Math. J. Okayama Univ. 43(2001), 17-23

ADJOINT ORBIT TYPES OF COMPACT EXCEPTIONAL
LIE GROUP G; IN ITS LIE ALGEBRA

TaxkAasHI MIYASAKA

INTRODUCTION

A Lie group G naturally acts on its Lie algebra g, called the adjoint action.
In this paper, we determine the orbit types of the compact exceptional Lie
group G in its Lie algebra go. As results, the group G has four orbit types
in the Lie algebra go as

G2/Go, G2/(U(1) x U(1)),
Ga/((Sp(1) x U(1))/Z2), Ga/((U(1) x Sp(1))/ Z2).

These orbits, especially the last two orbits, are not equivalent, that is, there
exists no Ga-equivariant homeomorphism among them. Finally, the author
would like to thank Professor Ichiro Yokota for his earnest guidance, useful
advice and constant encouragement.

0. PRELIMINARIES AND NOTATION

(1) For a group G and an element s of G, s denotes the inner automor-
phism induced by s:

3(g) = sgs™!, g € G,

then G° = {g € G | sg = gs}. Hereafter G* is briefly written by G*.
(2) For a transformation group G of a space M, the isotropy subgroup
of G at a point m € M is denoted by G;:

Gn={9€G|gm=m}.

(3) As mentioned in the introduction, a Lie group G acts on its Lie
algebra g. When G is a compact Lie group, any element X € g
is transformed to some element D of a fixed Cartan subalgebra b.
Hence, to determine the conjugate classes of isotropy subgroups Gx,
it suffices to consider the case of X = D € §.

1. THE CAYLEY ALGEBRA € AND THE GROUP G

Let € be the division Cayley algebra with the canonical basis {eg =
1,e1,...,e7} and in € the conjugation T, the inner product (z,y) and the
length |z| are naturally defined ([1], [3]). The Cayley algebra € contains
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naturally the field R of real numbers, furthermore the field C of complex
numbers and the field H of quaternion numbers:

R={x=uz1|z € R},
C = {xg+ z1€1 | 209,21 € R},
H = {:C() + x1e1 + xoe2 + 1363 | Tg,T1, X2, T3 € R}

The automorphism group G2 of the Cayley algebra €:
Gy = {a € Isor(Q) | a(zy) = (ax)(ay)}

is the simply connected compact Lie group of type Gb.
Any element z € € can be expressed as x = a + bey, a,b € H, and € is
isomorphic to the algebra H ¢ He, with multiplication

(a+ bey)(c+ dey) = (ac — db) + (b¢ + da)ey.
We define an R-linear transformation ~ of € by
v(a +bey) = a—bey, a+bey € H® Hey = €.
Next, to an element
T = a4+ mieg + moey + mgeg, a,mi,mg, mg € C
of €, we associate an element

mi
a—+ | mo
ms3

of the algebra C @ C? with the multiplication

(a+m)(b+mn) = (ab— (m,n)) + (an +bm —m x n),

where (m,n) = “mn and m xn € C? is the exterior product of m, n. Note

that C @ C? is a left C-module. Hereafter we identify ¢ with H @ He4 and
CoC?:

¢C=H®He, ¢=C&C3
We define an R-linear transformation 7. of € by

Yela+m)=a+m, a+tmecCaC*=c.

Then, 7,7ve € Ga, v = vc2 = 1 and v, 7, are conjugate in Go ([1]).
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2. SUBGROUPS (Sp(1) x Sp(1))/Z4 AND SU(3) OF Go
Proposition 1 ([3]). (G2)Y = (Sp(1)x Sp(1))/Z2, Z5 ={(1,1),(—-1,—1)}.
Proof. Let Sp(1) = {p € H | pp = 1} and we define a map ¢ : Sp(1) x
Sp(1) = (G2)” by

¢(p,q)(a+bea) = qag + (pbg)es, a+bes € H® Hey = €.
¢ is well-defined: ¢(p,q) € (G2)” and ¢ is a homomorphism. We shall show
that ¢ is onto. Let a € (G2)?. Note that
¢, ={zel|y=zx}=H, ¢ ,={zxecl|yr=—2}=He

and these spaces are invariant under the action of the group (G2)”. Now,
since a € (G2)” induces an automorphism of €, = H, there exists ¢ € Sp(1)
such that

aa = qaq, a € H.
Let 8 = ¢(1,¢) " 'a. Then 8 € (G2)? and B|H = 1. Since 3 induces an
endomorphism of Hey, there exists p € H such that feq = pes. From
Ip| = |pes| = |Bes| = |es] = 1, we see that p € Sp(1). Then

Bla +bes) = Pa+ (Bb)(Bes) = a+ b(pes) = a+ (pb)es = ¢(p, 1)(a + bey).
Hence, 8 = ¢(p,1) and a = ¢(1,q)p(p,1) = ¢(p, q) which shows that ¢ is
onto. kerp = {(1,1),(—1,—1)} = Z5. Thus, we have (G2)” = (Sp(1) x
Sp(1))/ Z2. O
Proposition 2 ([1], [3]). (G2)e, = SU(3).

