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GEOMETRY ON GRASSMANN MANIFOLDS
G(2, 8) AND G(3, 8)

Zhou JIANWEI and Huang HUI

Abstract. In this paper, we use the Clifford algebra C `8 to construct
fibre bundles τ1 : G(2, 8) → S6, τ ′

1 : G(2, 7) → S6 and τ2 : G(3, 8) → S7,
the fibres are CP3, CP2 and ASSOC = G2/SO(4) respectively. We
show that G(2, 5), CP3 and S6 are the homologically volume minimiz-
ing submanifolds of G(2, 8) by calibrations and they generate the ho-
mology group H6(G(2, 8)). The submanifolds S7 and ASSOC of G(3, 8)
generate H7(G(3, 8)) and H8(G(3, 8)) respectively.

§1. Introduction

As is well-known, the Grassmann manifold G(2, 4) is a fibre bundle over
S2. In this paper, we use the Clifford algebra C `8 to define maps
τ1 : G(2, 8) → S6, τ ′

1 : G(2, 7) → S6 and τ2 : G(3, 8) → S7, which make the
Grassmann manifolds G(2, 8), G(2, 7) and G(3, 8) fibre bundles. The fibres
are complex projective spaces CP3, CP2 and ASSOC = G2/SO(4) respec-
tively. The fibres of these bundles are also the totally geodesic submanifolds
of G(2, 8), G(2, 7) and G(3, 8) respectively.

By calibrations, we show that the submanifolds G(2, 5), CP3 and S6 of
G(2, 8) are the volume-minimizing cycles in G(2, 8) and they generate the
homology group H6(G(2, 8)). These gives an answer to the problem (5) in [3].
The submanifolds S7 and ASSOC are also the generators of H7(G(3, 8)),
H8(G(3, 8)) respectively.

In this paper, we also show that the Stiefel manifold V8,2 is homeomorphic
to the product of two spheres S7 × S6.

§2. Grassmann manifolds G(2, 8) and G(3, 8)

Let C `8 be the Clifford algebra associated to the Euclidean space R8.
Let ē1, ē2, . . . , ē8 be a fixed orthonormal basis of R8, the Clifford product be
determined by the relations:

ēB ēC + ēC ēB = −2δBC (B,C = 1, 2, . . . , 8).
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Define the subspace V = V + ⊕ V − of C `8 by V + = C `even
8 A and V − =

C `odd
8 A, where

A = Re[(ē1 +
√
−1ē2) · · · (ē7 +

√
−1ē8)(1 + ē1ē3ē5ē7)].

Lemma 1. The space V = V + ⊕ V − is an irreducible module over C `8.
The spaces V + and V − are generated by ē1ēBA and ēBA (B = 1, . . . , 8)
respectively.

Proof. For proof see [7], [9]. In the following we give another proof. By a
computation, we have

A = ē1ē3ē5ē7 + ē2ē4ē6ē8 − ē1ē3ē6ē8 − ē2ē4ē5ē7

− ē1ē4ē5ē8 − ē1ē4ē6ē7 − ē2ē3ē5ē8 − ē2ē3ē6ē7

+ 1 + ē1ē2ē3ē4ē5ē6ē7ē8 − ē5ē6ē7ē8 − ē1ē2ē3ē4

− ē3ē4ē7ē8 − ē1ē2ē5ē6 − ē1ē2ē7ē8 − ē3ē4ē5ē6.

It is easy to see that for any 1 ≤ i1 < i2 < i3 ≤ 8, there is a term in
A − 1 − ē1 · · · ē8 which contains ēi1 ēi2 ēi3 . Furthermore, A is invariant by
acting every summand of A on itself, then A·A = 16A. These shows V + and
V − are generated by ē1ēBA and ēBA (B = 1, . . . , 8) respectively. For the
dimensional reason, V is an irreducible module over C `8. These generators
of V can be used to construct the isomorphism between the Clifford algebra
C `8 and the matrix algebra R(16). ¤

Let G(k, 8) be the Grassmann manifold formed by all oriented k-dimen-
sional subspaces of R8. For any x ∈ G(k, 8), there are orthonormal vectors
e1, . . . , ek such that x can be represented by e1 ∧ · · · ∧ ek. Thus G(k, 8)
becomes a submanifold of the space

∧k(R8). The spaces
∧

(R8) and C `8 are
isomorphic as a vector space. Identify the elements e1∧· · ·∧ek with e1 · · · ek,
G(k, 8) can also be viewed as a subset of the Clifford algebra C `8. Then for
any x ∈ G(k, 8), there is v ∈ R8 such that xA = ē1vA or xA = vA according
to the number k being even or odd. With the inner product defined on C `8

naturally, we can show |v| = 1. Thus we have a map G(k, 8) → S7, x 7→ v.
It is not difficult to see that if k = 4, the map G(4, 8) → S7 can not be a
fibre bundle: the dimensions of the fibres over ±ē1 ∈ S7 are different from
that of the other fibres. Since the Grassmann manifolds G(2, 8) and G(6, 8),
G(3, 8) and G(5, 8) are isometric respectively, we need only to study G(2, 8)
and G(3, 8).

