ADJOINT ORBIT TYPES OF COMPACT EXCEPTIONAL LIE GROUP G_2 IN ITS LIE ALGEBRA

TAKASHI MIYASAKA

Introduction

A Lie group G naturally acts on its Lie algebra \mathfrak{g} , called the adjoint action. In this paper, we determine the orbit types of the compact exceptional Lie group G_2 in its Lie algebra \mathfrak{g}_2 . As results, the group G_2 has four orbit types in the Lie algebra \mathfrak{g}_2 as

$$G_2/G_2,$$
 $G_2/(U(1) \times U(1)),$ $G_2/((Sp(1) \times U(1))/\mathbf{Z}_2),$ $G_2/((U(1) \times Sp(1))/\mathbf{Z}_2).$

These orbits, especially the last two orbits, are not equivalent, that is, there exists no G_2 -equivariant homeomorphism among them. Finally, the author would like to thank Professor Ichiro Yokota for his earnest guidance, useful advice and constant encouragement.

0. Preliminaries and notation

(1) For a group G and an element s of G, \widetilde{s} denotes the inner automorphism induced by s:

$$\widetilde{s}(g) = sgs^{-1}, \ g \in G,$$

then $G^{\widetilde{s}} = \{g \in G \mid sg = gs\}$. Hereafter $G^{\widetilde{s}}$ is briefly written by G^s .

(2) For a transformation group G of a space M, the isotropy subgroup of G at a point $m \in M$ is denoted by G_m :

$$G_m = \{ g \in G \mid gm = m \}.$$

(3) As mentioned in the introduction, a Lie group G acts on its Lie algebra \mathfrak{g} . When G is a compact Lie group, any element $X \in \mathfrak{g}$ is transformed to some element D of a fixed Cartan subalgebra \mathfrak{h} . Hence, to determine the conjugate classes of isotropy subgroups G_X , it suffices to consider the case of $X = D \in \mathfrak{h}$.

1. The Cayley algebra $\mathfrak C$ and the group G_2

Let \mathfrak{C} be the division Cayley algebra with the canonical basis $\{e_0 = 1, e_1, \ldots, e_7\}$ and in \mathfrak{C} the conjugation \overline{x} , the inner product (x, y) and the length |x| are naturally defined ([1], [3]). The Cayley algebra \mathfrak{C} contains

naturally the field R of real numbers, furthermore the field C of complex numbers and the field H of quaternion numbers:

$$R = \{x = x1 \mid x \in R\},\$$
 $C = \{x_0 + x_1e_1 \mid x_0, x_1 \in R\},\$
 $H = \{x_0 + x_1e_1 + x_2e_2 + x_3e_3 \mid x_0, x_1, x_2, x_3 \in R\}.$

The automorphism group G_2 of the Cayley algebra \mathfrak{C} :

$$G_2 = \{ \alpha \in \operatorname{Iso}_R(\mathfrak{C}) \mid \alpha(xy) = (\alpha x)(\alpha y) \}$$

is the simply connected compact Lie group of type G_2 .

Any element $x \in \mathfrak{C}$ can be expressed as $x = a + be_4$, $a, b \in \mathbf{H}$, and \mathfrak{C} is isomorphic to the algebra $\mathbf{H} \oplus \mathbf{H}e_4$ with multiplication

$$(a+be_4)(c+de_4) = (ac - \overline{d}b) + (b\overline{c} + da)e_4.$$

We define an R-linear transformation γ of \mathfrak{C} by

$$\gamma(a+be_4)=a-be_4,\ a+be_4\in \mathbf{H}\oplus \mathbf{H}e_4=\mathfrak{C}.$$