Proof. Let SU(3) ={A € M(3,C) | A*A=E, det A =1} and we define a
map 1 : SU(3) — (G2)e, by
V(A (a+m)=a+Am, a+ meC P C>=¢.
¥ is well-defined: 1(A) € (Ga)e,. ¥ is injective and a homomorphism. We
shall show that 1 is onto. Let a € (G2)e,. Note that « induces a C-linear
transformation of C3. Now let
e = a1, deg = az, xeg = as

and consider a matrix A = (a1,a2,a3) € M(3,C). From (aes)(aes) =
a(ezeq) = —afeg), we have ajay = —as, namely, —(a1,a2)—a; X ay = —as,
then

<CL1,CI,2> = 0, a3 = a1 X as.
Similarly, we have (a9,as) = (as,a;) = 0. Moreover, from (cey)(aer) =
aleger) = a(—1) = —1, we have (ay,ar) = 1, hence, A € U(3) = {4 €
M(3,C) | A*A = E}. Finally, det A = (a3, a1 X a2) = (a3, a3) = (as,a3) =
1 (where (a,b) is the usual inner product in C3: (a,b) = *ab). Hence, we
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have A € SU(3) and 1(A) = o which shows that 1 is onto. Thus, we have
SU(3) = (G2)e, - O

3. ADJOINT ORBIT TYPES OF (G2 IN THE LIE ALGEBRA g2
The Lie algebra go of the group Gs is given by
g2 = {D € Homg(€) | D(zy) = (Dz)y + x(Dy)}.
The adjoint action of the group G2 on the Lie algebra go is given by
p: Gy X g — go, pu(a, D) = aDa™ L.

Now, we shall determine the adjoint orbit types of the group G in go.
Since the group Go contains the subgroup SU(3) (Proposition 2), the Lie
algebra go also contains the subalgebra su(3) = {D € M(3,C) | D* + D =
0, tr(D) = 0}. We choose a Cartan subalgebra h of su(3) as

reqr O 0
b:{D(r,s,t): 0 se; O r,s,teR,r+s+t:0},
0 0 t61

which is also a Cartan subalgebra of go. The order of r,s,t of D(r,s,t) is
arbitrarily exchanged by the action of Gs.

Note that between the induced mappings ¢, : sp(1) @ sp(l) — go and
Py 1 5u(3) — g2 of ¢ and 9, there exist the following relations:

(P*(ela 0) = ¢*(dlag(07 €1, _61>)7 (P*(Ov 61) - ¢*(dia§§<2€1a —€1, _61))'

Theorem 3. The orbit types in go through D(r,s,t) € b under the adjoint
action of the group Go are as follows:

(1) In the case: r =s =1t =0, the orbit through D(0,0,0) is
G2/G.
(2) In the case: 7,s,t are non-zero and distinct, the orbit through
D(r,s,t) is
Ga/(U(1) x U(1)).
(3) In the case: r is non-zero, the orbit through D(2r,—r,—r) is

Ga/((Sp(1) x U(1))/ Z2).
(4) In the case: T is non-zero, the orbit through D(0,r, —r) is
G2/ ((U(1) x Sp(1))/Z2).
Proof. (1) trivial.
(2) Let U(1) = {a € C | aa = 1} and S(U(1) x U(1) x U(1)) be the
diagonal subgroup of SU(3) and v : S(U(1) x U(1) x U(1)) — (G2)p(r,s,¢)
be the restriction map 1 of Proposition 2. Then, v is well-defined and
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injective. We shall show that v is onto. For this purpose, we first show that
for a € (G2) p(r,s,), We have

el = teq.

Indeed, let ae; = a +m € C ® C3. From the condition aD(r,s,t) =
D(r,s,t)a,

0=a0=aD(r,s,t)e; = D(r,s,t)ae; = D(r,s,t)(a+m) = D(r,s, t)m,

we have m = 0. So ae; = a. Since |a| = |aei] = |e1] = 1 and al = 1,
we have ae; = +e;. In the case of ae; = —e;, consider 7. € Ga2. Then
aveer = e1, 50 aye = P(A), A = (ar) € SU(3) (Proposition 2). Hence,
a = 1(A)ye. Then

1 rey —req —raiiel
AveD(r,s,t) [0 =Ave.| O | =A 0 = | —rasie;
0 0 0 —rasiel
On the other hand,
1 1 ail reijail
D(r,s,t)Av. | 0| = D(r,s,t)A| 0| = D(r,s,t) | a1 | = | serazn
0 0 aszil t61a31

