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A REPRESENTATION OF RING HOMOMORPHISMS
ON UNITAL REGULAR COMMUTATIVE

BANACH ALGEBRAS

Takeshi MIURA

Abstract. We give a complete representation of a ring homomorphism
from a unital semisimple regular commutative Banach algebra into a
unital semisimple commutative Banach algebra, which need not be reg-
ular. As a corollary we give a sufficient condition in order that a ring
homomorphism is automatically linear or conjugate linear.

1. Introduction and results

Let A and B be two algebras. We say that a map ρ : A → B is a ring
homomorphism if ρ preserves both addition and multiplication. That is,

ρ(f + g) = ρ(f) + ρ(g),

ρ(fg) = ρ(f)ρ(g)

for every f, g ∈ A. Moreover if such ρ preserves scalar multiplication, then
we say that ρ is a homomorphism.

In this paper, C(K) denotes the commutative Banach algebra of all
complex-valued continuous functions on a compact Hausdorff space K. We
say that a map ρ : C(X) → C(Y ) is a ∗-ring homomorphism if ρ is a ring
homomorphism which also preserves complex conjugate: ρ(f) = ρ(f) for ev-
ery f ∈ C(X). Šemrl [6] made a study of ∗-ring homomorphisms on C(X)
into C(Y ) and remarked that the problem of a general description of all
ring homomorphisms on C(X) into C(Y ) is much more difficult than the
problem of characterizing all ∗-ring homomorphisms. In fact, let G be the
set of all surjective ring homomorphisms between the complex number field
C. It is well-known that the cardinal number of G is 2c (cf. [1]). Here c
denotes the cardinal number of C.

Let A be a unital regular semisimple commutative Banach algebra and
B a unital semisimple commutative Banach algebra, which need not be
regular. In this paper, we consider a ring homomorphism ρ : A → B and
give a representation of ρ; hence a description of a ring homomorphism
on C(X) into C(Y ) is given. This is an answer to the Šemrl’s remark
above. As a corollary, we can show [5, Theorem 1] and a unital version
of [6, Theorem 5.2]. We also prove that an injective or a surjective ring
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homomorphism on A to B is linear or conjugate linear if the maximal ideal
spaces of A and B are both infinite and if every constant function is mapped
to a constant function.

Throughout this note, A and B denote a unital regular semisimple com-
mutative Banach algebra and a unital semisimple commutative Banach al-
gebra with the maximal ideal spaces MA and MB, respectively. The units
of A and B are denoted by the same symbol e. We simply write f for the
Gelfand transform of f . Before we state our main theorem, we need some
terminologies.

Definition 1.1. Let ρ : A → B be a ring homomorphism. For each y ∈ MB

we define the induced ring homomorphism ρy : A → C and ρ̃y : C → C as

ρy(f) = ρ(f)(y) (f ∈ A),

ρ̃y(z) = ρ(ze)(y) (z ∈ C).

Moreover, qy : A → A/ ker ρy denotes the quotient map for every y ∈ MB.

A decomposition of a topological space T is a family {T1, T2, . . . , Tn} of
finitely many subsets T1, T2, . . . , Tn ⊂ T with the following properties:

T =
k∪

j=1

Tj and Tj ∩ Tk = ∅ if j 6= k.

Note that each Tj need not be clopen.
Let A be a commutative algebra with unit. Recall that P is a prime ideal

of A if P is a proper ideal which satisfies that fg ∈ P implies f ∈ P or
g ∈ P. Here and after the term ideal will mean algebra ideal. In particular,
every maximal ideal is a prime ideal. By Lemma 2.2, we see that the kernel
ker ρy of the map ρy : A → C is a prime ideal if ker ρy 6= A. Hence, the
quotient algebra A/ ker ρy is an integral domain. Therefore, we can define
the quotient field Fy of A/ ker ρy if ker ρy 6= A.

Now we are in a position to state our results.

