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ON COMMUTATIVITY OF RINGS
WITH GENERALIZED DERIVATIONS

Nadeem-ur-REHMAN

Abstract. The concept of derivations as well as of generalized inner
derivations have been generalized as an additive function F : R → R
satisfying F (xy) = F (x)y + xd(y) for all x, y ∈ R, where d is a deriva-
tion on R, such a function F is said to be a generalized derivation. In
the present paper we have discussed the commutativity of prime rings
admitting a generalized derivation F satisfying (i) [F (x), x] = 0, (ii)
F ([x, y]) = [x, y], and (iii) F (x ◦ y) = x ◦ y for all x, y in some appropri-
ate subset of R.

1. Introduction

Let R denote an associative ring with center Z(R). For any x, y ∈ R,
the symbol [x, y] stands for the commutator xy − yx and the symbol x ◦ y
denotes for anti-commutator xy + yx. Recall that a ring R is called prime
if for any a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0. An
additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R given by
Ia(x) = [a, x] is a derivation which is said to be inner derivation.

Many analysts have studied generalized derivation in the context of al-
gebras on certain normed spaces (see [10] for reference). By a generalized
derivation on an algebra A one usually means a map of the form x 7→ ax+xb,
where a and b are fixed elements in A. We prefer to call such maps gen-
eralized inner derivations for the reason they present a generalization of
the concept of inner derivations (i.e. the maps of the form x 7→ ax − xa).
Now in a ring R, let F be a generalized inner derivation of R given by
F (x) = ax+xb. Notice that F (xy) = F (x)y +xIb(y), where Ib(y) = yb− by
is an inner derivation.

Motivated by these observation Hvala [10] introduced the notions of gen-
eralized derivations in rings. An additive mapping F : R → R is called
a generalized derivation if there exists a derivation d : R → R such that
F (xy) = F (x)y + xd(y) holds for all x, y ∈ R. Obviously, every derivation
generalized inner derivation and left multiplier (i.e. an additive mapping
F : R → R such that F (xy) = F (x)y for all x, y ∈ R) are generalized deriva-
tions.
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In the present paper we shall attempt to generalize some known results
for derivations to generalized derivations.

2. Preliminary results

Throughout the present paper, we shall make use of the following two
basic identities without any specific mention:

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z,

(xy) ◦ z = x(y ◦ z) − [x, z]y = (x ◦ z)y + x[y, z].

We begin with the following known results which will be used extensively
to prove our theorems.

Lemma 2.1 ([4, Lemma 4]). If U 6⊆ Z(R) is Lie ideal of a 2-torsion free
prime ring R and a, b ∈ R such that aUb = 0, then a = 0 or b = 0.

Lemma 2.2 ([4, Lemma 5]). Let R be a 2-torsion free prime ring and U a
nonzero Lie ideal of R. If d is a nonzero derivation of R such that d(U) = 0,
then U ⊆ Z(R).

Lemma 2.3 ([2, Theorem 7]). Let R be a 2-torsion free prime ring and
U a nonzero Lie ideal of R. If d is a nonzero derivation of R such that
[u, d(u)] ∈ Z(R) for all u ∈ U , then U ⊆ Z(R).

Lemma 2.4 ([3, Theorem 4]). Let R be a prime ring and I a nonzero left
ideal of R. If R admits a nonzero derivation d such that [x, d(x)] is central
for all x ∈ I, then R is commutative.

Lemma 2.5 ([11, Lemma 3]). If a prime ring R contains a nonzero com-
mutative right ideal, then R is commutative.

Now, we prove the following.

Lemma 2.6. Let R be a 2-torsion free prime ring and U be a nonzero Lie
ideal of R. If U is a commutative Lie ideal of R, i.e. [u, v] = 0 for all
u, v ∈ U , then U ⊆ Z(R).

Proof. Since U is a commutative Lie ideal of R, i.e.