Next, to an element

$$x = a + m_1e_2 + m_2e_4 + m_3e_6, \ a, m_1, m_2, m_3 \in \mathbb{C}$$

of \mathfrak{C} , we associate an element

$$a + \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}$$

of the algebra $C \oplus C^3$ with the multiplication

$$(a + m)(b + n) = (ab - \langle m, n \rangle) + (an + \overline{b}m - \overline{m \times n}),$$

where $\langle \boldsymbol{m}, \boldsymbol{n} \rangle = {}^t \boldsymbol{m} \overline{\boldsymbol{n}}$ and $\boldsymbol{m} \times \boldsymbol{n} \in \boldsymbol{C}^3$ is the exterior product of \boldsymbol{m} , \boldsymbol{n} . Note that $\boldsymbol{C} \oplus \boldsymbol{C}^3$ is a left \boldsymbol{C} -module. Hereafter we identify \mathfrak{C} with $\boldsymbol{H} \oplus \boldsymbol{H} \boldsymbol{e}_4$ and $\boldsymbol{C} \oplus \boldsymbol{C}^3$:

$$\mathfrak{C} = \mathbf{H} \oplus \mathbf{H} e_4, \quad \mathfrak{C} = \mathbf{C} \oplus \mathbf{C}^3.$$

We define an **R**-linear transformation γ_c of \mathfrak{C} by

$$\gamma_{c}(a+m) = \overline{a} + \overline{m}, \ a+m \in C \oplus C^{3} = \mathfrak{C}.$$

Then, $\gamma, \gamma_c \in G_2$, $\gamma^2 = \gamma_c^2 = 1$ and γ, γ_c are conjugate in G_2 ([1]).

2. Subgroups $(Sp(1) \times Sp(1))/\mathbb{Z}_2$ and SU(3) of G_2

Proposition 1 ([3]). $(G_2)^{\gamma} \cong (Sp(1) \times Sp(1))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1,1), (-1,-1)\}.$

Proof. Let $Sp(1) = \{p \in \mathbf{H} \mid p\overline{p} = 1\}$ and we define a map $\varphi : Sp(1) \times Sp(1) \to (G_2)^{\gamma}$ by

$$\varphi(p,q)(a+be_4)=qa\overline{q}+(pb\overline{q})e_4,\ a+be_4\in \mathbf{H}\oplus \mathbf{H}e_4=\mathfrak{C}.$$

 φ is well-defined: $\varphi(p,q) \in (G_2)^{\gamma}$ and φ is a homomorphism. We shall show that φ is onto. Let $\alpha \in (G_2)^{\gamma}$. Note that

$$\mathfrak{C}_{\gamma} = \{x \in \mathfrak{C} \mid \gamma x = x\} = \mathbf{H}, \quad \mathfrak{C}_{-\gamma} = \{x \in \mathfrak{C} \mid \gamma x = -x\} = \mathbf{H}e_4$$

and these spaces are invariant under the action of the group $(G_2)^{\gamma}$. Now, since $\alpha \in (G_2)^{\gamma}$ induces an automorphism of $\mathfrak{C}_{\gamma} = \mathbf{H}$, there exists $q \in Sp(1)$ such that

$$\alpha a = q a \overline{q}, \ a \in \mathbf{H}.$$

Let $\beta = \varphi(1,q)^{-1}\alpha$. Then $\beta \in (G_2)^{\gamma}$ and $\beta | \mathbf{H} = 1$. Since β induces an endomorphism of $\mathbf{H}e_4$, there exists $p \in \mathbf{H}$ such that $\beta e_4 = pe_4$. From $|p| = |pe_4| = |\beta e_4| = |e_4| = 1$, we see that $p \in Sp(1)$. Then

$$\beta(a + be_4) = \beta a + (\beta b)(\beta e_4) = a + b(pe_4) = a + (pb)e_4 = \varphi(p, 1)(a + be_4).$$

Hence, $\beta = \varphi(p,1)$ and $\alpha = \varphi(1,q)\varphi(p,1) = \varphi(p,q)$ which shows that φ is onto. $\ker \varphi = \{(1,1),(-1,-1)\} = \mathbb{Z}_2$. Thus, we have $(G_2)^{\gamma} \cong (Sp(1) \times Sp(1))/\mathbb{Z}_2$.

Proposition 2 ([1], [3]). $(G_2)_{e_1} \cong SU(3)$.

