A REPRESENTATION OF RING HOMOMORPHISMS ON UNITAL REGULAR COMMUTATIVE BANACH ALGEBRAS

TAKESHI MIURA

ABSTRACT. We give a complete representation of a ring homomorphism from a unital semisimple regular commutative Banach algebra into a unital semisimple commutative Banach algebra, which need not be regular. As a corollary we give a sufficient condition in order that a ring homomorphism is automatically linear or conjugate linear.

1. INTRODUCTION AND RESULTS

Let \mathcal{A} and \mathcal{B} be two algebras. We say that a map $\rho: \mathcal{A} \to \mathcal{B}$ is a ring homomorphism if ρ preserves both addition and multiplication. That is,

$$\begin{split} \rho(f+g) &= \rho(f) + \rho(g), \\ \rho(fg) &= \rho(f)\rho(g) \end{split}$$

for every $f, g \in \mathcal{A}$. Moreover if such ρ preserves scalar multiplication, then we say that ρ is a homomorphism.

In this paper, C(K) denotes the commutative Banach algebra of all complex-valued continuous functions on a compact Hausdorff space K. We say that a map $\rho: C(X) \to C(Y)$ is a *-ring homomorphism if ρ is a ring homomorphism which also preserves complex conjugate: $\rho(\overline{f}) = \overline{\rho(f)}$ for every $f \in C(X)$. Šemrl [6] made a study of *-ring homomorphisms on C(X)into C(Y) and remarked that the problem of a general description of all ring homomorphisms on C(X) into C(Y) is much more difficult than the problem of characterizing all *-ring homomorphisms. In fact, let G be the set of all surjective ring homomorphisms between the complex number field \mathbb{C} . It is well-known that the cardinal number of G is 2^c (cf. [1]). Here **c** denotes the cardinal number of \mathbb{C} .

Let A be a unital regular semisimple commutative Banach algebra and B a unital semisimple commutative Banach algebra, which need not be regular. In this paper, we consider a ring homomorphism $\rho: A \to B$ and give a representation of ρ ; hence a description of a ring homomorphism on C(X) into C(Y) is given. This is an answer to the Šemrl's remark above. As a corollary, we can show [5, Theorem 1] and a unital version of [6, Theorem 5.2]. We also prove that an injective or a surjective ring

¹⁹⁹¹ Mathematics Subject Classification. 46J10.

Key words and phrases. commutative Banach algebras, ring homomorphisms.

homomorphism on A to B is linear or conjugate linear if the maximal ideal spaces of A and B are both infinite and if every constant function is mapped to a constant function.

Throughout this note, A and B denote a unital regular semisimple commutative Banach algebra and a unital semisimple commutative Banach algebra with the maximal ideal spaces M_A and M_B , respectively. The units of A and B are denoted by the same symbol e. We simply write f for the Gelfand transform of f. Before we state our main theorem, we need some terminologies.

Definition 1.1. Let $\rho: A \to B$ be a ring homomorphism. For each $y \in M_B$ we define the induced ring homomorphism $\rho_y: A \to \mathbb{C}$ and $\tilde{\rho}_y: \mathbb{C} \to \mathbb{C}$ as

$$\begin{split} \rho_y(f) &= \rho(f)(y) \quad (f \in A), \\ \tilde{\rho}_y(z) &= \rho(ze)(y) \quad (z \in \mathbb{C}). \end{split}$$

Moreover, $q_y: A \to A/\ker \rho_y$ denotes the quotient map for every $y \in M_B$.

A decomposition of a topological space T is a family $\{T_1, T_2, \ldots, T_n\}$ of finitely many subsets $T_1, T_2, \ldots, T_n \subset T$ with the following properties:

$$T = \bigcup_{j=1}^{k} T_j$$
 and $T_j \cap T_k = \emptyset$ if $j \neq k$.

Note that each T_i need not be clopen.

Let \mathcal{A} be a commutative algebra with unit. Recall that \mathcal{P} is a prime ideal of \mathcal{A} if \mathcal{P} is a proper ideal which satisfies that $fg \in \mathcal{P}$ implies $f \in \mathcal{P}$ or $g \in \mathcal{P}$. Here and after the term ideal will mean algebra ideal. In particular, every maximal ideal is a prime ideal. By Lemma 2.2, we see that the kernel ker ρ_y of the map $\rho_y \colon A \to \mathbb{C}$ is a prime ideal if ker $\rho_y \neq A$. Hence, the quotient algebra $A/\ker \rho_y$ is an integral domain. Therefore, we can define the quotient field \mathcal{F}_y of $A/\ker \rho_y$ if ker $\rho_y \neq A$.

Now we are in a position to state our results.