Theorem 1.1. Let ρ : A → B be a ring homomorphism. Then there ex-
ist a decomposition {M−1,M0,M1,Mm,Mp} of MB and a continuous map
Φ: MB \ M0 → MA with the following property :

For every y ∈ Mm ∪ Mp there exists a non-zero field homomorphism
τy : Fy → C such that

ρ(f)(y) =



f(Φ(y)) y ∈ M−1

0 y ∈ M0

f(Φ(y)) y ∈ M1

τy(f(Φ(y))) y ∈ Mm

τy(qy(f)) y ∈ Mp
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for every f ∈ A.
Moreover, if ρ is surjective then the map Φ is an injection defined on MB

into MA.

Corollary 1.2. Let ρ : A → B be an injective or a surjective ring homo-
morphism satisfying ρ(Ce) ⊂ Ce. If MA and MB are both infinite, then ρ
is linear or conjugate linear.

Recall that a subset S of C(X) is separating if for each x, y ∈ X with
x 6= y there corresponds an f ∈ S so that f(x) 6= f(y). We say that S
vanishes nowhere if for every x ∈ X there exists a function g of S such that
g(x) 6= 0.

Corollary 1.3 (cf. Molnar, [5]). Let ρ : C(X) → C(Y ) be a ring homomor-
phism whose range contains a separating subalgebra of C(Y ). If the range
ρ(C(X)) vanishes nowhere, then ρ is surjective.

Corollary 1.4 (Šemrl, [6]). Let ρ : C(X) → C(Y ) be a ∗-ring homomor-
phism. Then there exist a clopen decomposition {Y−1, Y0, Y1} of Y and a
continuous map Φ: Y−1 ∪ Y1 → X such that

ρ(f)(y) =


f(Φ(y)) y ∈ Y−1

0 y ∈ Y0

f(Φ(y)) y ∈ Y1

for every f ∈ C(X).

2. Lemmas

Let τ : C → C be a ring homomorphism. We simply say that τ is a ring
homomorphism on C. For example, τ(z) = 0 (z ∈ C), τ(z) = z (z ∈ C) and
τ(z) = z (z ∈ C) are ring homomorphisms on C; we call them trivial ring
homomorphisms.

Proposition 2.1. Let τ be a ring homomorphism on C. Then the following
conditions are equivalent.

( i ) τ is trivial.
( ii ) There exist m0, L0 > 0 such that |z| < m0 implies |τ(z)| ≤ L0.
(iii) τ is continuous at 0.
(iv) τ is continuous at every point of C.
( v ) τ preserves complex conjugate.
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Proof. (i) ⇒ (ii) It is obvious.
(ii) ⇒ (iii) It is enough to consider the case where τ is non-zero. Then

by a simple calculation, we see that τ(r) = r for every r ∈ Q, the rational
number field of real numbers. For every ε > 0 fix an r0 ∈ Q with L0 < r0ε.
If |z| < m0/r0 then we have |τ(r0z)| ≤ L0 by hypothesis. Since τ fixes every
rational number, we obtain |τ(z)| ≤ L0/r0 < ε if |z| < m0/r0. Thus τ is
continuous at 0.

(iii) ⇒ (iv) Let {zn} be a sequence converging to z. Since τ is continuous
at 0, we see that τ(zn − z) → 0 as n → ∞. Hence τ(zn) converges to τ(z).

(iv) ⇒ (v) We consider the case where τ is non-zero. Then τ(r) = r for
every r ∈ Q. Since τ is continuous, we have that τ(t) = t for every t ∈ R,
the real number field. We also have that τ(i) = ±i since τ(−1) = −1. This
implies that τ(z) = τ(z) for every z ∈ C.

(v) ⇒ (i). By hypothesis, we have τ(R) ⊂ R, and hence τ(x+h2)−τ(x) =
{τ(h)}2 ≥ 0 for every x, h ∈ R. It follows that τ(x) ≥ τ(y) for x, y ∈ R
with x ≥ y. If τ is non-zero, then τ fixes all r ∈ Q. Therefore, we obtain
τ(x) = x for x ∈ R, so that τ is trivial. ¤

As remarked in the previous section, there exist non-trivial ring homo-
morphisms on C. By Proposition 2.1, non-trivial ring homomorphisms are
discontinuous at each point of C. Moreover a non-trivial ring homomorphism
τ on C has the following property:

For every pair m,L > 0 there exists a z ∈ C such that
|z| < m but |τ(z)| > L.