Let e1, e2, . . . , e8 be an orthonormal frame fields on R8 such that e1∧· · ·∧
ek generate a neighborhood of x in G(k, 8). By

d(e1 ∧ · · · ∧ ek) =
k∑

i=1

8∑
α=k+1

ωα
i Eiα, ωα

i = 〈dei, eα〉,
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we know that the elements Eiα = e1 . . . ei−1eαei+1 . . . ek (i = 1, . . . , k, α =
k + 1, . . . , 8) can be looked as a basis of Te1...ek

G(k, 8), and ωα
i are its dual.

The metric on G(k, 8) is ds2 =
k∑

i=1

8∑
α=k+1

(ωα
i )2. Differentiate Eiα we get the

Riemannian connection ∇ on G(k, 8),

∇Eiα =
k∑

j=1

ωj
i Ejα +

8∑
β=k+1

ωβ
αEiβ.

Bryant [1] has shown that the Lie group Spin7 is the isotropy group of
SO(8) acting on A, that is, Spin7 = {G ∈ SO(8) | G(A) = A}. He also
shows that Spin7 acts on G(2, 8), G(3, 8) and S7 transitively. The subgroup
G2 = {G ∈ Spin7 | G(ē1) = ē1} acts transitively on S6 = {v ∈ S7 | v ⊥ ē1}.

Theorem 2. There is a map τ1 : G(2, 8) → S6 which makes G(2, 8) a fibre
bundle. The fibres are diffeomorphic to the complex projective space CP3.

Proof. First we show that if xA = ē1vA, x ∈ G(2, 8), then v ⊥ ē1. Denote
〈 , 〉 the inner product on C `8. Let v = aē1+bv′, v′ ⊥ ē1. By A·A = 16A,
x · x = −1, 〈xA,A〉 = 16〈x, A〉 = 0 and

16 = 〈xA, ē1vA〉 = 〈xA, bē1v
′A〉 ≤ 16|b|,

we have v ⊥ ē1. Hence we have a map τ1 : G(2, 8) → S6, τ1(x) = v.
For any G ∈ Spin7, we have the following commutative diagram

G(2, 8) G //

τ1

²²

G(2, 8)

τ1
²²

S6 Ḡ // S6,

where Ḡ is defined by G(x)A = ē1Ḡ(v)A, v = τ1(x). Thus the fibres of τ1

are all diffeomorphic. Let J0 be the complex structure on R8: J0ē2s−1 = ē2s

(s = 1, . . . , 4). As A · A = 16A, we can show that xA = ē1ē2A if and
only if 〈x, ē1ē2A〉 = 1

16〈xA, ē1ē2A〉 = 1. For any x ∈ G(2, 8), we can write
x = v∧(aJ0v+w), w ⊥ v, J0v. Since the two form part of ē1ē2A is invariant
under the action of the unitary group U(n), we can show vJ0vA = ē1ē2A
and 〈vwA, ē1ē2A〉 = 0. Then we have

τ−1
1 (ē2) = {w ∧ J0(w) | w ∈ S7} ≈ CP3. ¤
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Lemma 3. Let e1, e2, . . . , e8 be Spin7 frame fields on R8. Then the 1-forms
ωC

B = 〈deB, eC〉 satisfy

ω2
1 + ω4

3 + ω6
5 + ω8

7 = 0, ω3
1 − ω4

2 + ω8
6 − ω7

5 = 0,

ω4
1 + ω3

2 + ω8
5 + ω7

6 = 0, ω5
1 − ω6

2 + ω7
3 − ω8

4 = 0,

ω6
1 + ω5

2 − ω8
3 − ω7

4 = 0, ω7
1 − ω8

2 − ω5
3 + ω6

4 = 0,

ω8
1 + ω7

2 + ω6
3 + ω5

4 = 0.

Proof. As the Lie group Spin7 is the isotropy group of A, the element A can
also be represented by

A = Re[(e1 +
√
−1e2) · · · (e7 +

√
−1e8)(1 + e1e3e5e7)].

