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ON THE GROUP π(ΣA × B,X)

Seiya SASAO

Introduction

We work in the homotopy category of pointed CW -complexes, and denote
the suspension functor with Σ. The group π(ΣA × B,X) is not abelian in
general under the usual multiplication but we use the notation “+” for it.
In §1 we shall describe the multiplication of the group π(ΣA × B,X), and,
as a by-product, obtain from the associativity of the multiplication that the
bi-additivity of the generalized Whitehead product (GWP) does not hold
in general (see Proposition 3.4 of [1]). In fact, as an example, we offer the
following:

Let i1 and i2 be inclusion maps from CP2 and Sn into CP2 ∨ Sn respec-
tively. Then we have that

[2Σi1, Σi2] 6= 2[Σi1, Σi2] and [Σi1, 2Σi2] = 2[Σi1, Σi2]

in π(ΣCP2 ∧ Sn, ΣCP2 ∨ Sn).
In §2 we investigate the group π(ΣX, ΣA × B) and show that any element

of this group can be determined by 4-components under some assumptions.
In §3 we apply §2 to the case of X = A × B, i.e. the group of self-maps of
the space ΣA × B.

Specially we are interested in describing the composition of two elements
with their components and give the special case of A = B = Sn as an
example.

1. π(ΣA × B,X)

Let i1 and i2 be inclusion maps: A,B → A × B, and let PA and PB be
projections: A × B → A,B respectively.

Lemma 1.1. Let π : A × B → A ∧ B be the projection. Any element f ∈
π(ΣA × B,X) can be uniquely represented by the form

f = αΣPA + βΣPB + γΣπ

for α ∈ π(ΣA,X), β ∈ π(ΣB,X) and γ ∈ π(ΣA ∧ B,X).

Proof. In fact a representation can be obtained from a part of Puppe exact
sequence of the cofibering: A∨B → A×B. Then clearly we have α = fΣiA,
β = fΣiB and moreover the uniqueness of γ follows from the injectivity of
(Σπ)∗. ¤

123



124 S. SASAO

Here we give a brief account of GWP of [1]. For two maps α : ΣA → X
and β : ΣB → X, GWP [α, β] ∈ π(ΣA ∧ B,X) is defined by

αΣPA + βΣPB = βΣPB + αΣPA + [α, β]Σπ.

Proposition 1.2. GWP has following properties:
(1) Let us be 〈α, β〉 the commutator of α and β (∈ π(ΣA,X)) then we

have
〈α, β〉 = [α, β]ΣdA,

where dA is the diagonal map: A → A ∧ A.
(2) If f ∈ π(X,Y ) then f [α, β] = [fα, fβ].
(3) If σk ∈ π(ΣYk, Z) and fk ∈ π(Xk, Yk) for k = 1, 2 then it holds that

[σ1Σf1, σ2Σf2] = [σ1, σ2]Σf1 ∧ f2.

(4) For four maps Σf ∈ π(ΣY, ΣA), Σg ∈ π(ΣY, ΣB), σ ∈ π(ΣA, X)
and τ ∈ π(ΣB,X) we have

σΣf + τΣg = τΣg + σΣf + [σ, τ ]Σ(f ∧ g)ΣdY .

(5) If X is a suspension (i.e. X = ΣX∗) then dX = 0.

Lemma 1.3. For α ∈ π(ΣA,X), β ∈ π(ΣB,X) and γ ∈ π(ΣA ∧ B,X) we
have the following :

(1) αΣPA + βΣPB = βΣPB + αΣPA + [α, β]Σπ.
(2) αΣPA +γΣπ = γΣπ +αΣPA +[α, γ]ΣϕAΣπ, where ϕA is defined by

ϕA(a ∧ b) = a ∧ a ∧ b.
(3) βΣPB + γΣπ = γΣπ + βΣPB + [β, γ]ΣψBΣπ, where ψB is defined

by ψB(a ∧ b) = b ∧ a ∧ b.

Proof. (1) is just the definition of GWP. Next, by applying (1) and (4) of
lemma 1.2 to the diagram:

ΣA × B
ΣPA // ΣA

α // X

ΣA × B
Σπ // ΣA ∧ B

γ // X,

we have that

[αΣPA, γΣπ]ΣdA × 1B = [α, γ]Σ(PA ∧ π)ΣdA × 1B = [α, γ]ΣϕAΣπ.

The case (3) is analogous to the case (2). Thus the proof is completed. ¤
Now let us represent f = αΣPA + βΣPB + γΣπ with the triple (α, β, γ).