Theorem 1.1. Let $\rho: A \to B$ be a ring homomorphism. Then there exist a decomposition $\{M_{-1}, M_0, M_1, M_m, M_p\}$ of M_B and a continuous map $\Phi: M_B \setminus M_0 \to M_A$ with the following property:

For every $y \in M_m \cup M_p$ there exists a non-zero field homomorphism $\tau_y \colon \mathcal{F}_y \to \mathbb{C}$ such that

$$\rho(f)(y) = \begin{cases} \overline{f(\Phi(y))} & y \in M_{-1} \\ 0 & y \in M_0 \\ f(\Phi(y)) & y \in M_1 \\ \tau_y(f(\Phi(y))) & y \in M_m \\ \tau_y(q_y(f)) & y \in M_p \end{cases}$$

for every $f \in A$.

Moreover, if ρ is surjective then the map Φ is an injection defined on M_B into M_A .

Corollary 1.2. Let $\rho: A \to B$ be an injective or a surjective ring homomorphism satisfying $\rho(\mathbb{C}e) \subset \mathbb{C}e$. If M_A and M_B are both infinite, then ρ is linear or conjugate linear.

Recall that a subset S of C(X) is separating if for each $x, y \in X$ with $x \neq y$ there corresponds an $f \in S$ so that $f(x) \neq f(y)$. We say that S vanishes nowhere if for every $x \in X$ there exists a function g of S such that $g(x) \neq 0$.

Corollary 1.3 (cf. Molnar, [5]). Let $\rho: C(X) \to C(Y)$ be a ring homomorphism whose range contains a separating subalgebra of C(Y). If the range $\rho(C(X))$ vanishes nowhere, then ρ is surjective.

Corollary 1.4 (Semrl, [6]). Let $\rho: C(X) \to C(Y)$ be a *-ring homomorphism. Then there exist a clopen decomposition $\{Y_{-1}, Y_0, Y_1\}$ of Y and a continuous map $\Phi: Y_{-1} \cup Y_1 \to X$ such that

$$\rho(f)(y) = \begin{cases} \overline{f(\Phi(y))} & y \in Y_{-1} \\ 0 & y \in Y_0 \\ f(\Phi(y)) & y \in Y_1 \end{cases}$$

for every $f \in C(X)$.

2. Lemmas

Let $\tau : \mathbb{C} \to \mathbb{C}$ be a ring homomorphism. We simply say that τ is a ring homomorphism on \mathbb{C} . For example, $\tau(z) = 0$ $(z \in \mathbb{C})$, $\tau(z) = z$ $(z \in \mathbb{C})$ and $\tau(z) = \overline{z}$ $(z \in \mathbb{C})$ are ring homomorphisms on \mathbb{C} ; we call them trivial ring homomorphisms.

Proposition 2.1. Let τ be a ring homomorphism on \mathbb{C} . Then the following conditions are equivalent.

- (i) τ is trivial.
- (ii) There exist $m_0, L_0 > 0$ such that $|z| < m_0$ implies $|\tau(z)| \le L_0$.
- (iii) τ is continuous at 0.
- (iv) τ is continuous at every point of \mathbb{C} .
- (v) τ preserves complex conjugate.

Proof. (i) \Rightarrow (ii) It is obvious.

(ii) \Rightarrow (iii) It is enough to consider the case where τ is non-zero. Then by a simple calculation, we see that $\tau(r) = r$ for every $r \in \mathbb{Q}$, the rational number field of real numbers. For every $\varepsilon > 0$ fix an $r_0 \in \mathbb{Q}$ with $L_0 < r_0 \varepsilon$. If $|z| < m_0/r_0$ then we have $|\tau(r_0 z)| \le L_0$ by hypothesis. Since τ fixes every rational number, we obtain $|\tau(z)| \le L_0/r_0 < \varepsilon$ if $|z| < m_0/r_0$. Thus τ is continuous at 0.

(iii) \Rightarrow (iv) Let $\{z_n\}$ be a sequence converging to z. Since τ is continuous at 0, we see that $\tau(z_n - z) \rightarrow 0$ as $n \rightarrow \infty$. Hence $\tau(z_n)$ converges to $\tau(z)$.

(iv) \Rightarrow (v) We consider the case where τ is non-zero. Then $\tau(r) = r$ for every $r \in \mathbb{Q}$. Since τ is continuous, we have that $\tau(t) = t$ for every $t \in \mathbb{R}$, the real number field. We also have that $\tau(i) = \pm i$ since $\tau(-1) = -1$. This implies that $\tau(\overline{z}) = \overline{\tau(z)}$ for every $z \in \mathbb{C}$.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$. By hypothesis, we have $\tau(\mathbb{R}) \subset \mathbb{R}$, and hence $\tau(x+h^2)-\tau(x) = \{\tau(h)\}^2 \geq 0$ for every $x, h \in \mathbb{R}$. It follows that $\tau(x) \geq \tau(y)$ for $x, y \in \mathbb{R}$ with $x \geq y$. If τ is non-zero, then τ fixes all $r \in \mathbb{Q}$. Therefore, we obtain $\tau(x) = x$ for $x \in \mathbb{R}$, so that τ is trivial.