(2.1) [u, v] = 0, for all u, v ∈ U.

Replacing v by [u, r] in (2.1), we get [u, [u, r]] = 0 for all u ∈ U , r ∈ R.
Again replace r by rs, to get [u, [u, rs]] = 0 for all u ∈ U , r, s ∈ R, that is

[u, [u, r]]s + r[u, [u, s]] + 2[u, r][u, s] = 0, for all u ∈ U, r, s ∈ R.

This implies that 2[u, r][u, s] = 0 for all u ∈ U , r, s ∈ R. Since char(R) 6= 2,
we get [u, r][u, s] = 0. Replacing s by sr, we get [u, r]R[u, r] = (0) for all
u ∈ U , r ∈ R. Thus primeness of R forces that [u, r] = 0 for all u ∈ U ,
r ∈ R, and hence U ⊆ Z(R). ¤
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3. Lie ideals and generalized derivations of prime rings

Theorem 3.1. Let R be a 2-torsion free prime ring and U be a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If R admits a nonzero generalized
derivation F with d such that [F (u), u] = 0 for all u ∈ U , and if d 6= 0, then
U ⊆ Z(R).

Proof. We have

(3.1) [F (u), u] = 0, for all u ∈ U.

Linearizing (3.1) and using (3.1), we obtain

(3.2) [F (u), v] + [F (v), u] = 0, for all u, v ∈ U.

Notice that vw + wv = (v + w)2 − v2 −w2 for all v, w ∈ U . Since u2 ∈ U for
all u ∈ U , vw + wv ∈ U . Also vw − wv ∈ U for all v, w ∈ U . Hence we find
that 2vw ∈ U for all v, w ∈ U . Replacing v by 2vu in (3.2) and use (3.1)
and (3.2), to get

(3.3) v[d(u), u] + [v, u]d(u) = 0, for all u, v ∈ U.

Again replacing v by 2wv in (3.3) and using (3.3), we get [w, u]vd(u) = 0
for all u, v, w ∈ U , and hence [w, u]Ud(u) = (0) for all u,w ∈ U . Thus for
each u ∈ U , by Lemma 2.1 we find that either [w, u] = 0 or d(u) = 0. Now,
let A = {u ∈ U | d(u) = 0} and B = {u ∈ U | [w, u] = 0 for all w ∈ U}.
Then A and B are additive subgroups of U and U = A ∪ B. But a group
can not be a union of two its proper subgroups, and hence U = A or U = B.
If U = A, then d(u) = 0 for all u ∈ U . Thus by Lemma 2.2, we get the
required result. On the other hand if [w, u] = 0 for all w, u ∈ U , then by
Lemma 2.6, we get U ⊆ Z(R). This completes the proof of the theorem. ¤

Using the same techniques with necessary variations, we can prove the
following corollary even without the characteristic assumption on the ring.

Corollary 3.2. Let R be a prime ring. If R admits a nonzero generalized
derivation F with d such that [F (x), x] = 0 for all x ∈ R, and if d 6= 0, then
R is commutative.

In a recent paper, Daif and Bell [7] established that a semiprime ring R
must be commutative if it admits a derivation d such that d([x, y]) = [x, y]
for all x, y ∈ R. Further, Ashraf and Rehman [1] extended the mentioned
result for Lie ideals of R. In the present section we generalize this result for
generalized derivations and Lie ideals of R.

Theorem 3.3. Let R be a 2-torsion free prime ring and U a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If R admits a generalized
derivation F with d such that F ([u, v]) = [u, v] for all u, v ∈ U , and if F = 0
or d 6= 0, then U ⊆ Z(R).
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Proof. Given that F is a generalized derivation of R such that F ([u, v]) =
[u, v] for all u, v ∈ U . If F = 0, then [u, v] = 0 for all u, v ∈ U . Thus by
Lemma 2.6, we get the required result.