Proof. Let $SU(3) = \{A \in M(3, \mathbb{C}) \mid A^*A = E, \det A = 1\}$ and we define a map $\psi : SU(3) \to (G_2)_{e_1}$ by

$$\psi(A)(a+m) = a + Am, \ a+m \in C \oplus C^3 = \mathfrak{C}.$$

 ψ is well-defined: $\psi(A) \in (G_2)_{e_1}$. ψ is injective and a homomorphism. We shall show that ψ is onto. Let $\alpha \in (G_2)_{e_1}$. Note that α induces a C-linear transformation of C^3 . Now let

$$\alpha e_2 = \boldsymbol{a}_1, \ \alpha e_4 = \boldsymbol{a}_2, \ \alpha e_6 = \boldsymbol{a}_3$$

and consider a matrix $A=(\boldsymbol{a}_1,\boldsymbol{a}_2,\boldsymbol{a}_3)\in M(3,\boldsymbol{C})$. From $(\alpha e_2)(\alpha e_4)=\alpha(e_2e_4)=-\alpha(e_6)$, we have $\boldsymbol{a}_1\boldsymbol{a}_2=-\boldsymbol{a}_3$, namely, $-\langle \boldsymbol{a}_1,\boldsymbol{a}_2\rangle-\overline{\boldsymbol{a}_1\times\boldsymbol{a}_2}=-\boldsymbol{a}_3$, then

$$\langle \boldsymbol{a}_1, \boldsymbol{a}_2 \rangle = 0, \quad \boldsymbol{a}_3 = \overline{\boldsymbol{a}_1 \times \boldsymbol{a}_2}.$$

Similarly, we have $\langle \boldsymbol{a}_2, \boldsymbol{a}_3 \rangle = \langle \boldsymbol{a}_3, \boldsymbol{a}_1 \rangle = 0$. Moreover, from $(\alpha e_k)(\alpha e_k) = \alpha(e_k e_k) = \alpha(-1) = -1$, we have $\langle \boldsymbol{a}_k, \boldsymbol{a}_k \rangle = 1$, hence, $A \in U(3) = \{A \in M(3, \boldsymbol{C}) \mid A^*A = E\}$. Finally, $\det A = (\boldsymbol{a}_3, \boldsymbol{a}_1 \times \boldsymbol{a}_2) = (\boldsymbol{a}_3, \overline{\boldsymbol{a}_3}) = \langle \boldsymbol{a}_3, \boldsymbol{a}_3 \rangle = 1$ (where $(\boldsymbol{a}, \boldsymbol{b})$ is the usual inner product in \boldsymbol{C}^3 : $(\boldsymbol{a}, \boldsymbol{b}) = {}^t \boldsymbol{a} \boldsymbol{b}$). Hence, we

have $A \in SU(3)$ and $\psi(A) = \alpha$ which shows that ψ is onto. Thus, we have $SU(3) \cong (G_2)_{e_1}$.

3. Adjoint orbit types of G_2 in the Lie algebra \mathfrak{g}_2

The Lie algebra \mathfrak{g}_2 of the group G_2 is given by

$$\mathfrak{g}_2 = \{ D \in \operatorname{Hom}_R(\mathfrak{C}) \mid D(xy) = (Dx)y + x(Dy) \}.$$

The adjoint action of the group G_2 on the Lie algebra \mathfrak{g}_2 is given by

$$\mu: G_2 \times \mathfrak{g}_2 \to \mathfrak{g}_2, \ \mu(\alpha, D) = \alpha D \alpha^{-1}.$$

Now, we shall determine the adjoint orbit types of the group G_2 in \mathfrak{g}_2 . Since the group G_2 contains the subgroup SU(3) (Proposition 2), the Lie algebra \mathfrak{g}_2 also contains the subalgebra $\mathfrak{su}(3) = \{D \in M(3, \mathbb{C}) \mid D^* + D = 0, \operatorname{tr}(D) = 0\}$. We choose a Cartan subalgebra \mathfrak{h} of $\mathfrak{su}(3)$ as

$$\mathfrak{h} = \left\{ D(r, s, t) = \begin{pmatrix} re_1 & 0 & 0 \\ 0 & se_1 & 0 \\ 0 & 0 & te_1 \end{pmatrix} \, \middle| \, r, s, t \in \mathbf{R}, \ r + s + t = 0 \right\},\,$$

which is also a Cartan subalgebra of \mathfrak{g}_2 . The order of r, s, t of D(r, s, t) is arbitrarily exchanged by the action of G_2 .