Since −e1e2e3e4A = A, differentiate it we can get the last four equations of
the lemma. The other equations can be proved similarly. ¤

In the following, we study the fibres of τ1. Let x ∈ τ−1
1 (v), v ∈ S6, and

e1, e2, . . . , e8 be Spin7 frame fields on R8 such that the elements e1 ∧ e2

generate a neighborhood U ⊂ τ−1
1 (v) of x.

From d(e1e2A) = d(e1e2)A = d(ē1vA) = 0, we have

ω2s+1
2 + ω2s+2

1 = 0, ω2s+2
2 − ω2s+1

1 = 0 (s = 1, 2, 3).

Then on U ,

d(e1 ∧ e2) =
3∑

s=1

[ω2s+1
1 (E1 2s+1 + E2 2s+2) + ω2s+2

1 (E1 2s+2 − E2 2s+1)].

Hence the vectors Ẽ2s+1 = E1 2s+1 + E2 2s+2 and Ẽ2s+2 = E1 2s+2 −E2 2s+1

form a basis of Te1∧e2τ
−1
1 (v), and ωα

1 (α = 3, . . . , 8) are its dual.

Lemma 4. The Riemannian connection D on the fibre τ−1
1 (v) is given by

DẼ2s+1 = −ω2
1Ẽ2s+2 +

8∑
β=3

ωβ
2s+1Ẽβ , DẼ2s+2 = ω2

1Ẽ2s+1 +
8∑

β=3

ωβ
2s+2Ẽβ .

The fibre τ−1
1 (v) is a totally geodesic submanifold of G(2, 8).

Proof. Restricting the Riemannian connection of G(2, 8) on τ−1
1 (v), by

Lemma 3, we have ∇Ẽα = DẼα. Then τ−1
1 (v) is a totally geodesic sub-

manifold of G(2, 8). ¤

The action of Spin7 on G(2, 8) is isometry and preserves the fibres of τ1.
To prove τ−1

1 (v) is a totally geodesic submanifold we need only to show this
is true for v = ē2 which can be proved directly (without Lemma 3).
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Let G(2, 7) be the Grassmann manifold on R7 = {v ∈ R8 | v ⊥ ē1}.
Restricting the map τ1 on G(2, 7), we have map τ ′

1 : G(2, 7) → S6. For any
G ∈ G2, we have the following commutative diagram

G(2, 7) G //

τ ′
1

²²

G(2, 7)

τ ′
1

²²
S6 G // S6.

These shows

Theorem 5. There is a map τ ′
1 : G(2, 7) → S6 which makes G(2, 7) a fibre

bundle. The fibres are homeomorphic to the complex projective space CP2

and are totally geodesic submanifolds of G(2, 7).

The fibre of τ ′
1 over ē2 is τ ′

1
−1(ē2) = {u ∧ J0u | u ∈ S5}, where S5 = {u ∈

S7 | u ⊥ ē1, ē2}. Restricting the map τ1 on G(2, 6) is not a fibre bundle.
We can also show that the map τ1 : G(2, 8) → S6(

√
2

2 ) is a Riemannian
submersion, but τ ′

1 : G(2, 7) → S6(r) can not be a Riemannian submersion
for any r > 0.

Similar to the case of G(2, 8), there is a commutative diagram for each
G ∈ Spin7:

G(3, 8) G //

τ ′
2

²²

G(3, 8)

τ ′
2

²²
S7 G // S7.

Denote τ−1
2 (ē1) by ASSOC which is homeomorphic to G2/SO(4), see [3], [4].

Theorem 6. The map τ2 : G(3, 8) → S7 is a fibre bundle, the fibre type is
ASSOC and the fibres are totally geodesic submanifolds.

The proof of Theorem 6 is similar to that of Theorem 2 and Lemma 4.
By Theorem 6 we have the following corollaries:

(1) If v = τ2(x), we can show v ⊥ x. Then we have another fibre bundle
G(3, 8) → CAYLEY , x 7→ x ∧ v, the fibre type is G(3, 4) ≈ S3, where
CAYLEY = {y ∈ G(4, 8) | yA = A} is a totally geodesic submanifolds
of G(4, 8);

(2) The space E = {(x,w) ∈ G(3, 8) × R8 | w ⊥ x, w ⊥ v = τ2(x)} is a
vector bundle over G(3, 8) with fibre R4;

(3) Combing Hopf bundles S7 → CP3 and S7 → HP1, we get two fibre
bundles G(3, 8) → CP3 and G(3, 8) → S4.
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In the following we give more applications of the Clifford algebra C `8.
Let V8,2 be the Stiefel manifold. We have maps

V8,2
π−→ G(2, 8) τ1−→ S6.