Theorem 1.4. (α1, β1, γ1) + (α2, β2, γ2) = (α1 + α2, β1 + β2, δ + γ2) for
δ = δ1 − [β2, δ1]ΣψB and δ1 = −[α2, β1] + γ1 − [α2, γ1]ΣϕA.
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Proof. For abbreviation we use notations: ᾱ = αΣPA, β̄ = βΣPB, γ̄ = γΣπ
and so on. Now by using lemma 1.3 we have equalities

f1 + f2 = (α1, β1, γ1) + (α2, β2, γ2)

= ᾱ1 + β̄1 + γ̄1 + ᾱ2 + β̄2 + γ̄2

= ᾱ1 + β̄1 + ᾱ2 + γ̄1 − [α2, γ1]ΣϕAΣπ + β̄2 + γ̄2

= ᾱ1 + ᾱ2 + β̄1 − [α2, β1] + γ̄1 − [α2, γ1]ΣϕA + β̄2 + γ̄2

= ᾱ1 + ᾱ2 + β̄1 + δ̄1 + β̄2 + γ̄2

= ᾱ1 + ᾱ2 + β̄1 + β̄2 + δ̄1 − [β2, δ1]ΣψB + γ̄2

= ᾱ1 + ᾱ2 + β̄1 + β̄2 + δ̄ + γ̄2

= (α1 + α2, β1 + β2, δ + γ2).

Thus the proof is completed. ¤
Corollary 1.5. If A and B are both suspensions then it holds that

(α1, β1, γ1) + (α2, β2, γ2) = (α1 + α2, β1 + β2,−[α2, β1] + γ1 + γ2).

Proof. Since ϕA and ψB are trivial by (5) of lemma 1.2 the proof follows
from Theorem 1.4. ¤
Corollary 1.6. For α1, α2 ∈ π(ΣA,X) and β ∈ π(ΣB,X) it holds that

[α1 + α2, β] = [α2,−[α1, β]]ΣϕA + [α1, β] + [α2, β].

Proof.

(0, β, 0) + {(α1, 0, 0) + (α2, 0, 0)}
= (0, β, 0) + (α1 + α2, 0, 0)

= (α1 + α2, β,−[α1 + α2, β]).

On the other hand

{(0, β, 0) + (α1, 0, 0)} + (α2, 0, 0)

= (α1, β,−[α1, β]) + (α2, 0, 0)

= (α1 + α2, β,−[α2, β] − [α1, β] − [α2,−[α1, β]]ΣϕA).

Thus the proof follows from the associativity of the addition of the group
π(ΣA × B,X). ¤

By (5) of lemma 1.2 and the above corollary 1.6 it is easy to obtain the
following:

Corollary 1.7 (Proposition 3.4 of [1]). If A is a suspension then it holds
that

[α1 + α2, β] = [α1, β] + [α2, β]
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for α1, α2 ∈ π(ΣA, X) and β ∈ π(ΣB,X).

Now we consider a special case: A = CP2, B = Sn and X = ΣCP2 ∨ Sn.
Let i1 and i2 be inclusions: CP2, Sn → CP2 ∨Sn respectively, and let us be
α = Σi1 and β = Σi2. Since ϕA : CP2 ∧ Sn → CP2 ∧ CP2 ∧ Sn is defined
by ϕA(a ∧ b) = a ∧ a ∧ b, ϕA can be regarded as Σnd for the diagonal map
d : CP2 → CP2 ∧ CP2.

Since d∗ : H4(CP2 ∧ CP2) → H4(CP2) is clearly an isomorphism Σnd is
non-trivial. On the other hand, accordingly to Hilton-Milnor Theorem ([3])
[α, [α, β]]∗ is injective. Hence [α, [α, β]]ΣϕA is non-trivial. Then these show

[2Σi1, Σi2] 6= 2[Σi1,Σi2] and [Σi1, 2Σi2] = 2[Σi1, Σi2].

Remark. The second equality follows from Corollary 1.7.

2. On the group π(ΣX, ΣA × B)

First by using lemma 1.1 we define ξAB ∈ π(ΣA ∧ B,ΣA × B) as follows:

1ΣA×B = ΣiAΣPA + ΣiBΣPB + ξABΣπ.

Corollary 2.1. ΣπξAB = 1ΣA∧B.

