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ON THE GROUP (34 x B, X)

SEIYA SASAO

INTRODUCTION

We work in the homotopy category of pointed CW -complexes, and denote
the suspension functor with . The group 7(XA x B, X) is not abelian in
general under the usual multiplication but we use the notation “+” for it.
In §1 we shall describe the multiplication of the group n(XA x B, X), and,
as a by-product, obtain from the associativity of the multiplication that the
bi-additivity of the generalized Whitehead product (GWP) does not hold
in general (see Proposition 3.4 of [1]). In fact, as an example, we offer the
following:

Let i1 and i be inclusion maps from CP? and S™ into CP?V S™ respec-
tively. Then we have that

[inl, Eig] 75 2[2@1, E’ig] and [E’il, 22i2] = Q[Eil, Eig]

in (X CP% A S, X CP% Vv S™).

In §2 we investigate the group 7(X X, ¥ A x B) and show that any element
of this group can be determined by 4-components under some assumptions.
In §3 we apply §2 to the case of X = A x B, i.e. the group of self-maps of
the space XA x B.

Specially we are interested in describing the composition of two elements
with their components and give the special case of A = B = S" as an
example.

1. 7(SA x B, X)

Let i1 and iy be inclusion maps: A, B — A x B, and let P4 and Pg be
projections: A x B — A, B respectively.

Lemma 1.1. Let m: A x B — A A B be the projection. Any element f €
(XA x B, X) can be uniquely represented by the form

f=0aXPy+ BYXPp +yXm
foraen(XA,X), fen(EB,X) andy € n(¥AN B, X).

Proof. In fact a representation can be obtained from a part of Puppe exact

sequence of the cofibering: AV B — A x B. Then clearly we have o = fYiy4,

0 = fXip and moreover the uniqueness of v follows from the injectivity of

(Xm)*. O
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Here we give a brief account of GWP of [1]. For two maps a: ¥4 — X
and 3: ¥B — X, GWP [o, ] € (XA A B, X) is defined by

aX.Py + X Pp = fXPp + aX Py + [a, B]27.

Proposition 1.2. GWP has following properties:

(1) Let us be (o, B) the commutator of o and ( (€ m(XA, X)) then we
have

(a,8) = [, f]Xd 4,
where d 4 is the diagonal map: A — AN A.
(2) If f e n(X,Y) then fla, 8] = [fa, f5].
(3) If oy, € m(XYy, Z) and fi, € w(Xy, Yx) for k = 1,2 then it holds that
(013 f1,028 fo] = [01,02]2f1 A fa.
(4) For four maps Xf € w(XY,¥A), ¥g € n(XY,¥B), 0 € n(XA, X)
and T € 1(¥B,X) we have
oXf+13g=75g+0Xf+ [o,7T]E(f A g)Xdy.
(5) If X is a suspension (i.e. X = XX*) then dx = 0.
Lemma 1.3. For a € n(¥A,X), f € n(¥B,X) and v € m(XAN B, X) we
have the following:
(1) aXPs + 5Py = BEPg + aS P4 + [, G5
(2) aX Py +~31 = yXm+ aXPa+ (o, v|ZpaXm, where @y is defined by
valaNb)=aNaNb.
(3) BEPp + vXm = vXw + X P + [B,7]X¢pEw, where v¥p is defined
by Yvp(aAb)=bAaAb.
Proof. (1) is just the definition of GWP. Next, by applying (1) and (4) of
lemma 1.2 to the diagram:

Y P,
YAxB—2syv4—2 5 X%

YAx B—"~YAAB—> X,

we have that
[aXPa,vE7|Eda X 1 = o, V|2 (Pa AT)3da X 1p = [, 7] Zpadm.
The case (3) is analogous to the case (2). Thus the proof is completed. [
Now let us represent f = aX Py + X Pp + v¥X7 with the triple («, 3,7).

Theorem 1.4. (a1, 51,71) + (a2, 52,72) = (o1 + o, B1 + B2,0 + 72) for
0 =01 — [B2,01]X¢p and 61 = —[az, B1] + 711 — [a2, 11]X0a.
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Proof. For abbreviation we use notations: @ = aX Py, = %P, ¥ = y37
and so on. Now by using lemma 1.3 we have equalities

fi+ fa = (a1, 1,7) + (2, B2,72)
= a1+ /i + N +as+ G+
= a1 + B+ az + 71 — [a2, n|ZpaXm + B2 + T2
= a1+ as + B1 — [a2, Bi] + 51 — [a2,1]Z¢pa + B2 + Fo
= a1 +ay+f1+ 01+ B2+
= a1 +az + B+ P2+ 01 — [B2,01]3¢5 + 7
= +a+ P+ P+o+7
= (a1 +az, f1 + B2,0 + 72).
Thus the proof is completed. O
Corollary 1.5. If A and B are both suspensions then it holds that
(a1, B1,m) + (a2, B2, 72) = (1 + a2, B1 + B2, —[a2, Bi] + 71 +72).