It is well-known that the kernels of non-zero complex homomorphisms on
a unital commutative Banach algebra are maximal ideals. Let N be the space
of all natural numbers and K0 = {0}∪{1/n; n ∈ N} with its usual topology.
Šemrl showed the existence of a non-zero complex ring homomorphism ϕ on
C(K0) whose kernel kerϕ is not a maximal ideal of C(K0) ([6, Example 5.4]).
We show that the kernel ker φ of a non-zero complex ring homomorphism φ
on A is a prime ideal that is contained in a unique maximal ideal. De Marco
and Orsatti [4] gave a characterization of a commutative ring with unit of
which each prime ideal containing the Jacobson radical is contained in a
unique maximal ideal.

Lemma 2.2. Let φ : A → C be a non-zero ring homomorphism. Then the
kernel kerφ is a prime ideal which is contained in a unique maximal ideal
of A.

Proof. As a first step, we show that kerφ is an ideal of A. Since φ preserves
both addition and multiplication, it is enough to show that zf belongs to
kerφ for every z ∈ C and f ∈ kerφ. Note that φ(e) = 1 since φ is non-zero.
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Therefore, we have

φ(zf) = φ(zf)φ(e) = φ(f)φ(ze) = 0

for every z ∈ C and f ∈ kerφ. Hence ker φ is an ideal of A. It is now obvious
that kerφ is a prime ideal.

Since ker φ is a proper ideal, there corresponds an x0 ∈ MA such that
kerφ ⊂ {f ∈ A; f(x0) = 0}. We show that {f ∈ A; f(x0) = 0} is the unique
maximal ideal containing kerφ. To this end, assume to the contrary that
there exists an x1 ∈ MA such that x0 6= x1 and kerφ ⊂ {f ∈ A; f(x1) = 0}.
Let Vj be an open neighborhood of xj for j = 0, 1 so that V0 ∩V1 = ∅. Since
A is regular, there corresponds an fj ∈ A such that

fj(xj) = 1 and fj(MA \ Vj) = 0 (j = 0, 1).

Then f0f1 = 0 on MA. Since kerφ is a prime ideal, f0 or f1 belongs to
kerφ. This is a contradiction since fj(xj) = 1 for j = 0, 1. Hence kerφ is
contained in the unique maximal ideal {f ∈ A; f(x0) = 0}. ¤

Lemma 2.3. Let φ : A → C be a non-zero ring homomorphism and q : A →
A/ kerφ the quotient map. Then φ is of the form φ = τ ◦q for some non-zero
field homomorphism τ on the quotient field F of A/ kerφ. If, in addition,
kerφ is a maximal ideal of A, then we may consider τ a non-zero ring
homomorphism on C and q ∈ MA.

Proof. Note that the quotient field F of A/ kerφ is well-defined since ker φ
is a prime ideal of A, by Lemma 2.2. We define the map τ : F → C by

(]) τ([f ]/[g]) =
ρ(f)
ρ(g)

([f ]/[g] ∈ F).

Here [f ] ∈ A/ kerφ denotes the equivalence class of f ∈ A with respect to
kerφ. Then τ is a well-defined non-zero field homomorphism on F . If we
identify [f ] with [f ]/[e], it is obvious that φ is of the form φ = τ ◦ q.

Moreover if kerφ is a maximal ideal of A, then the quotient algebra
A/ kerφ is isometrically isomorphic to C. Thus, we may identify A/ kerφ
with the quotient field F of A/ kerφ. Let I be the isomorphism on A/ kerφ
onto C. Then τ ◦ I−1 is a ring homomorphism on C and I ◦ q a non-zero
complex homomorphism on A with ρ = τ ◦ q = (τ ◦ I−1) ◦ (I ◦ q). This
completes the proof. ¤

Definition 2.1. Let ρ : A → B be a ring homomorphism. Put M0 = {y ∈
MB; ker ρy = A}. We define the subsets MB(m) and MB(p) of MB \ M0 as

MB(m) = {y ∈ MB \ M0; ker ρy is a maximal ideal of A},
MB(p) = {y ∈ MB \ M0; ker ρy is not a maximal ideal of A}.
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Let M−1, M1, Mm,−1 and Mm,1 be as follows:

M−1 = {y ∈ MB(m); ρ̃y(z) = z (z ∈ C)},
M1 = {y ∈ MB(m); ρ̃y(z) = z (z ∈ C)},
Mm,−1 = {y ∈ MB(m); ρ̃y is non-trivial and ρ̃y(i) = −i},
Mm,1 = {y ∈ MB(m); ρ̃y is non-trivial and ρ̃y(i) = i}.