Now, onward we assume that F 6= 0. Suppose on contrary that U 6⊆ Z(R).
For any u, v ∈ U , we have F ([u, v]) = [u, v]. This can be rewritten as

(3.4) F (u)v + ud(v) − F (v)u − vd(u) = [u, v], for all u, v ∈ U.

Replacing v by 2vu in (3.4) and using the fact that char(R) 6= 2, we find
that

F (u)vu + ud(v)u + [u, v]d(u)−F (v)u2 − vd(u)u = [u, v]u, for all u, v ∈ U,

and hence application of (3.4) gives that [u, v]d(u) = 0 for all u, v ∈ U .
Again replace v by 2wv, to get [u,w]vd(u) = 0 for all u, v, w ∈ U , and hence
[u,w]Ud(u) = (0) for all u,w ∈ U . Thus for each u ∈ U , by Lemma 2.1,
either [u,w] = 0 or d(u) = 0. Now, let U1 = {u ∈ U | [u,w] = 0 for all w ∈
U} and U2 = {u ∈ U | d(u) = 0}. Then U1 and U2 both are additive
subgroups of U and U1 ∪ U2 = U . Thus either U1 = U or U2 = U . If
U1 = U , then [u,w] = 0 for all u,w ∈ U . Hence by Lemma 2.6, we get
U ⊆ Z(R), contradiction. On the other hand if U2 = U , then d(u) = 0 for
all u ∈ U . Thus by Lemma 2.2, we get U ⊆ Z(R), again a contradiction.
This completes the proof of the theorem. ¤

Using the same techniques with necessary variations we get the following.

Theorem 3.4. Let R be a 2-torsion free prime ring and U a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If R admits a generalized
derivation F with d such that F ([u, v]) + [u, v] = 0 for all u, v ∈ U , and if
F = 0 or d 6= 0, then U ⊆ Z(R).

Corollary 3.5. Let R be a 2-torsion free prime ring and U a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If R admits a generalized
derivation F with d such that F (uv) = uv for all u, v ∈ U , and if F = 0 or
d 6= 0, then U ⊆ Z(R).

Proof. For any u, v ∈ U , F (uv− vu) = F (uv)−F (vu) = uv− vu, and hence
by Theorem 3.3, we get the required result. ¤

Similarly, in view of the Theorem 3.4, we get the following.

Corollary 3.6. Let R be a 2-torsion free prime ring and U a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If R admits a generalized
derivation F with d such that F (uv) = vu for all u, v ∈ U , and if F = 0 or
d 6= 0, then U ⊆ Z(R).
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Theorem 3.7. Let R be a 2-torsion free prime ring and U a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If R admits a generalized
derivation F with d such that F (u ◦ v) = u ◦ v for all u, v ∈ U , and if F = 0
or d 6= 0, then U ⊆ Z(R).

Proof. If F = 0, then we have

(3.5) u ◦ v = 0, for all u, v ∈ U.

Replacing v by 2vw in (3.5) and using (3.5), we have 2v[u,w] = 0 for all
u, v, w ∈ U . This implies that v[u,w] = 0 for all u, v, w ∈ U . Again replace
v by [u, r], to get [u, r][u,w] = 0 for all u,w ∈ U , r ∈ R. For any s ∈ R,
replacing r by rs, we get [u, r]R[u,w] = (0) for all u, w ∈ U , r ∈ R. Thus,
in particular we have [u,w]R[u, w] = (0) for all u,w ∈ U . Thus primeness
of R yields that [u,w] = 0 for all u,w ∈ U , and hence by Lemma 2.6, we get
the required result.

Therefore now onward we shall assume that F 6= 0. Suppose on contrary
that U 6⊆ Z(R). For any u, v ∈ U , we have F (u ◦ v) = u ◦ v. This can be
rewritten as

(3.6) F (u)v + ud(v) + F (v)u + vd(u) = u ◦ v, for all u, v ∈ U.