As remarked in the previous section, there exist non-trivial ring homomorphisms on \mathbb{C} . By Proposition 2.1, non-trivial ring homomorphisms are discontinuous at each point of \mathbb{C} . Moreover a non-trivial ring homomorphism τ on \mathbb{C} has the following property:

For every pair m, L > 0 there exists a $z \in \mathbb{C}$ such that |z| < m but $|\tau(z)| > L$.

It is well-known that the kernels of non-zero complex homomorphisms on a unital commutative Banach algebra are maximal ideals. Let \mathbb{N} be the space of all natural numbers and $K_0 = \{0\} \cup \{1/n; n \in \mathbb{N}\}$ with its usual topology. Šemrl showed the existence of a non-zero complex ring homomorphism φ on $C(K_0)$ whose kernel ker φ is not a maximal ideal of $C(K_0)$ ([6, Example 5.4]). We show that the kernel ker ϕ of a non-zero complex ring homomorphism ϕ on A is a prime ideal that is contained in a unique maximal ideal. De Marco and Orsatti [4] gave a characterization of a commutative ring with unit of which each prime ideal containing the Jacobson radical is contained in a unique maximal ideal.

Lemma 2.2. Let $\phi: A \to \mathbb{C}$ be a non-zero ring homomorphism. Then the kernel ker ϕ is a prime ideal which is contained in a unique maximal ideal of A.

Proof. As a first step, we show that ker ϕ is an ideal of A. Since ϕ preserves both addition and multiplication, it is enough to show that zf belongs to ker ϕ for every $z \in \mathbb{C}$ and $f \in \ker \phi$. Note that $\phi(e) = 1$ since ϕ is non-zero.

Therefore, we have

$$\phi(zf) = \phi(zf)\phi(e) = \phi(f)\phi(ze) = 0$$

for every $z \in \mathbb{C}$ and $f \in \ker \phi$. Hence $\ker \phi$ is an ideal of A. It is now obvious that $\ker \phi$ is a prime ideal.

Since ker ϕ is a proper ideal, there corresponds an $x_0 \in M_A$ such that ker $\phi \subset \{f \in A; f(x_0) = 0\}$. We show that $\{f \in A; f(x_0) = 0\}$ is the unique maximal ideal containing ker ϕ . To this end, assume to the contrary that there exists an $x_1 \in M_A$ such that $x_0 \neq x_1$ and ker $\phi \subset \{f \in A; f(x_1) = 0\}$. Let V_j be an open neighborhood of x_j for j = 0, 1 so that $V_0 \cap V_1 = \emptyset$. Since A is regular, there corresponds an $f_j \in A$ such that

$$f_j(x_j) = 1$$
 and $f_j(M_A \setminus V_j) = 0$ $(j = 0, 1)$.

Then $f_0f_1 = 0$ on M_A . Since ker ϕ is a prime ideal, f_0 or f_1 belongs to ker ϕ . This is a contradiction since $f_j(x_j) = 1$ for j = 0, 1. Hence ker ϕ is contained in the unique maximal ideal $\{f \in A; f(x_0) = 0\}$.

Lemma 2.3. Let $\phi: A \to \mathbb{C}$ be a non-zero ring homomorphism and $q: A \to A/\ker \phi$ the quotient map. Then ϕ is of the form $\phi = \tau \circ q$ for some non-zero field homomorphism τ on the quotient field \mathcal{F} of $A/\ker \phi$. If, in addition, $\ker \phi$ is a maximal ideal of A, then we may consider τ a non-zero ring homomorphism on \mathbb{C} and $q \in M_A$.

Proof. Note that the quotient field \mathcal{F} of $A/\ker\phi$ is well-defined since $\ker\phi$ is a prime ideal of A, by Lemma 2.2. We define the map $\tau: \mathcal{F} \to \mathbb{C}$ by

$$(\sharp) \qquad \qquad \tau([f]/[g]) = \frac{\rho(f)}{\rho(g)} \quad ([f]/[g] \in \mathcal{F}).$$

Here $[f] \in A/\ker \phi$ denotes the equivalence class of $f \in A$ with respect to $\ker \phi$. Then τ is a well-defined non-zero field homomorphism on \mathcal{F} . If we identify [f] with [f]/[e], it is obvious that ϕ is of the form $\phi = \tau \circ q$.