Proof. Apply (Σπ)∗ to the above equality. Then we have

Σπ = Σπ(ΣiAΣPA + ΣiBΣPB + ξABΣπ)
= 0 + 0 + ΣπξA∧BΣπ.

Since (Σπ)∗ is injective the proof is completed. ¤
Here we note that the representation of f ∈ π(ΣA × B,X) in lemma 1.1

is given by
f = f |ΣAΣPA + f |ΣBΣPB + fξABΣπ,

where f |K denotes the restriction of f on K.
For example if h is a map A × B → X then ΣhξAB is essentially the

Hopf-construction of f , i.e. C(h) (see [2]) and we have a representation:

Σh = ΣhA + ΣhB + C(h)Σπ,

where h is a map of type (hA, hB).
Secondly we define two maps ϕ ∈ π(Y,ΣA × B) and φ ∈ π(ΣA × B, Y )

for Y = ΣA ∨ ΣB ∨ ΣA ∧ B by

ϕ = ΣiA ∨ ΣiB ∨ ξAB,

φ = iΣAΣPA + iΣBΣPB + iΣA∧BΣπ.

Lemma 2.2. ϕ is a homotopy equivalence with φ as its inverse.

Proof. Easy. ¤
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In the following of this section we assume that
(1) A is a-connected and B is b-connected,
(2) a ≤ b,
(3) dimX ≤ 2a + b + 2.

Then by Hilton-Milnor theorem, f ∈ π(ΣX, ΣA × B) can be represented
as follows:

f = ΣiAfA + ΣiBfB + [ΣiA, ΣiB]fC1 + ξABfC2,

where f∗ ∈ π(ΣX, Σ∗) and fC∗ ∈ π(ΣX, ΣA ∧ B).
More precisely we have

Lemma 2.3. fA = ΣPAf , fB = ΣPBf , fC1 = Σ(PA ∧PB)H(f) and fC2 =
Σπf , where H(f) denotes Hopf-invariant of f .

Proof. First we note that [γ, δΣπ]H(f) = 0 because this element is decom-
posed as follows:

ΣX
H(f)−−−→ Σ(A × B) ∧ (A × B)

Σ(1∧π)−−−−→ Σ(A × B) ∧ (A ∧ B)
[γ,δ]−−→ ΣA × B.

Then the proof is deduced from our assumptions. Secondly apply f from
the right to the equality. We obtain that

f = (ΣiAPA + ΣiBPB + ξABΣπ)f

= (ΣiAPA + ΣiBPB)f + ξABΣπf

= ΣiAPAf + ΣiBPBf + [ΣiA, ΣiB](ΣPA ∧ ΣPB)H(f) + ξABΣπf.

Thus the proof is completed. ¤

3. On the group π(ΣA × B,ΣA × B)

In this section we assume that A and B are both n-connected, dim A ≤
dimB and dimA + dimB ≤ 3n + 2.

Lemma 3.1. Our assumptions contain
(1) A, B and A ∧ B are all suspensions, so π(ΣK,X) is abelian for

K = A, B and A ∧ B,
(2) dim B ≤ 2n + 1. Hence π(Σ∗,ΣA ∧ B) = 0 for ∗ = A or B,
(3) Σ: π(X,Y ) → π(ΣX, ΣY ) is onto for any pair (X,Y ) of {A,B}.

Proof. Easy. ¤

In §1, f ∈ π(ΣA × B,ΣA ∧ B) has a representation:

f = fAΣPA + fBΣPB + fCΣπ

for f∗ ∈ π(∗,ΣA × B) and C = A ∧ B.
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And moreover in §2, f∗ has a representation:

f∗ = ΣiAf∗1 + ΣiBf∗2 + ξABf∗3 + [ΣiA, ΣiB]f∗4

for f∗1 ∈ π(Σ∗, ΣA), f∗2 ∈ π(Σ∗, ΣB) and f∗3, f∗4 ∈ π(Σ∗,ΣA ∧ B).
Thus f ∈ π(ΣA × B,ΣA × B) has a form of a (3 × 4)-matrix (note

lemma 3.1):

(f∗k) =

fA1 fA2 0 0
fB1 fB2 0 0
fC1 fC2 fC3 fC4

 .

We want to compute the composition gf for f, g ∈ π(ΣA × B,ΣA × B).
Since we have that gf = (gfA)ΣPA + (gfB)ΣPB + (gfC)Σπ it is sufficient
for our purpose to compute gf∗ ∈ π(Σ∗, ΣA × B).

Lemma 3.2. gC = gξAB.