Proof. Since p4 and 1p are trivial by (5) of lemma 1.2 the proof follows
from Theorem 1.4. O

Corollary 1.6. For aj,as € 7(XA,X) and f € n(X¥B, X) it holds that
[a1 + ag, 8] = [as, —[on, B]]Spa + o1, B] + [a, B].
Proof.
(0,3,0) + {(a1,0,0) + (a2,0,0)}
= (0,0,0) + (a1 + a2,0,0)
= (a1 + ag, B, —[an + a2, B]).
On the other hand
{(0,8,0) + (a1,0,0)} + (02,0,0)
= (a1, B, =1, B]) + (a2,0,0)
= (o1 + a2, 8, —[az, B] — a1, B] — a2, —[an, B]]Zpa).

Thus the proof follows from the associativity of the addition of the group
m(XA x B, X). g

By (5) of lemma 1.2 and the above corollary 1.6 it is easy to obtain the
following:

Corollary 1.7 (Proposition 3.4 of [1]). If A is a suspension then it holds
that

[ + ag, 8] = [a1, B] + [az2, 0]
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for ai,a0 € (XA, X) and 8 € n(¥B, X).

Now we consider a special case: A = CP?, B= 8" and X = X CP? Vv S™.
Let 41 and iy be inclusions: CP?, 8™ — CP?V 8™ respectively, and let us be
a = Yi; and 8 = Yig. Since 4 CP? A S™ — CP? A CP? A S™ is defined
by wa(a Ab) =aANaAb, ps can be regarded as ¥"d for the diagonal map
d: CP* — CP* A CP2.

Since d*: H(CP? A CP?) — H*(CP?) is clearly an isomorphism X"d is
non-trivial. On the other hand, accordingly to Hilton-Milnor Theorem ([3])
[, [, B]]« is injective. Hence [, [a, B]]E @4 is non-trivial. Then these show

[22i1, E'LQ] 75 Q[Eil, E'LQ] and [Eil, 2212] == Q[E’il, 212]
Remark. The second equality follows from Corollary 1.7.

2. ON THE GROUP 7(XX,¥A x B)
First by using lemma 1.1 we define {45 € T(XA A B,XA x B) as follows:
Isaxp = XiaX Py + XipXPp + {apXm.
Corollary 2.1. X7€ap = 1y anB.
Proof. Apply (X7). to the above equality. Then we have
S = Sn(SiaSPy + YipSPp + EapSn)
=04 0+ XméappXm.
Since (X)* is injective the proof is completed. O

Here we note that the representation of f € 7(¥A x B, X) in lemma 1.1
is given by
= flsaXPa+ flspXPp + féapXm,
where f|k denotes the restriction of f on K.
For example if h is a map A x B — X then Xh&,p is essentially the
Hopf-construction of f, i.e. C'(h) (see [2]) and we have a representation:

Yh=%hg+Xhp+ C(h)Xm,

where h is a map of type (ha, hp).
Secondly we define two maps ¢ € 7(Y,XA x B) and ¢ € 7(¥A x B,Y)
for Y =YAVYBVXAAB by

p=2%iaVXipV&ap,
¢ =ixaXPa + ixg2Pp + ix AnB2T.

Lemma 2.2. ¢ is a homotopy equivalence with ¢ as its inverse.

Proof. Easy. U
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In the following of this section we assume that
(1) A is a-connected and B is b-connected,
(2) a <,
(3) dim X <2a+0b+2.
Then by Hilton-Milnor theorem, f € m(XX,¥A x B) can be represented
as follows:
f=%iafa+Xipfp +[Zia, Xiplfer + Lapfeo,
where f, € 7(XX,3¥x) and fo, € (XX, XA A B).
More precisely we have

Lemma 2.3. fa =YPaf, fg =XPsf, fo1 =X(PaAPg)H(f) and fco =
Yrf, where H(f) denotes Hopf-invariant of f.

Proof. First we note that [y, 037 H(f) = 0 because this element is decom-
posed as follows:

H(f) [7,9]
—

20 A x By A (A B) 2 w4« B

nX S(A x B) A (A x B)

Then the proof is deduced from our assumptions. Secondly apply f from
the right to the equality. We obtain that

f=(XiaPs+ XipPp + {apXm) f
= (YiaPa + XipPg)f + apXr f
=XiaPaf + XipPpf + [Yia, Xig|(XPs NXP)H(f) + {apXm f.
Thus the proof is completed. O

3. ON THE GROUP 7(¥A x B,¥A x B)

In this section we assume that A and B are both n-connected, dim A <
dim B and dim A + dim B < 3n + 2.