Moreover if ker ϕ is a maximal ideal of A, then the quotient algebra $A/\ker \phi$ is isometrically isomorphic to \mathbb{C} . Thus, we may identify $A/\ker \phi$ with the quotient field \mathcal{F} of $A/\ker \phi$. Let I be the isomorphism on $A/\ker \phi$ onto \mathbb{C} . Then $\tau \circ I^{-1}$ is a ring homomorphism on \mathbb{C} and $I \circ q$ a non-zero complex homomorphism on A with $\rho = \tau \circ q = (\tau \circ I^{-1}) \circ (I \circ q)$. This completes the proof.

Definition 2.1. Let $\rho: A \to B$ be a ring homomorphism. Put $M_0 = \{y \in M_B; \ker \rho_y = A\}$. We define the subsets $M_{B(m)}$ and $M_{B(p)}$ of $M_B \setminus M_0$ as

 $M_{B(m)} = \{ y \in M_B \setminus M_0; \ker \rho_y \text{ is a maximal ideal of } A \},$ $M_{B(p)} = \{ y \in M_B \setminus M_0; \ker \rho_y \text{ is not a maximal ideal of } A \}.$ T. MIURA

Let M_{-1} , M_1 , $M_{m,-1}$ and $M_{m,1}$ be as follows:

$$M_{-1} = \{ y \in M_{B(m)}; \tilde{\rho}_y(z) = \overline{z} \ (z \in \mathbb{C}) \},\$$

$$M_1 = \{ y \in M_{B(m)}; \tilde{\rho}_y(z) = z \ (z \in \mathbb{C}) \},\$$

$$M_{m,-1} = \{ y \in M_{B(m)}; \tilde{\rho}_y \text{ is non-trivial and } \tilde{\rho}_y(i) = -i \}$$

$$M_{m,1} = \{ y \in M_{B(m)}; \tilde{\rho}_y \text{ is non-trivial and } \tilde{\rho}_y(i) = i \}.$$

The subsets $M_{p,-1}$ and $M_{p,1}$ of $M_{B(p)}$ are defined by

$$M_{p,-1} = \{ y \in M_{B(p)}; \tilde{\rho}_y(i) = -i \}, M_{p,1} = \{ y \in M_{B(p)}; \tilde{\rho}_y(i) = i \}.$$

Then we write $M_{d,j} = M_{m,j} \cup M_{p,j}$ (j = -1, 1) and $M_d = M_{d,-1} \cup M_{d,1}$.

Note that $\tilde{\rho}_y$ is a non-trivial ring homomorphism on \mathbb{C} for every $y \in M_d$. For if $\tilde{\rho}_y$ is trivial then

$$\rho_y(zf) = \tilde{\rho}_y(z)\rho_y(f) \quad (z \in \mathbb{C}, f \in A)$$

implies that ker ρ_y is maximal for every $y \in M_B \setminus M_0$. By definition, the subsets M_{-1} , M_0 , M_1 and M_d of M_B are mutually disjoint and $M_B = M_{-1} \cup M_0 \cup M_1 \cup M_d$. Hence, $\{M_{-1}, M_0, M_1, M_d\}$ above is a decomposition of M_B . We call $\{M_{-1}, M_0, M_1, M_d\}$ the decomposition of M_B with respect to ρ .

Until the end of this section, $\rho: A \to B$ denotes a ring homomorphism and $\{M_{-1}, M_0, M_1, M_d\}$ the decomposition of M_B with respect to ρ .

Lemma 2.4. The sets M_0 , $M_{-1} \cup M_{d,-1}$ and $M_1 \cup M_{d,1}$ are clopen in M_B . Also M_{-1} and M_1 are both closed in M_B .

Proof. By definition, it is easy to see that

$$M_{0} = \{ y \in M_{B}; \tilde{\rho}_{y}(i) = 0 \}, M_{-1} \cup M_{d,-1} = \{ y \in M_{B}; \tilde{\rho}_{y}(i) = -i \}, M_{1} \cup M_{d,1} = \{ y \in M_{B}; \tilde{\rho}_{y}(i) = i \}.$$

Therefore, M_0 , $M_{-1} \cup M_{d,-1}$ and $M_1 \cup M_{d,1}$ are clopen since the function $\rho(ie)$ is continuous on M_B .