Note that between the induced mappings $\varphi_* : \mathfrak{sp}(1) \oplus \mathfrak{sp}(1) \to \mathfrak{g}_2$ and $\psi_* : \mathfrak{su}(3) \to \mathfrak{g}_2$ of φ and ψ , there exist the following relations:

$$\varphi_*(e_1, 0) = \psi_*(\operatorname{diag}(0, e_1, -e_1)), \quad \varphi_*(0, e_1) = \psi_*(\operatorname{diag}(2e_1, -e_1, -e_1)).$$

Theorem 3. The orbit types in \mathfrak{g}_2 through $D(r, s, t) \in \mathfrak{h}$ under the adjoint action of the group G_2 are as follows:

(1) In the case: r = s = t = 0, the orbit through D(0,0,0) is

$$G_2/G_2$$
.

(2) In the case: r, s, t are non-zero and distinct, the orbit through D(r, s, t) is

$$G_2/(U(1)\times U(1)).$$

(3) In the case: r is non-zero, the orbit through D(2r, -r, -r) is

$$G_2/((Sp(1)\times U(1))/\mathbf{Z}_2).$$

(4) In the case: r is non-zero, the orbit through D(0, r, -r) is

$$G_2/((U(1)\times Sp(1))/\mathbf{Z}_2).$$

Proof. (1) trivial.

(2) Let $U(1) = \{a \in \mathbb{C} \mid a\overline{a} = 1\}$ and $S(U(1) \times U(1) \times U(1))$ be the diagonal subgroup of SU(3) and $\psi : S(U(1) \times U(1) \times U(1)) \to (G_2)_{D(r,s,t)}$ be the restriction map ψ of Proposition 2. Then, ψ is well-defined and

injective. We shall show that ψ is onto. For this purpose, we first show that for $\alpha \in (G_2)_{D(r,s,t)}$, we have

$$\alpha e_1 = \pm e_1.$$

Indeed, let $\alpha e_1 = a + m \in C \oplus C^3$. From the condition $\alpha D(r, s, t) = D(r, s, t)\alpha$,

$$0 = \alpha 0 = \alpha D(r, s, t)e_1 = D(r, s, t)\alpha e_1 = D(r, s, t)(a + m) = D(r, s, t)m,$$

we have m = 0. So $\alpha e_1 = a$. Since $|a| = |\alpha e_1| = |e_1| = 1$ and $\alpha 1 = 1$, we have $\alpha e_1 = \pm e_1$. In the case of $\alpha e_1 = -e_1$, consider $\gamma_c \in G_2$. Then $\alpha \gamma_c e_1 = e_1$, so $\alpha \gamma_c = \psi(A)$, $A = (a_{kl}) \in SU(3)$ (Proposition 2). Hence, $\alpha = \psi(A)\gamma_c$. Then

$$A\gamma_{\boldsymbol{c}}D(r,s,t)\begin{pmatrix}1\\0\\0\end{pmatrix}=A\gamma_{\boldsymbol{c}}\begin{pmatrix}re_1\\0\\0\end{pmatrix}=A\begin{pmatrix}-re_1\\0\\0\end{pmatrix}=\begin{pmatrix}-ra_{11}e_1\\-ra_{21}e_1\\-ra_{31}e_1\end{pmatrix}.$$