Lemma 3.1. Our assumptions contain

(1) A, B and A N B are all suspensions, so m(XK,X) is abelian for
K=A, B and AN B,

(2) dimB <2n+ 1. Hence m(X%,XAANB) =0 forx= A or B,

(3) ¥: n(X,Y) — n(X2X,XY) is onto for any pair (X,Y) of {A, B}.

Proof. Easy. O
In §1, f € (¥ A x B,X A A B) has a representation:

[ =faXPa+ fBXPp + foXm
for fy € m(%,2A x B) and C = AA B.
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And moreover in §2, f, has a representation:
fe =Yiafa + Xipfe + Eanfez + [Xia, Xipl fau

for fu € (X%, 3A), fio € (X%, XB) and fi3, fra € T(Xx, XA A B).
Thus f € w(X¥A X B,XA x B) has a form of a (3 X 4)-matrix (note
lemma 3.1):

fa1 faz O 0
(fa)=1fB1 f2 0 0O
fc1 foe foz fea

We want to compute the composition gf for f,g € 7(¥A x B,XA x B).
Since we have that gf = (9fa)XPa + (9fB)2Pp + (9fc)X7 it is sufficient
for our purpose to compute gf, € 7(Xx, XA x B).

Lemma 3.2. go = g€ap.
Proof. First we have

g=9glsaxp
= g(ZiAZPA 4+ gXipXPp + ngBEW)
= g|xaXPa + g|sXPp + géapXm.

On the other hand g = g4XPa + gpXPp + goXm. Hence we have go =
98AB- O

Now we proceed to g fy:

gf* = Q(ZiAf*l + ZiBf*? + éABf*?) + [EiA, E7/B]f>c<4)
= glsafs +glsBfi2 + g6anfis + [9lsa, glsB] fea
= gAf*l + ng*2 + ng*S + [gA7gB]f*4~

Lemma 3.3.
(94, 98] = Yialga1, gB1] + Yiplgaz, 9B2]
+ [Dia, Zigl(Rga1 A Xgpy — TG40 A B,
where g, = Xg.,,. for x € {A,B} and k =1,2.
Proof. Apply lemma 1.2 and Propositions 3.3, 3.4 of [1] to the equality:
(94, 9B] = [Xiagar + Xipgaz, Xiagn1 + Yipgnal,

then the proof is completed. O
Lemma 3.4. We have

gafcr = Yia(garfer) + Zip(gasfor) + [Bia, Zig)2ga A gaoH (fer)-



ON THE GROUP 7(¥A x B, X) 129

Proof. Apply the distributive law to the equality:

gafcr = (Xiagar + Xipgaz) for,
then the proof is completed. O

From these lemmas we have

Theorem 3.5. If f = (fux) and g = (g«x) then gf = h = (hy) is given by
(1) the case of x = A, or B,

hs1 = ga1fea + gB1 fe2,
hso = gaafe1 + gB2fe2,

(2) the case of x = C = AN B,

hcr = garfer + gB1fo2 + (91, gB1l foa + go fos,
hca = gasfor + gBafoa + (942, gB2l fou + go2 fos,
hes = gesfes,
hoa = Xgy A gaoH (for) + Sgp1 A g H (fo2)

+ (391 A gpa — B78¢U0 A gg1) foa + geafes.

As an example we take A=B=_5". Let usbe f € m(X5" x S, £S" x §")

with its matrix:

fu fiz 0 0
for foo O 0 |,
fa1 fa2 faz faa

where fi;({i,7} = {1,2}), f33, f3a € Z and f31, f32 € man1(S"H1).
If h = gf then h;; is given by
hi1 = g11f11 + 921 f12,
hi2 = g12f11 + g22 f12,
ha1 = g11f21 + 921 fo2,
haa = g12fo1 + g22 fo2,
h31 = g11 © f31 + g21 © fs2 + f33931 + f3a912922(tn+1, tnt 1],
hsz = g12 © f31 + g22 © f32 + f33932 + f3ag12922[tn+1, tnt1],
h3s = g33f33,
has = (911922 — (—1)"g12921) f31 + 934 f33 + 911912 H (f31) + g21922H (f32),

where gux 0 fix denotes (guxtni1) fax-
Here we describe some results obtained from the above table of the com-

position.
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1. f is a homotopy equivalence if and only if f33 = £1 and

Jfu1 fi2
fo1 fa2

2. We denote the group of self-homotopy equivalences of 3.5™ x S™ with
e(Gy) and orientation-preserving self-homotopy equivalences with
£0(Gy), where orientation-preserving means that the above de-
terminant is 1 and fs3 = 1, then £¢(G,,) is a normal subgroup and
the quotient is isomorphic to Zs ® Z».

3. €0(Gy) contains a subgroup:

==+1.

1 0 0 0
01 00 = 7.
0 01 a
4. €9(Gy) contains a subgroup:
1 0 00
01 00 gﬂ2n+1(5n+1)@ﬂ2n+1(5n+1).
a /10
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