Next, we show that M_1 is closed in M_B . For every $y \in M_{d,1}$ we can find a $z_0 \in \mathbb{C}$ such that $\tilde{\rho}_y(z_0) \neq z_0$ since $\tilde{\rho}_y$ is non-trivial. Put

$$V = \{ w \in M_B; |\rho(z_0 e)(w) - \rho(z_0 e)(y)| < |z_0 - \tilde{\rho}_y(z_0)|/2 \}.$$

Then V is an open neighborhood of y with $V \cap M_1 = \emptyset$. Since $M_1 \cup M_{d,1}$ is clopen, this implies that M_1 is closed. In a way similar to the above, we see that M_{-1} is closed and the proof is omitted.

Definition 2.2. By Lemma 2.2, for every $y \in M_B \setminus M_0$ there exists a unique $x \in M_A$ such that ker $\rho_y \subset \{f \in A; f(x) = 0\}$. We denote the correspondence defined on $M_B \setminus M_0$ into M_A as Φ ; That is, ker ρ_y is contained in the unique maximal ideal $\{f \in A; f(\Phi(y)) = 0\}$ for every $y \in M_B \setminus M_0$. We call Φ the representing map for ρ .

Lemma 2.5. Let $r \in \mathbb{Q}$, G open in M_A and Φ the representing map for ρ . Suppose that $h \in A$ satisfies h(G) = r then $\rho_y(h) = r$ for every $y \in \Phi^{-1}(G)$.

Proof. Put $h_r = h - re \in A$ and fix $y \in \Phi^{-1}(G)$. Since A is regular, there exists a function $g \in A$ such that $g(\Phi(y)) = 1$ and $g(M_A \setminus G) = 0$. Then $gh_r = 0$ on M_A . Since ker ρ_y is a prime ideal, g or h_r belongs to ker ρ_y . On the other hand, g does not belong to $\{f \in A; f(\Phi(y)) = 0\}$ since $g(\Phi(y)) = 1$. So we conclude that $h_r \in \ker \rho_y$. Therefore we have $\rho_y(h) = r$ for every $y \in \Phi^{-1}(G)$.

Lemma 2.6. Let Φ be the representing map for ρ . Then the range $\Phi(M_d)$ is at most finite.

Proof. Assume to the contrary that $\Phi(M_d)$ has a countable subset $\{x_n\}_{n=1}^{\infty}$ such that $x_j \neq x_k$ if $j \neq k$. Without loss of generality, we may assume that each x_j is an isolated point of $\{x_n\}_{n=1}^{\infty}$. By definition, for every $n \in \mathbb{N}$ there exists a $y_n \in M_d$ such that $x_n = \Phi(y_n)$. By induction, we can find an open neighborhood U_j of x_j with

$$(\overline{U}_j \setminus \{x_j\}) \cap \{x_n\}_{n=1}^{\infty} = \emptyset \text{ and } \overline{U}_{j+1} \subset M_A \setminus \bigcup_{k=1}^{j} \overline{U}_k$$

for every $j \in \mathbb{N}$. Here \overline{U}_j denotes the closure of U_j in M_A . Let V_j be an open neighborhood of x_j so that $\overline{V}_j \subset U_j$. Since A is regular, A is normal (cf. [2, Theorem 6.3 of Chapter I]). That is, there exists a $g_j \in A$ such that $g_j(\overline{V}_j) = 1$ and $g_j(M_A \setminus U_j) = 0$. Since $\tilde{\rho}_{y_j}$ is non-trivial, there corresponds a $z_j \in \mathbb{C}$ so that

$$|z_j| < (2^j ||g_j||)^{-1}$$
 and $|\tilde{\rho}_{y_j}(z_j)| > 2^j$,

by Proposition 2.1. Here $\|\cdot\|$ denotes the Banach norm on A. Put $f_j = z_j g_j \in A$. Then $\rho_y(f_j) = \tilde{\rho}_y(z_j)\rho_y(g_j)$ for every $y \in M_B$. Therefore, by Lemma 2.5 we see that $\rho_{y_j}(f_j) = \tilde{\rho}_{y_j}(z_j)$. Since $\|f_j\| < 2^{-j}$, the series $\sum_{n=1}^{\infty} f_n$ converges in A, say f_0 . Note that $f_j = 0$ on V_k if $k \neq j$. Thus we see that $f_0 = f_j$ on V_j for every $j \in \mathbb{N}$. By Lemma 2.5, we obtain $\rho_{y_j}(f_0 - f_j) = 0$. Therefore,

$$|\rho_{y_j}(f_0)| = |\rho_{y_j}(f_j)| = |\tilde{\rho}_{y_j}(z_j)| > 2^j \quad (j \in \mathbb{N}).$$

This is a contradiction since $\rho(f_0)$ is bounded on M_B . Hence we have proved that the range $\Phi(M_d)$ is at most finite.