The subsets Mp,−1 and Mp,1 of MB(p) are defined by

Mp,−1 = {y ∈ MB(p); ρ̃y(i) = −i},
Mp,1 = {y ∈ MB(p); ρ̃y(i) = i}.

Then we write Md,j = Mm,j ∪ Mp,j (j = −1, 1) and Md = Md,−1 ∪ Md,1.

Note that ρ̃y is a non-trivial ring homomorphism on C for every y ∈ Md.
For if ρ̃y is trivial then

ρy(zf) = ρ̃y(z)ρy(f) (z ∈ C, f ∈ A)

implies that ker ρy is maximal for every y ∈ MB \ M0. By definition, the
subsets M−1, M0, M1 and Md of MB are mutually disjoint and MB =
M−1 ∪M0 ∪M1 ∪Md. Hence, {M−1,M0,M1, Md} above is a decomposition
of MB. We call {M−1,M0,M1, Md} the decomposition of MB with respect
to ρ.

Until the end of this section, ρ : A → B denotes a ring homomorphism
and {M−1, M0,M1,Md} the decomposition of MB with respect to ρ.

Lemma 2.4. The sets M0, M−1 ∪Md,−1 and M1 ∪Md,1 are clopen in MB.
Also M−1 and M1 are both closed in MB.

Proof. By definition, it is easy to see that

M0 = {y ∈ MB; ρ̃y(i) = 0},
M−1 ∪ Md,−1 = {y ∈ MB; ρ̃y(i) = −i},
M1 ∪ Md,1 = {y ∈ MB; ρ̃y(i) = i}.

Therefore, M0, M−1 ∪ Md,−1 and M1 ∪ Md,1 are clopen since the function
ρ(ie) is continuous on MB.

Next, we show that M1 is closed in MB. For every y ∈ Md,1 we can find
a z0 ∈ C such that ρ̃y(z0) 6= z0 since ρ̃y is non-trivial. Put

V = {w ∈ MB; |ρ(z0e)(w) − ρ(z0e)(y)| < |z0 − ρ̃y(z0)|/2}.

Then V is an open neighborhood of y with V ∩M1 = ∅. Since M1 ∪Md,1 is
clopen, this implies that M1 is closed. In a way similar to the above, we see
that M−1 is closed and the proof is omitted. ¤
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Definition 2.2. By Lemma 2.2, for every y ∈ MB \ M0 there exists a
unique x ∈ MA such that ker ρy ⊂ {f ∈ A; f(x) = 0}. We denote the
correspondence defined on MB\M0 into MA as Φ; That is, ker ρy is contained
in the unique maximal ideal {f ∈ A; f(Φ(y)) = 0} for every y ∈ MB \ M0.
We call Φ the representing map for ρ.

Lemma 2.5. Let r ∈ Q, G open in MA and Φ the representing map for ρ.
Suppose that h ∈ A satisfies h(G) = r then ρy(h) = r for every y ∈ Φ−1(G).

Proof. Put hr = h − re ∈ A and fix y ∈ Φ−1(G). Since A is regular,
there exists a function g ∈ A such that g(Φ(y)) = 1 and g(MA \ G) = 0.
Then ghr = 0 on MA. Since ker ρy is a prime ideal, g or hr belongs to
ker ρy. On the other hand, g does not belong to {f ∈ A; f(Φ(y)) = 0} since
g(Φ(y)) = 1. So we conclude that hr ∈ ker ρy. Therefore we have ρy(h) = r
for every y ∈ Φ−1(G). ¤
Lemma 2.6. Let Φ be the representing map for ρ. Then the range Φ(Md)
is at most finite.