Replacing v by 2vu in (3.6), we find that

(F (u)v+ud(v)+F (v)u+vd(u)−u◦v)u+(u◦v)d(u) = 0, for all u, v ∈ U.

Thus an application of (3.6) gives that (u ◦ v)d(u) = 0 for all u, v ∈ U .
Again replace v by 2wv, to get [u,w]vd(u) = 0 for all u, v, w ∈ U . Note
that the arguments given in the proof of Theorem 3.3 are still valid in the
present situation and hence repeating the same process we get the required
result. ¤

Using similar arguments one can also prove the following.

Theorem 3.8. Let R be a 2-torsion free prime ring and U a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If R admits a generalized
derivation F with d such that F (u ◦ v) + u ◦ v = 0 for all u, v ∈ U , and if
F = 0 or d 6= 0, then U ⊆ Z(R).

4. Ideals and generalized derivations of prime rings

In the hypothesis of Theorems 3.7 and 3.8, if we choose the underlying
subset as an ideal instead of a Lie ideal, then we can prove the following
result even without the characteristic assumption on the ring.

Theorem 4.1. Let R be a prime ring and I a nonzero ideal of R. If R
admits a generalized derivation F with d such that F (x◦y) = x◦y holds for
all x, y ∈ I, and if F = 0 or d 6= 0, then R is commutative.
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Proof. For any x, y ∈ I, we have F (x◦y) = x◦y. If F = 0, then x◦y = 0 for
all x, y ∈ I. Replacing y by yz and using the fact that xy = −yx, we find
that y[x, z] = 0 for all x, y, z ∈ I, and hence IR[x, z] = (0) for all x, z ∈ I.
Since I 6= (0) and R is prime, we get [x, z] = 0 for all x, z ∈ I, and hence by
Lemma 2.5, R is commutative. Hence onward we assume that F 6= 0. For
any x, y ∈ I, we have F (x ◦ y) = x ◦ y. This can be rewritten as

(4.1) F (x)y + xd(y) + F (y)x + yd(x) = x ◦ y, for all x, y ∈ I.

Replacing y by yx in (4.1), we get

(F (x)y+xd(y)+F (y)x+yd(x)−(x◦y))x+(x◦y)d(x) = 0, for all x, y ∈ I.

In view of (4.1) the above relation yields that (x◦y)d(x) = 0 for all x, y ∈ I.
Again replace y by zy, to get z(x◦y)d(x)+ [x, z]yd(x) = 0 for all x, y, z ∈ I,
and hence [x, z]IRd(x) = (0) for all x, z ∈ I. Thus primeness of R forces
that for each x ∈ I either d(x) = 0 or [x, z]I = (0) for all z ∈ I. The set
of x ∈ I for which these two properties hold are additive subgroups of I
whose union is I, and therefore d(x) = 0 for all x ∈ I or [x, z]I = (0) for all
x, z ∈ I. If [x, z]I = (0) for all x, z ∈ I, then [x, z]RI = (0). Since I 6= (0),
we find that [x, z] = 0 for all x, z ∈ I, and hence again by Lemma 2.5, R is
commutative. On the other hand if d(x) = 0 for all x ∈ I, then implies that
[d(x), x] = 0 for all x ∈ I, and hence by Lemma 2.4, R is commutative. ¤

Using similar arguments as used in the above theorem, we can prove the
following.

Theorem 4.2. Let R be a prime ring and I a nonzero ideal of R. If R
admits a generalized derivation F with d such that F (x◦y)+x◦y = 0 holds
for all x, y ∈ I, and if F = 0 or d 6= 0, then R is commutative.

Remark. In view of the above results, it is an obvious question is whether
these results can be extended to left multiplier (i.e. a generalized derivation
with d = 0). Unfortunately, we are unable to extend these results to the
case where F is a left multiplier. We leave as an open question whether or
not these results can be extended in the setting of left multiplier.
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