T. MIURA

3. A proof of main result

Proof of Theorem 1.1. Let $\{M_{-1}, M_0, M_1, M_d\}$ and Φ be the decomposition of M_B with respect to ρ and the representing map for ρ , respectively. For every $y \in M_B \setminus M_0$, let $q_y \colon A \to A/\ker \rho_y$ denote the quotient map. Recall that $M_{B(m)}$ is the set of all $y \in M_B$ so that $\ker \rho_y$ is a maximal ideal of A. By Lemma 2.3, we can find a field homomorphism τ_y on the quotient field \mathcal{F}_y of the integral domain $A/\ker \rho_y$ into \mathbb{C} such that $\rho_y = \tau_y \circ q_y$. If, in addition, $y \in M_{B(m)}$, then we may consider that τ_y is a ring homomorphism on \mathbb{C} and $q_y \in M_A$. In this case, we therefore have $\ker q_y = \ker \rho_y = \ker \Phi(y)$. Hence, we see that $q_y = \Phi(y)$ for every $y \in M_{B(m)}$. By the formula (\sharp) , we also have $\tau_y = \tilde{\rho_y}$ for every $y \in M_{B(m)}$. That is, $\tau_y(z) = \overline{z}$ if $y \in M_{-1}, \tau_y(z) = z$ if $y \in M_1$ and τ_y is non-trivial if $y \in M_{m,-1} \cup M_{m,1}$. Therefore, we have

$$\rho(f)(y) = \begin{cases}
0 & y \in M_0 \\
\tau_y(f(\Phi(y))) & y \in M_{B(m)} \\
\tau_y(q_y(f)) & y \in M_{B(p)}
\end{cases}$$

$$= \begin{cases}
\overline{f(\Phi(y))} & y \in M_{-1} \\
0 & y \in M_0 \\
f(\Phi(y)) & y \in M_1 \\
\tau_y(f(\Phi(y))) & y \in M_{m,-1} \cup M_{m,1} \\
\tau_y(q_y(f)) & y \in M_{p,-1} \cup M_{p,1}
\end{cases}$$

for every $f \in A$.

By Lemma 2.6, we may put $\Phi(M_d) = \{x_1, x_2, \ldots, x_m\}$. Then we see that the set $M_d(x_j) = \{y \in M_d; \Phi(y) = x_j\}$ is open in M_B for $j = 1, 2, \ldots, m$. Indeed, assume to the contrary that $M_d(x_j)$ is not open. Then there exist a $y_j \in M_d(x_j)$ and a net $\{y_\alpha\}$ in $M_B \setminus M_d(x_j)$ such that y_α converges to y_j . Since $M_{-1} \cup M_0 \cup M_1$ is closed in M_B by Lemma 2.4, we see that M_d is an open subset of M_B . Therefore, without loss of generality we may assume $\{y_\alpha\} \subset M_d \setminus M_d(x_j)$. Fix open neighborhoods O_1, O_2 of x_j with $\overline{O_1} \subset O_2$ and $\overline{O_2} \cap \Phi(M_d) = \{x_j\}$. Here, $\overline{\cdot}$ denotes the closure in M_A . Since A is regular, we can find a function $h_j \in A$ so that $h_j(\overline{O_1}) = 1$ and $h_j(M_A \setminus O_2) = 0$. By Lemma 2.5, we have that $\rho_{y_j}(h_j) = 1$ and $\rho_{y_\alpha}(h_j) = 0$ for every α . This is a contradiction since $\rho(h_j)$ is continuous on M_B . Therefore, the set $M_d(x_j) = \{y \in M_d; \Phi(y) = x_j\}$ is open in M_B for $j = 1, 2, \ldots, m$.