Proof. Assume to the contrary that Φ(Md) has a countable subset {xn}∞n=1

such that xj 6= xk if j 6= k. Without loss of generality, we may assume that
each xj is an isolated point of {xn}∞n=1. By definition, for every n ∈ N there
exists a yn ∈ Md such that xn = Φ(yn). By induction, we can find an open
neighborhood Uj of xj with

(U j \ {xj}) ∩ {xn}∞n=1 = ∅ and U j+1 ⊂ MA \
j∪

k=1

Uk

for every j ∈ N. Here U j denotes the closure of Uj in MA. Let Vj be an
open neighborhood of xj so that V j ⊂ Uj . Since A is regular, A is normal
(cf. [2, Theorem 6.3 of Chapter I]). That is, there exists a gj ∈ A such that
gj(V j) = 1 and gj(MA \Uj) = 0. Since ρ̃yj is non-trivial, there corresponds
a zj ∈ C so that

|zj | < (2j‖gj‖)−1 and |ρ̃yj (zj)| > 2j ,

by Proposition 2.1. Here ‖ · ‖ denotes the Banach norm on A. Put fj =
zjgj ∈ A. Then ρy(fj) = ρ̃y(zj)ρy(gj) for every y ∈ MB. Therefore, by
Lemma 2.5 we see that ρyj (fj) = ρ̃yj (zj). Since ‖fj‖ < 2−j , the series∑∞

n=1 fn converges in A, say f0. Note that fj = 0 on Vk if k 6= j. Thus
we see that f0 = fj on Vj for every j ∈ N. By Lemma 2.5, we obtain
ρyj (f0 − fj) = 0. Therefore,

|ρyj (f0)| = |ρyj (fj)| = |ρ̃yj (zj)| > 2j (j ∈ N).

This is a contradiction since ρ(f0) is bounded on MB. Hence we have proved
that the range Φ(Md) is at most finite. ¤
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3. A proof of main result

Proof of Theorem 1.1. Let {M−1,M0,M1,Md} and Φ be the decomposition
of MB with respect to ρ and the representing map for ρ, respectively. For
every y ∈ MB \ M0, let qy : A → A/ ker ρy denote the quotient map. Recall
that MB(m) is the set of all y ∈ MB so that ker ρy is a maximal ideal of A.
By Lemma 2.3, we can find a field homomorphism τy on the quotient field Fy

of the integral domain A/ ker ρy into C such that ρy = τy ◦qy. If, in addition,
y ∈ MB(m), then we may consider that τy is a ring homomorphism on C and
qy ∈ MA. In this case, we therefore have ker qy = ker ρy = kerΦ(y). Hence,
we see that qy = Φ(y) for every y ∈ MB(m). By the formula (]), we also
have τy = ρ̃y for every y ∈ MB(m). That is, τy(z) = z if y ∈ M−1, τy(z) = z
if y ∈ M1 and τy is non-trivial if y ∈ Mm,−1 ∪ Mm,1. Therefore, we have

ρ(f)(y) =


0 y ∈ M0

τy(f(Φ(y))) y ∈ MB(m)

τy(qy(f)) y ∈ MB(p)

=



f(Φ(y)) y ∈ M−1

0 y ∈ M0

f(Φ(y)) y ∈ M1

τy(f(Φ(y))) y ∈ Mm,−1 ∪ Mm,1

τy(qy(f)) y ∈ Mp,−1 ∪ Mp,1

for every f ∈ A.
By Lemma 2.6, we may put Φ(Md) = {x1, x2, . . . , xm}. Then we see that