Proof. First we have

g = g1ΣA×B

= g(ΣiAΣPA + gΣiBΣPB + gξABΣπ)

= g|ΣAΣPA + g|ΣBΣPB + gξABΣπ.

On the other hand g = gAΣPA + gBΣPB + gCΣπ. Hence we have gC =
gξAB. ¤

Now we proceed to gf∗:

gf∗ = g(ΣiAf∗1 + ΣiBf∗2 + ξABf∗3 + [ΣiA, ΣiB]f∗4)

= g|ΣAf∗1 + g|ΣBf∗2 + gξABf∗3 + [g|ΣA, g|ΣB]f∗4
= gAf∗1 + gBf∗2 + gCf∗3 + [gA, gB]f∗4.

Lemma 3.3.

[gA, gB] = ΣiA[gA1, gB1] + ΣiB[gA2, gB2]

+ [ΣiA, ΣiB](Σg′A1 ∧ Σg′B2 − τΣg′A2 ∧ g′B1),

where g∗k = Σg′∗k for ∗ ∈ {A,B} and k = 1, 2.

Proof. Apply lemma 1.2 and Propositions 3.3, 3.4 of [1] to the equality:

[gA, gB] = [ΣiAgA1 + ΣiBgA2, ΣiAgB1 + ΣiBgB2],

then the proof is completed. ¤

Lemma 3.4. We have

gAfC1 = ΣiA(gA1fC1) + ΣiB(gA2fC1) + [ΣiA,ΣiB]Σg′A1 ∧ g′A2H(fC,1).
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Proof. Apply the distributive law to the equality:

gAfC1 = (ΣiAgA1 + ΣiBgA2)fC1,

then the proof is completed. ¤

From these lemmas we have

Theorem 3.5. If f = (f∗k) and g = (g∗k) then gf = h = (h∗k) is given by
(1) the case of ∗ = A, or B,

h∗1 = gA1f∗1 + gB1f∗2,

h∗2 = gA2f∗1 + gB2f∗2,

(2) the case of ∗ = C = A ∧ B,

hC1 = gA1fC1 + gB1fC2 + [gA1, gB1]fC4 + gC1fC3,

hC2 = gA2fC1 + gB2fC2 + [gA2, gB2]fC4 + gC2fC3,

hC3 = gC3fC3,

hC4 = Σg′A1 ∧ g′A2H(fC1) + Σg′B1 ∧ g′B2H(fC2)

+ (Σg′A1 ∧ g′B2 − ΣτΣg′A2 ∧ g′B1)fC4 + gC4fC3.

As an example we take A=B=Sn. Let us be f ∈ π(ΣSn × Sn, ΣSn × Sn)
with its matrix: f11 f12 0 0

f21 f22 0 0
f31 f32 f33 f34

 ,

where fij({i, j} = {1, 2}), f33, f34 ∈ Z and f31, f32 ∈ π2n+1(Sn+1).
If h = gf then hij is given by

h11 = g11f11 + g21f12,

h12 = g12f11 + g22f12,

h21 = g11f21 + g21f22,

h22 = g12f21 + g22f22,

h31 = g11 ◦ f31 + g21 ◦ f32 + f33g31 + f34g12g22[ιn+1, ιn+1],

h32 = g12 ◦ f31 + g22 ◦ f32 + f33g32 + f34g12g22[ιn+1, ιn+1],
h33 = g33f33,

h34 = (g11g22 − (−1)ng12g21)f34 + g34f33 + g11g12H(f31) + g21g22H(f32),

where g∗∗ ◦ f∗∗ denotes (g∗∗ιn+1)f∗∗.
Here we describe some results obtained from the above table of the com-

position.
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1. f is a homotopy equivalence if and only if f33 = ±1 and∣∣∣∣f11 f12

f21 f22

∣∣∣∣ = ±1.

2. We denote the group of self-homotopy equivalences of ΣSn × Sn with
ε(Gn) and orientation-preserving self-homotopy equivalences with
ε0(Gn), where orientation-preserving means that the above de-
terminant is 1 and f33 = 1, then ε0(Gn) is a normal subgroup and
the quotient is isomorphic to Z2 ⊕ Z2.

3. ε0(Gn) contains a subgroup:
1 0 0 0

0 1 0 0
0 0 1 a

 ∼= Z.

4. ε0(Gn) contains a subgroup:
1 0 0 0

0 1 0 0
α β 1 0

 ∼= π2n+1(Sn+1) ⊕ π2n+1(Sn+1).
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