On the other hand,

$$D(r,s,t)A\gamma_{\boldsymbol{c}}\begin{pmatrix}1\\0\\0\end{pmatrix}=D(r,s,t)A\begin{pmatrix}1\\0\\0\end{pmatrix}=D(r,s,t)\begin{pmatrix}a_{11}\\a_{21}\\a_{31}\end{pmatrix}=\begin{pmatrix}re_1a_{11}\\se_1a_{21}\\te_1a_{31}\end{pmatrix}.$$

From the condition $\alpha D(r, s, t) = D(r, s, t)\alpha$, we have

$$^{t}(-ra_{11}e_{1}, -ra_{21}e_{1}, -ra_{31}e_{1}) = ^{t}(re_{1}a_{11}, se_{1}a_{21}, te_{1}a_{31}).$$

But, it is easy to see that this is false. Hence, we have $\alpha e_1 = e_1$, so $\alpha = \psi(A)$, $A \in SU(3)$. From the condition $\alpha D(r, s, t) = D(r, s, t)\alpha$ again, we have $\alpha = \psi(A)$, $A \in S(U(1) \times U(1) \times U(1))$, which shows that ψ is onto. Thus we have $(G_2)_{D(r,s,t)} = S(U(1) \times U(1) \times U(1)) \cong U(1) \times U(1)$.

(3) Since

$$\exp(\pi D(2, -1, -1)) = \exp(\pi \psi_*(\operatorname{diag}(2e_1, -e_1, -e_1)))$$
$$= \exp(\pi \varphi_*(0, e_1)) = \gamma,$$

if $\alpha \in G_2$ commutes with D(2,-1,-1), then α also commutes with γ . Hence, $\alpha \in (G_2)^{\gamma} = \varphi(Sp(1) \times Sp(1))$ (Proposition 1). So there exist $p,q \in Sp(1)$ such that $\alpha = \varphi(p,q)$. Again from the commutativity with $\exp\left(\frac{\pi}{2}D(2,-1,-1)\right) = \exp\left(\frac{\pi}{2}\psi_*(\operatorname{diag}(2e_1,-e_1,-e_1))\right) = \varphi(1,e_1)$, we have $\varphi(p,q)\varphi(1,e_1) = \varphi(1,e_1)\varphi(p,q)$, hence, $\varphi(p,qe_1) = \varphi(p,e_1q)$. So $qe_1 = e_1q$, therefore $q \in \mathbf{C} \cap Sp(1) = U(1)$. Conversely, $\alpha = \varphi(p,q)$ $(p \in Sp(1), q \in U(1))$ commutes with $\varphi(1,e^{te_1}), t \in \mathbf{R}$, so α also commutes with $\varphi_*(0,e_1) = D(2,-1,-1)$. Thus, we have $(G_2)_{D(2,-1,-1)} = \varphi(Sp(1) \times U(1)) = (Sp(1) \times U(1))/\mathbf{Z}_2$.

(4)
$$\exp(\pi D(0, 1, -1)) = \exp(\pi \psi_*(\operatorname{diag}(0, e_1, -e_1)))$$
$$= \exp(\pi (\varphi_*(e_1, 0))) = \gamma.$$

Hence, $(G_2)_{D(0,r,-r)} = (U(1) \times Sp(1))/\mathbb{Z}_2$ is proved in a similar way to (3) above.

Proposition 4. If r and s are non-zero, then the groups $(G_2)_{D(0,r,-r)} \cong (U(1) \times Sp(1))/\mathbb{Z}_2$ and $(G_2)_{D(2s,-s,-s)} \cong (Sp(1) \times U(1))/\mathbb{Z}_2$ are not conjugate in the group G_2 .