For any v ∈ S6, define a linear map Jv : R8 → R8 by Jv(ē1) = v, Jv(v) =
−ē1, and for any w ⊥ ē1, v, Jv(w) is defined by Jv(w)A = −ē1vwA. It is
not difficult to see that Jv is a complex structure on R8 and Jē2 = J0 as
defined in the proof of Theorem 2. It is easy to show that Jv = G−1J0G for
any G ∈ G2 such that G(v) = ē2. Then the fibre of τ1 over v ∈ S6 can be
represented by τ−1

1 (v) = {u∧ Jvu | u ∈ S7}. This shows (see also [6], p. 37)

V8,2 = {(u, Jvu) | u ∈ S7, v ∈ S6} ≈ S7 × S6.

Similarly, for the Stiefel manifold V7,2, there are maps

V7,2
π′
−→ G(2, 7)

τ ′
1−→ S6.

We can show that

V7,2 = {(u, Jvu) | u, v ∈ S6, u ⊥ v} ⊂ S6 × S6.

Now we give some representation of Hopf maps. Let w1 =
4∑

i=1
viēi,

w2 =
8∑

j=5
vj ēj with

8∑
i=1

v2
i = 1. By wsJ0wsA = |ws|2ē1ē2A (s = 1, 2) and

w1J0w2A = −w2J0w1A, we have

(w1 + w2)(J0w1 − J0w2)A = (|w1|2 − |w2|2)ē1ē2A + 2w2J0w1A.

Computing the right hand side of this equation, we find a map η : S7 → S4,
v1

v2
...
v8

 7→


|w1|2 − |w2|2

2(v1v6 + v2v5 + v3v8 + v4v7)
2(v1v5 − v2v6 − v3v7 + v4v8)
2(v1v8 + v2v7 − v3v6 − v4v5)
2(v1v7 − v2v8 + v3v5 − v4v6)

 .

Let z1 = v1 + iv2 + jv3 + kv4, z2 = v6 + iv5 + jv8 + kv7, where i, j, k are
the quaternion numbers with k = ij. The map η can also be obtained from
the map

(z1, z2) 7→ (|z1|2 − |z2|2, 2z̄1 · z2).

It is easy to see that η is the Hopf map S7 → HP1.
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From(
4∑

i=1

viēi

4∑
i=1

viēi+4

)
A

= ē1[(v2
1 − v2

2 + v2
3 − v2

4)ē5 + 2(v1v2 − v3v4)ē6 + 2(v1v4 + v2v3)ē8]A,

we have the Hopf map S3 → S2 = CP1,
v1

v2

v3

v4

 7→

v2
1 − v2

2 + v2
3 − v2

4

2v1v2 − 2v3v4

2v1v4 + 2v2v3

 .

§3. The calibrations on G(2, 8) and G(3, 8)

Let ξ be a closed k-form on a Riemannian manifold M . If ξ(X1, . . . , Xk) ≤
1 for any p ∈ M and for any orthonormal vectors X1, . . . , Xk ∈ TpM , we
call ξ a calibration on M , see [3], [4]. If H is a k-dimensional oriented
submanifold of M so that the restriction of ξ on H is the volume elements
on H, we call H a ξ-submanifold or an integral submanifold of ξ. The
ξ-submanifolds have the minimizing volume in its homology class.

In the following we determine the volume-minimizing cycles of dimen-
sion 6 in Grassmann manifold G(2, 8). As is well known that G(2, 8) is a
Kaehler manifold and the Euler class ω = −

∑
ωα

1 ∧ ωα
2 of vector bundle

E = {(x, v) ∈ G(2, 8) × R8 | v ∈ x} → G(2, 8)

is also the Kaehler form on G(2, 8). As is well known, 1
k!ω

k is a calibration
on G(2, 8) for each k = 1, 2, 3. Together with the Euler class of the vector
bundle F defined below, they generate the cohomology groups H∗(G(2, 8))
(see [3]).

Theorem 7. The submanifolds G(2, 5) and the fibres of τ1 are the integral
submanifold of the calibration ξ = 1

3!ω
3.

