0‖2

for k = 1, 2, . . . . This together with (5.7) implies that (uλ, vλ) ∈ D and

ϕ(uλ, vλ) − ϕ(u0, v0) ≤ (β′(‖uλ‖2) − β′(‖u0‖2)) |u0|2

for λ > 0. Since the sequences {∂2
xuλ}, {∂xvλ} and {∂2

xvλ} are bounded
in L2

2π as λ ↓ 0 (by (5.7) and (5.8)), we have uλ → u0, ∂xuλ → ∂xu0 and
∂xvλ → ∂xv0 in L2

2π as λ ↓ 0. It follows that

lim
λ↓0

‖((uλ, vλ) − (u0, v0))/λ − A(u0, v0)‖ = 0

(by (5.4) and (5.5)) and

lim sup
λ↓0

(ϕ(uλ, vλ) − ϕ(u0, v0))/λ ≤ 2β′′(‖u0‖2)〈u0, ∂xv0〉 |u0|2 .

By the definition of ϕ and (5.3), the right-hand side is estimated by
a‖∂xv0‖ϕ(u0, v0), where a denotes various positive constants depending only
on R and c. Let χ(r) = (e2δr + e−2δr)/2 − 1 for r ≥ 0. Lemma 6.2 then
asserts that condition (A3) is satisfied with g(r) = arχ−1(r) for r ≥ 0.
Since g(0) = 0, g(r) > 0 for r > 0 and

∫ ∞
1

1
g(r)dr = ∞, we see that g is a

comparison function. By using Theorem 2.1 the following theorem can be
obtained.

Theorem 5.1. For each (u0, v0) ∈ D there exists a unique pair

(u(·, t), v(·, t)) ∈ C1
(
[0,∞);L2

2π × L2
2π

)
satisfying (u(·, t), v(·, t)) ∈ D for t ≥ 0, such that (5.1) and (5.2) are satis-
fied.
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6. Appendix

Lemma 6.1. Let δ > 0 and |w| the functional on H∞
2π defined by

|w|2 =
∞∑

k=1

(2δ)2k

(2k)!
‖∂k

xw‖2.

Then we have

sup
k≥1

δk

k!
‖∂k

xw‖ ≤ |w| ≤ sup
k≥1

(2δ)k

k!
‖∂k

xw‖

for w ∈ H∞
2π.

Proof. Let w ∈ H∞
2π. First, assume that |w| < ∞ and let k = 1, 2, . . . . Since

‖∂k
xw‖2 ≤

∞∑
j=1

(2k)!
(2δ)2k

(2δ)2j

(2j)!
‖∂j

xw‖2

and (2k)! = 2k · (2k − 1) · · · 2 · 1 ≤ (2kk!)2, we have ‖∂k
xw‖ ≤ (k!/δk) |w|.

Next, assume that K := supk≥1
(2δ)k

k! ‖∂k
xw‖ < ∞. Then we have

((2δ)2k/(2k)!)‖∂k
xw‖2 ≤ K2((k!)2/(2k)!)

for k = 1, 2, . . . . The desired inequality |w| ≤ K follows from the inequality
that (k!)2/(2k)! = (2kk!)2/(4k(2k)!) ≤ (1/2)k for k = 1, 2, . . . . ¤

Lemma 6.2. Let |w| be the functional in Lemma 6.1 and χ(r) = (e2δr +
e−2δr)/2 − 1 for r ≥ 0. Then we have ‖∂xw‖ ≤ (‖w‖ ∨ 1)χ−1(|w|2) for
w ∈ H∞

2π with |w| < ∞.

Proof. Let w ∈ H∞
2π and |w| < ∞, and define cn = 1

2π

∫ π
−π w(x)e−inxdx for

n = 0,±1,±2, . . . . Then it is well-known that

(6.1) ‖∂k
xw‖2 = 2π

∞∑
n=−∞

|n|2k |cn|2 .

We employ the function f(r) = χ(
√

r) for r ≥ 0. Since f(r) =
∑∞

k=1
(2δ)2k

(2k)! rk

for r ≥ 0, we have f(0) = 0 and f ′′(r) ≥ 0 for r ≥ 0.
Now, let K = ‖w‖ ∨ 1. Since

∑∞
n=−∞ 2π |cn|2 /K2 ≤ 1 and

(‖∂xw‖/K)2 =
∞∑

n=−∞
(2π |cn|2 /K2) |n|2 +

(
1 −

∞∑
n=−∞

(2π |cn|2 /K2)
)

0,

we have by the convexity of f and the fact that f(0) = 0,

f((‖∂xw‖/K)2) ≤ 2π

K2

∞∑
n=−∞

f(|n|2) |cn|2 = (|w| /K)2.
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Here we have used the identity (6.1) to obtain the last equality. The desired
inequality follows readily from the above inequality and the definition of f .

¤
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