Proof. We shall prove that D(0, r, -r) and D(2s, -s, -s) are not conjugate under the action of the group G_2 . Suppose that there exists $\alpha \in G_2$ such that

$$\alpha(D(0,r,-r)) = (D(2s,-s,-s))\alpha.$$

Let $\alpha e_2 = a_0 + \boldsymbol{m} \in \boldsymbol{C} \oplus \boldsymbol{C}^3$, $\boldsymbol{m} = {}^t(m_1, m_2, m_3)$. Then, from

$$\alpha \begin{pmatrix} 0 & 0 & 0 \\ 0 & re_1 & 0 \\ 0 & 0 & -re_1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2se_1 & 0 & 0 \\ 0 & -se_1 & 0 \\ 0 & 0 & -se_1 \end{pmatrix} \begin{pmatrix} a_0 + \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} \end{pmatrix},$$

we have
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2sm_1e_1 \\ -sm_2e_1 \\ -sm_3e_1 \end{pmatrix}$$
, hence, $m_1 = m_2 = m_3 = 0$, so

$$\alpha e_2 = a_0 \in \mathbb{C}$$
.

From $(\alpha e_2)(\alpha e_2) = \alpha(e_2 e_2) = \alpha(-1) = -1$, we have $a_0 a_0 = -1$, hence, $\alpha e_2 = a_0 = \pm e_1$. Similarly, we have $\alpha e_3 = \pm e_1$. Then $\alpha e_1 = (\alpha e_2)(\alpha e_3) = (\pm e_1)(\pm e_1) = \pm 1$, which is a contradiction.

Theorem 5. If r and s are non-zero, then the orbit spaces

 $X = \{\alpha(D(0, r, -r))\alpha^{-1} \mid \alpha \in G_2\}$ and $Y = \{\alpha(D(2s, -s, -s))\alpha^{-1} \mid \alpha \in G_2\}$ are not equivalent.

Proof. Suppose that there exists a G_2 -equivariant homeomorphism $h: X \to Y$. Then, there exists $\alpha \in G_2$ such that

(1)
$$h(D(0,r,-r)) = \alpha(D(2s,-s,-s))\alpha^{-1}.$$

For any $\delta \in (G_2)_{D(0,r,-r)}$, we have

$$\delta(h(D(0,r,-r)))\delta^{-1} = \delta(\alpha(D(2s,-s,-s))\alpha^{-1})\delta^{-1}$$

Since h is a G_2 -equivariant homeomorphism, we have $\widetilde{\delta}h = h\widetilde{\delta}$. Hence, we see

(2)
$$h(D(0,r,-r)) = \delta(\alpha(D(2s,-s,-s))\alpha^{-1})\delta^{-1}.$$

From (1) and (2), we have

$$\delta(\alpha(D(2s, -s, -s))\alpha^{-1})\delta^{-1} = \alpha(D(2s, -s, -s))\alpha^{-1},$$

that is, $\alpha^{-1}(\delta(\alpha(D(2s,-s,-s))\alpha^{-1})\delta^{-1})\alpha = D(2s,-s,-s)$. This implies $\alpha^{-1}\delta\alpha \in (G_2)_{D(2s,-s,-s)}$. Thus, we have

$$\alpha^{-1}((G_2)_{D(0,r,-r)})\alpha \subset (G_2)_{D(2s,-s,-s)}.$$

Since $\dim((G_2)_{D(0,r,-r)}) = \dim((G_2)_{D(2s,-s,-s)})$ (Theorem 3 (3) and (4)), the inclusion above must be equal, that is,

$$\alpha^{-1}((G_2)_{D(0,r,-r)})\alpha = (G_2)_{D(2s,-s,-s)}.$$

This means that the groups $(G_2)_{D(0,r,-r)}$ and $(G_2)_{D(2s,-s,-s)}$ are conjugate in G_2 , which contradicts Proposition 4.

References

- [1] I. YOKOTA, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups, Part I, $G = G_2$, F_4 and E_6 , Tsukuba J. Math. 14(1990), 185–223.
- [2] I. Yokota, Simple Lie groups of classical type (in Japanese), Gendai-Sugakusya, 1990.
- [3] I. YOKOTA, Simple Lie groups of exceptional type (in Japanese), Gendai-Sugakusya, 1992.

Takashi Miyasaka Takatoh High School Obara, Takatoh 396-0293, Japan e-mail address: coolkai@mac.com

(Received July 13, 2001)