the set Md(xj) = {y ∈ Md; Φ(y) = xj} is open in MB for j = 1, 2, . . . ,m.
Indeed, assume to the contrary that Md(xj) is not open. Then there exist
a yj ∈ Md(xj) and a net {yα} in MB \Md(xj) such that yα converges to yj .
Since M−1 ∪ M0 ∪ M1 is closed in MB by Lemma 2.4, we see that Md is an
open subset of MB. Therefore, without loss of generality we may assume
{yα} ⊂ Md\Md(xj). Fix open neighborhoods O1, O2 of xj with O1 ⊂ O2 and
O2 ∩Φ(Md) = {xj}. Here, · denotes the closure in MA. Since A is regular,
we can find a function hj ∈ A so that hj(O1) = 1 and hj(MA \ O2) = 0.
By Lemma 2.5, we have that ρyj (hj) = 1 and ρyα(hj) = 0 for every α.
This is a contradiction since ρ(hj) is continuous on MB. Therefore, the set
Md(xj) = {y ∈ Md; Φ(y) = xj} is open in MB for j = 1, 2, . . . ,m.

Finally we show that the map Φ on MB \ M0 into MA is continuous.
Indeed, we see that Φ is continuous at each y0 ∈ Md since Md(Φ(y0)) =
{y ∈ Md; Φ(y) = Φ(y0)} is open as proved above. We show that Φ is
continuous on M−1∪M1. Let y1 be a point of M1 and {yβ}β∈Γ an arbitrary
net in MB \ M0 converging to y1. Since M0 ∪ M−1 is closed in MB, we see
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that M1 ∪ Md is an open subset of MB. Hence, without loss of generality
we may assume {yβ}β∈Γ ⊂ M1 ∪ Md. We assert that there exists a β0 ∈ Γ
such that yβ ∈ M1 ∪ {y ∈ Md; Φ(y) = Φ(y1)} for every β ∈ Γ with β ≥ β0.
In fact, let W1 be an open neighborhood of Φ(y1) and W2 an open subset
containing Φ(Md) \ {Φ(y1)} so that W 1 ∩ W 2 = ∅. Then we can find a
g0 ∈ A such that g0(W 1) = 1 and g0(W 2) = 0. By Lemma 2.5, we see that
ρy1(g0) = 1 and ρy(g0) = 0 for every y ∈ Φ−1(W2). By the continuity of
ρ(g0), there exists a β0 ∈ Γ such that β ≥ β0 implies |ρ(g0)(yβ) − 1| < 1/2.
That is, Φ(yβ) 6∈ Φ(Md) \ {Φ(y1)} if β ≥ β0. Therefore, we see that yβ ∈
M1∪{y ∈ Md; Φ(y) = Φ(y1)} for every β ∈ Γ with β ≥ β0. Hence, if β ≥ β0

then we have

f(Φ(yβ)) =

{
ρ(f)(yβ) yβ ∈ M1

f(Φ(y1)) Φ(yβ) = Φ(y1)

for every f ∈ A. Consequently, β ≥ β0 implies that

|f(Φ(yβ)) − f(Φ(y1))| ≤ |ρ(f)(yβ) − ρ(f)(y1)|
for every f ∈ A. Thus Φ(yβ) converges to Φ(y1). This implies that Φ is
continuous on M1. In a way similar to the above, we can show that Φ is
continuous on M−1 and the proof is omitted. Thus, we have proved that
the map Φ is continuous on MB \ M0.

Suppose that ρ is surjective. Then M0 is an empty set. Hence Φ is the
map defined on MB into MA. We show that ker ρy = {f ∈ A; f(Φ(y)) = 0}.
Recall that ker ρy ⊂ {f ∈ A; f(Φ(y)) = 0}. So it is enough to show that
ρy(f) 6= 0 implies f(Φ(y)) 6= 0. Let a ∈ A satisfy ρy(a) 6= 0. Since ρy(A) =
C, there corresponds a b ∈ A such that ρy(a)ρy(b) = 1. Therefore, ab − e
belongs to ker ρy. We conclude that a(Φ(y)) 6= 0 since (ab − e)(Φ(y)) = 0.
Thus, we have proved that ker ρy = {f ∈ A; f(Φ(y)) = 0}. Hence MB =
M−1 ∪ M1 ∪ Mm,−1 ∪ Mm,1.

Let w1, w2 ∈ MB satisfy w1 6= w2. Since ρ is surjective, there exists an
a0 ∈ A such that ρ(a0)(w1) = 1 and ρ(a0)(w2) = 0. By the formula for ρ, it
is easy to see that

a0(Φ(w1)) = 1 and a0(Φ(w2)) = 0.