Finally we show that the map Φ on $M_B \setminus M_0$ into M_A is continuous. Indeed, we see that Φ is continuous at each $y_0 \in M_d$ since $M_d(\Phi(y_0)) = \{y \in M_d; \Phi(y) = \Phi(y_0)\}$ is open as proved above. We show that Φ is continuous on $M_{-1} \cup M_1$. Let y_1 be a point of M_1 and $\{y_\beta\}_{\beta \in \Gamma}$ an arbitrary net in $M_B \setminus M_0$ converging to y_1 . Since $M_0 \cup M_{-1}$ is closed in M_B , we see that $M_1 \cup M_d$ is an open subset of M_B . Hence, without loss of generality we may assume $\{y_\beta\}_{\beta\in\Gamma} \subset M_1 \cup M_d$. We assert that there exists a $\beta_0 \in \Gamma$ such that $y_\beta \in M_1 \cup \{y \in M_d; \Phi(y) = \Phi(y_1)\}$ for every $\beta \in \Gamma$ with $\beta \geq \beta_0$. In fact, let W_1 be an open neighborhood of $\Phi(y_1)$ and W_2 an open subset containing $\Phi(M_d) \setminus \{\Phi(y_1)\}$ so that $\overline{W}_1 \cap \overline{W}_2 = \emptyset$. Then we can find a $g_0 \in A$ such that $g_0(\overline{W}_1) = 1$ and $g_0(\overline{W}_2) = 0$. By Lemma 2.5, we see that $\rho_{y_1}(g_0) = 1$ and $\rho_y(g_0) = 0$ for every $y \in \Phi^{-1}(W_2)$. By the continuity of $\rho(g_0)$, there exists a $\beta_0 \in \Gamma$ such that $\beta \geq \beta_0$ implies $|\rho(g_0)(y_\beta) - 1| < 1/2$. That is, $\Phi(y_\beta) \notin \Phi(M_d) \setminus \{\Phi(y_1)\}$ if $\beta \geq \beta_0$. Therefore, we see that $y_\beta \in$ $M_1 \cup \{y \in M_d; \Phi(y) = \Phi(y_1)\}$ for every $\beta \in \Gamma$ with $\beta \geq \beta_0$. Hence, if $\beta \geq \beta_0$ then we have

$$f(\Phi(y_{\beta})) = \begin{cases} \rho(f)(y_{\beta}) & y_{\beta} \in M_1 \\ f(\Phi(y_1)) & \Phi(y_{\beta}) = \Phi(y_1) \end{cases}$$

for every $f \in A$. Consequently, $\beta \geq \beta_0$ implies that

$$f(\Phi(y_{\beta})) - f(\Phi(y_1))| \le |\rho(f)(y_{\beta}) - \rho(f)(y_1)|$$

for every $f \in A$. Thus $\Phi(y_{\beta})$ converges to $\Phi(y_1)$. This implies that Φ is continuous on M_1 . In a way similar to the above, we can show that Φ is continuous on M_{-1} and the proof is omitted. Thus, we have proved that the map Φ is continuous on $M_B \setminus M_0$.

Suppose that ρ is surjective. Then M_0 is an empty set. Hence Φ is the map defined on M_B into M_A . We show that ker $\rho_y = \{f \in A; f(\Phi(y)) = 0\}$. Recall that ker $\rho_y \subset \{f \in A; f(\Phi(y)) = 0\}$. So it is enough to show that $\rho_y(f) \neq 0$ implies $f(\Phi(y)) \neq 0$. Let $a \in A$ satisfy $\rho_y(a) \neq 0$. Since $\rho_y(A) = \mathbb{C}$, there corresponds a $b \in A$ such that $\rho_y(a)\rho_y(b) = 1$. Therefore, ab - e belongs to ker ρ_y . We conclude that $a(\Phi(y)) \neq 0$ since $(ab - e)(\Phi(y)) = 0$. Thus, we have proved that ker $\rho_y = \{f \in A; f(\Phi(y)) = 0\}$. Hence $M_B = M_{-1} \cup M_1 \cup M_{m,-1} \cup M_{m,1}$.

Let $w_1, w_2 \in M_B$ satisfy $w_1 \neq w_2$. Since ρ is surjective, there exists an $a_0 \in A$ such that $\rho(a_0)(w_1) = 1$ and $\rho(a_0)(w_2) = 0$. By the formula for ρ , it is easy to see that

$$a_0(\Phi(w_1)) = 1$$
 and $a_0(\Phi(w_2)) = 0$.

Therefore, we have $\Phi(w_1) \neq \Phi(w_2)$. This implies that Φ is injective. \Box

Proof of Corollary 1.2. Let $\{M_{-1}, M_0, M_1, M_{d,-1}, M_{d,1}\}$ be the decomposition of M_B with respect to ρ and Φ the representing map for ρ . Since $\rho(\mathbb{C}e) \subset \mathbb{C}e$, we have $M_B = M_{-1} \cup M_{d,-1}$ or $M_B = M_0$ or $M_B = M_1 \cup M_{d,1}$. It is enough to consider the case where $M_B = M_{-1} \cup M_{d,-1}$ or $M_B = M_1 \cup M_{d,1}$.

Suppose that $M_B = M_1 \cup M_{d,1}$. First, we show that $M_1 \neq \emptyset$. Suppose not. Then $M_B = M_{d,1}$. If ρ is surjective, the map Φ is injective by Theorem 1.1. Since $\Phi(M_{d,1})$ is finite by Lemma 2.6, so is $M_{d,1} = M_B$. This is a

T. MIURA

contradiction. Therefore, $M_1 \neq \emptyset$ if ρ is surjective. Consider the case where ρ is injective. Since M_A is infinite, there exists an $x_0 \in M_A \setminus \Phi(M_{d,1})$. We can find an open subset V of M_A so that $\Phi(M_{d,1}) \subset V$ and $x_0 \notin \overline{V}$. Since A is regular, there corresponds an $f_0 \in A$ such that $f_0(x_0) = 1$ and $f_0(\overline{V}) = 0$. By Lemma 2.5 we see that $\rho_y(f_0) = 0$ for every $y \in M_{d,1} = M_B$. Since f_0 is not identically zero, this contradicts that ρ is injective. Consequently, we have that $M_1 \neq \emptyset$.