From the condition aeD(r,s,t) = D(r, s,t)c, we have
t ¢
(—?“a11€1, —Trazi€i, —m31€1) = (?“616111, Ss€1a21, 7561(131)-

But, it is easy to see that this is false. Hence, we have ae; = ey, so a = ¢(A),
A € SU(3). From the condition aD(r,s,t) = D(r,s,t)a again, we have
a=1y(A), Ae S(U)xU(1l) xU(1)), which shows that v is onto. Thus
we have (G2)p(rsy = S(U(1) x U(1) x U(1)) = U(1) x U(1).
(3) Since
exp(mD(2,—1,—1)) = exp(m,(diag(2e1, —e1, —e1)))
= exp(mp(0,€1)) =,

if « € Gy commutes with D(2,—1,—1), then « also commutes with ~.
Hence, a € (G2)Y = (Sp(1) x Sp(1)) (Proposition 1). So there ex-
ist p,g € Sp(1) such that a = ¢(p,q). Again from the commutativity
with exp(%D(Q,—l,—l)) = exp(gw*(diag@el,—el,—el))) = p(1,e1),
we have ¢(p,q)¢(1,e1) = ¢(1,e1)e(p, q), hence, ¢(p,qe1) = ¢(p,e1q). So
ger = eiq, therefore ¢ € C N Sp(1) = U(1). Conversely, a« = ¢(p,q)
(p € Sp(1), q € U(1)) commutes with ¢(1,e'1), t € R, so a also com-
mutes with ¢.(0,e1) = D(2,—1,-1). Thus, we have (G2)p,—1,-1) =
e(Sp(1) x U(1)) = (Sp(1) x U(1))/ Z>.
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(4)
exp(mD(0,1,—1)) = exp(mi),(diag(0, e1, —e1)))
= exp(m(px(e1,0)) = 7.
Hence, (G2)p(o,r,—r) = (U(1) x Sp(1))/Z2 is proved in a similar way to (3)

above. O

Proposition 4. If r and s are non-zero, then the groups (G2)p(or—r) =
(UQ1) x Sp(1))/Z2 and (G2) p(2s,—s,-s) = (Sp(1) x U(1))/ Z2 are not conju-
gate in the group Gs.

Proof. We shall prove that D(0,r, —r) and D(2s, —s, —s) are not conjugate
under the action of the group Gas. Suppose that there exists a € Gy such
that

a(D(0,r,—r)) = (D(2s, —s, —s)).

Let aeg = ag + m € C @ C3, m = *(my, ma, m3). Then, from

0 O 0 1 2seq 0 0 mq
al0 re 0 0] = 0 —seq 0 apg+ | mo ,
0 0 -—re 0 0 0 —seq ms
0 2smie;
we have | 0 | = | —smae; |, hence, m; = mgy =m3 =0, so
0 —smseq

aes =agp € C.

From (aes)(aes) = afezes) = a(—1) = —1, we have agag = —1, hence,
aeg = ap = +ej. Similarly, we have aeg = £e;. Then ae; = (aez)(aez) =
(+e1)(£e1) = 1, which is a contradiction. O

Theorem 5. If r and s are non-zero, then the orbit spaces
X ={a(D(0,r,—r))a"! | a € G} and Y ={a(D(2s,—s,—s))a" ' | a € G}
are not equivalent.

Proof. Suppose that there exists a Ga-equivariant homeomorphism A : X —
Y. Then, there exists a € G5 such that

(1) h(D(0,7,—1)) = a(D(2s, —s, —5))a " L.
For any 0 € (G2)p(o,r,—r), We have
S(h(D(0,r, =)0~ = 6(a(D(2s, —s, —s))a 1)o7 L.

Since h is a Go-equivariant homeomorphism, we have dh = hd. Hence, we
see

(2) h(D(0,7, —1)) = §(a(D(2s, —s, —s))a 1)o7 L.
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From (1) and (2), we have
§(a(D(2s,—s,—5))a1)d7! = a(D(2s, —s, —5))a ",

that is, a~1(6(a(D(2s,—s,—s))a 16 Ha = D(2s,—s,—s). This implies
a Ya e (G2) D(25,—s,—s)- Thus, we have

a_l((GQ)D(O,r,—r))O‘ - (G2)D(25,—s7—s)'
Since dim((G2)p(o,r,—r)) = dim((G2)p(2s,—s,—s)) (Theorem 3 (3) and (4)),
the inclusion above must be equal, that is,

ail((GQ)D(O,r,fT))a = (GQ)D(ZS,*S,*S)'

This means that the groups (G2)p(o,r,—r) and (G2)p(as,—s,—s) are conjugate
in Go, which contradicts Proposition 4. O
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