Therefore, we have Φ(w1) 6= Φ(w2). This implies that Φ is injective. ¤
Proof of Corollary 1.2. Let {M−1,M0,M1,Md,−1,Md,1} be the decomposi-
tion of MB with respect to ρ and Φ the representing map for ρ. Since ρ(Ce) ⊂
Ce, we have MB = M−1 ∪ Md,−1 or MB = M0 or MB = M1 ∪ Md,1. It is
enough to consider the case where MB = M−1 ∪Md,−1 or MB = M1 ∪Md,1.

Suppose that MB = M1 ∪ Md,1. First, we show that M1 6= ∅. Suppose
not. Then MB = Md,1. If ρ is surjective, the map Φ is injective by Theo-
rem 1.1. Since Φ(Md,1) is finite by Lemma 2.6, so is Md,1 = MB. This is a
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contradiction. Therefore, M1 6= ∅ if ρ is surjective. Consider the case where
ρ is injective. Since MA is infinite, there exists an x0 ∈ MA \ Φ(Md,1). We
can find an open subset V of MA so that Φ(Md,1) ⊂ V and x0 6∈ V . Since A

is regular, there corresponds an f0 ∈ A such that f0(x0) = 1 and f0(V ) = 0.
By Lemma 2.5 we see that ρy(f0) = 0 for every y ∈ Md,1 = MB. Since f0

is not identically zero, this contradicts that ρ is injective. Consequently, we
have that M1 6= ∅.

Now we show that MB = M1. Suppose that there exists a y1 ∈ Md,1.
Since ρ̃y1 is non-trivial, we can find a z1 ∈ C such that ρ̃y1(z1) 6= z1. Note
that ρ̃y(z1) = z1 for every y ∈ M1. This is a contradiction since ρ(Ce) ⊂ Ce.
Therefore, we have proved that MB = M1 if MB = M1 ∪ Md,1. In a way
similar to the above, we see that MB = M−1 if MB = M−1 ∪Md,−1. Hence,
ρ is linear or conjugate linear. ¤

Proof of Corollary 1.3. Let {Y−1, Y0, Y1, Yd} be the decomposition of Y with
respect to ρ and Φ the representing map for ρ. Since the range ρ(C(X))
vanishes nowhere, we see that Y0 is an empty set. Since ρ(C(X)) contains a
separating subalgebra, in a way similar to the proof of Theorem 1.1, we can
prove that ker ρy is a maximal ideal for every y ∈ Y and that Φ: Y → X is
injective. Hence, Y is homeomorphic to the range Φ(Y ). Let ϕ : Φ(Y ) → Y
be the homeomorphism defined by

ϕ(x) = Φ−1(x) (x ∈ Φ(Y )).

Note that

ρ(f)(y) =


f(Φ(y)) y ∈ Y−1

f(Φ(y)) y ∈ Y1

τy(f(Φ(y))) y ∈ Yd

for every f ∈ C(X). Here τy denotes a non-trivial ring homomorphism on
C. We define the continuous function h : Φ(Y ) → C by

h(x) =


g(ϕ(x)) x ∈ Φ(Y−1)
g(ϕ(x)) x ∈ Φ(Y1)
τϕ(x)

−1(g(ϕ(x))) x ∈ Φ(Yd)

for each g ∈ C(Y ). Since Φ(Y−1), Φ(Y1) and Φ(Yd) are disjoint closed subsets
of the compact Hausdorff space X, there exists an h̃ of C(X) such that
h̃|Φ(Y ) = h. Then it is easy to see that ρ(h̃) = g. Hence ρ is surjective. ¤

Proof of Corollary 1.4. Let {Y−1, Y0, Y1, Yd} be the decomposition of Y with
respect to ρ and Φ the representing map for ρ. Since ρ preserves complex
conjugate, by Proposition 2.1 we have that ρ̃y is trivial for every y ∈ Y .
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Therefore, Yd is an empty set. By Lemma 2.4, we see that Y−1, Y0 and Y1

are all clopen. This completes the proof. ¤
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