Proof. It is easy to see that G(2, 5) ⊂ G(2, 8) is a ξ-submanifold. By

ω =
1
2

3∑
l=1

[(ω2l+1
1 +ω2l+2

2 )∧(ω2l+2
1 −ω2l+1

2 )−(ω2l+1
1 −ω2l+2

2 )∧(ω2l+2
1 +ω2l+1

2 )],

we have 1
23 ξ(Ẽ3, . . . , Ẽ8) = 1, where Ẽα is a basis of Te1∧e2τ

−1
1 (v) defined in

§2. These shows τ−1
1 (v) is a ξ-submanifold. ¤

Let J be a complex structure on R2m+2 ⊂ RN . Then {v ∧ Jv | v ∈
S2m+1} ⊂ G(2, N) is homeomorphic to CPm. Theorem 7 can be generalized
as follows:
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Grassmann manifold G(2,m + 2) and complex projective space CPm are
two integral submanifolds of the calibration ξ = 1

m!ω
m, where ω is the

Kaehler form on G(2, N) (m + 2 < N , 2m + 2 ≤ N).
Define a vector bundle on G(2, 8) by

p : F = {(x,w) ∈ G(2, 8) × R8 | w ⊥ x} → G(2, 8), p(x, w) = x.

Let e1, e2, . . . , e8 be an orthonormal frame fields on R8. Then e3, e4, . . . , e8

can be viewed as local sections of the vector bundle F . The connection ∇
on F is defined by ∇eα =

8∑
β=3

ωβ
αeβ (α = 3, . . . , 8), and curvature forms are

Ωβ
α = ω1

α ∧ ωβ
1 + ω2

α ∧ ωβ
2 . From the Euler class of F , we have a closed form

ζ = − 1
6!

∑
δ3...8
α1...α6

Ωα1α2Ωα3α4Ωα5α6 .

Theorem 8. The 6-form ζ is a calibration on G(2, 8) and G(1, 7) = {ē1∧v |
v ∈ S6} is a ζ-submanifold.

Proof. It is easy to see that −δ3...8
α1...α6

Ωα1α2Ωα3α4Ωα5α6(X1, . . . , X6) ≤ 1
holds for any orthonormal vectors X1, . . . , X6 ∈ TG(2, 8) and for any fixed
α1, α2, . . . , α6. Hence

− 1
6!

∑
δ3...8
α1...α6

Ωα1α2Ωα3α4Ωα5α6(X1, . . . , X6) ≤ 1.

This shows ζ is a calibration on G(2, 8).
Write ζ as

ζ = ω3
1 ∧ ω4

1 ∧ · · · ∧ ω8
1 + ω3

2 ∧ ω4
2 ∧ · · · ∧ ω8

2 + · · · .

It is easy to see that the G(1, 7) = {ē1 ∧ v | v ∈ S6} is a totally geodesic
submanifold of G(2, 8) and is a ζ-submanifold. ¤

It is easy to see that
∫
G(2,5) ζ =

∫
τ−1
1 (v) ζ = 0. Then G(2, 5) and τ−1

1 (v)
belong to the same homology class of H6(G(2, 8)). The complex projec-
tive space CP3 and G(1, 7) ≈ S6 are two generators of the homology group
H6(G(2, 8)). These gives an answer to the problem (5) in [3]. As Theo-
rem 7, 8 can be generalized to the Grassmann manifold G(2, 2n). Then
the homology classes of the Grassmann manifold G(2, N) can be all repre-
sented by the integral submanifolds of G(2, N) for some calibrations. For
the homology groups of G(2, N), see the table 2.1 in [3].

Let dVS6 be the volume element of S6. Then 1
8τ∗

1 (dVS6) is a calibration
on G(2, 8), but there is no integral submanifold for this calibration, even
locally. We can show that

1
8
τ∗
1 (dVS6) =

1
8

3∏
l=1

(ω2l+1
1 − ω2l+2

2 ) ∧ (ω2l+2
1 + ω2l+1

2 )
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is a summand of 1
3!ω

3.
Let dVS7 be the volume element of S7. Then τ∗

2 (dVS7) also determines
a calibration on G(3, 8) and there is also no integral submanifold for this
calibration. Let I, J , K be the quaternion structures on R8 ∼= H2. The
map

f : S7 → G(3, 8), v 7→ IvJvKv

gives a section of the fibre bundle τ2 : G(3, 8) → S7. We can show that∫
S7 f∗(τ∗

2 (dVS7)) 6= 0. Then f(S7) is a generator of H7(G(3, 8)). Similarly
we can show that ASSOC is a generator of H8(G(3, 8)).

From the various fibre bundles defined on the Grassmann manifold G(3, 8)
in §2, we can get many calibrations on G(3, 8), but we can not find any
integral submanifolds for them.
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