Now we show that $M_B = M_1$. Suppose that there exists a $y_1 \in M_{d,1}$. Since $\tilde{\rho}_{y_1}$ is non-trivial, we can find a $z_1 \in \mathbb{C}$ such that $\tilde{\rho}_{y_1}(z_1) \neq z_1$. Note that $\tilde{\rho}_y(z_1) = z_1$ for every $y \in M_1$. This is a contradiction since $\rho(\mathbb{C}e) \subset \mathbb{C}e$. Therefore, we have proved that $M_B = M_1$ if $M_B = M_1 \cup M_{d,1}$. In a way similar to the above, we see that $M_B = M_{-1}$ if $M_B = M_{-1} \cup M_{d,-1}$. Hence, ρ is linear or conjugate linear.

Proof of Corollary 1.3. Let $\{Y_{-1}, Y_0, Y_1, Y_d\}$ be the decomposition of Y with respect to ρ and Φ the representing map for ρ . Since the range $\rho(C(X))$ vanishes nowhere, we see that Y_0 is an empty set. Since $\rho(C(X))$ contains a separating subalgebra, in a way similar to the proof of Theorem 1.1, we can prove that ker ρ_y is a maximal ideal for every $y \in Y$ and that $\Phi: Y \to X$ is injective. Hence, Y is homeomorphic to the range $\Phi(Y)$. Let $\varphi: \Phi(Y) \to Y$ be the homeomorphism defined by

$$\varphi(x) = \Phi^{-1}(x) \quad (x \in \Phi(Y)).$$

Note that

$$\rho(f)(y) = \begin{cases} \overline{f(\Phi(y))} & y \in Y_{-1} \\ f(\Phi(y)) & y \in Y_1 \\ \tau_y(f(\Phi(y))) & y \in Y_d \end{cases}$$

for every $f \in C(X)$. Here τ_y denotes a non-trivial ring homomorphism on \mathbb{C} . We define the continuous function $h: \Phi(Y) \to \mathbb{C}$ by

$$h(x) = \begin{cases} \overline{g(\varphi(x))} & x \in \Phi(Y_{-1}) \\ g(\varphi(x)) & x \in \Phi(Y_{1}) \\ \tau_{\varphi(x)}^{-1}(g(\varphi(x))) & x \in \Phi(Y_{d}) \end{cases}$$

for each $g \in C(Y)$. Since $\Phi(Y_{-1})$, $\Phi(Y_1)$ and $\Phi(Y_d)$ are disjoint closed subsets of the compact Hausdorff space X, there exists an \tilde{h} of C(X) such that $\tilde{h}|_{\Phi(Y)} = h$. Then it is easy to see that $\rho(\tilde{h}) = g$. Hence ρ is surjective. \Box

Proof of Corollary 1.4. Let $\{Y_{-1}, Y_0, Y_1, Y_d\}$ be the decomposition of Y with respect to ρ and Φ the representing map for ρ . Since ρ preserves complex conjugate, by Proposition 2.1 we have that $\tilde{\rho}_y$ is trivial for every $y \in Y$.

Therefore, Y_d is an empty set. By Lemma 2.4, we see that Y_{-1} , Y_0 and Y_1 are all clopen. This completes the proof.

References

- A. CHARNOW, The automorphisms of an algebraically closed field, Canad. Math. Bull. 13(1970), 95–97.
- [2] T. W. GAMELIN, Uniform algebras, Prentice-Hall, N. J., 1969.
- [3] H. KESTELMAN, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2) 53(1951), 1–12.
- [4] G. DE MARCO AND A. ORSATTI, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30(1971), 459–466.
- [5] L. MOLNÁR, The range of a ring homomorphism from a commutative C^{*}-algebra, Proc. Amer. Math. Soc. 124(1996), 1789–1794.
- [6] P. SEMRL, Non linear perturbations of homomorphisms on C(X), Quart. J. Math. Oxford Ser. (2) 50(1999), 87–109.

Takeshi Miura Department of Basic Technology Applied Mathematics and Physics Yamagata University Yonezawa 992-8510, Japan *e-mail address*: miura@yz.yamagata-u.ac.jp

(*Received May 22, 2002*)