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REAL EMBEDDINGS OF REAL PROJECTIVE CURVES
AND REAL RAMIFICATION POINTS

Edoardo BALLICO

Abstract. Here we study real immersions in a projective space of
smooth projective curves defined over R but without real ramification
points, giving several examples for canonical embeddings (i.e. existence
of real curves without real Weierstrass points) and for plane curves.
We also gives numerical obstructions to the existence of real morphisms
without real ramification points.

1. Introduction

J. Huisman studied in [H1], [H2] and [H3] the geometry of real morphisms
f : X → Pr when X is a real smooth projective curve of genus g defined
over R and X(R) has many connected components (say, at least g connected
components). In [H2] he studied the existence of real morphisms f : X → Pr

without real ramification points. Here we consider the same problem but
without assuming that X(R) has many connected components. Obviously,
we only need to consider curves with non-empty real locus. Here is our first
result for plane curves.

Theorem 1.1. For every even integer d ≥ 4 there is a smooth plane curve
X ⊂ P2 defined over R, with deg(X) = d and X(R) formed by exactly d/2
circles and such that no point of X(R) is a flex of X, i.e. such that the
embedding of X in P2 has no real ramification point.

Notice that the curve X given by Theorem 1.1 has genus (d− 1)(d− 2)/2
and hence X(R) has never “many” real branches in the sense of [H1], [H2]
and [H3]. The ramification points of the canonical embedding X → Pg−1

of a non-hyperelliptic smooth curve of genus g are exactly the Weierstrass
points of X. Thus the case d = 4 of Theorem 1.1 is the following nice result.

Corollary 1.2. There is a smooth projective curve of genus 3 defined over
R, not hyperelliptic, with X(R) formed by exactly two connected components
and such that X has no real Weierstrass point.
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In section 2 we will prove Theorem 1.1 and hence Corollary 1.2. We will
also prove a related result concerning nodal plane curves (see Theorem 2.1).
In section 3 we give another examples of canonical embedding in Pg−1,
g ≥ 4, without real ramification point (see Theorem 3.2) and some cases
in which real ramification points must occur. We stress Theorem 3.4 which
gives the existence of a real ramification point if X(R) 6= ∅ and f is not
induced by a complete linear system.

2. Plane curves

For any algebraic scheme Y defined over R, σ will denote the complex
conjugation. Thus Y (R) := {P ∈ Y (C);σ(P ) = P}.

Proof of Theorem 1.1. Fix P,Q ∈ P2(C) \ P2(R) with Q 6∈ {P, σ(P )} and
such that the 4 points P , Q, σ(P ) and σ(Q) are not collinear. Since the
set {P,Q, σ(P ), σ(Q)} is σ-invariant, we see that no line contains 3 points
of {P,Q, σ(P ), σ(Q)}. Thus h0(P2, I{P,Q,σ(P ),σ(Q)}(2)) = 2 and the pencil,
V , of all conics containing {P,Q, σ(P ), σ(Q)} has a basis formed by smooth
conics. The pencil V is defined over R and contains infinitely many smooth
real plane conics.

Claim. There is a smooth plane conic D ∈ V with D defined over R and
D(R) 6= ∅.

Proof of the Claim. Let AP (resp. AQ) be the line containing P and σ(P )
(resp. Q and σ(Q)). The lines AP and AQ are defined over R. Notice
that AP ∪ AQ ∈ V . Since every real line of P2 has a circle as real locus,
(AP ∪ AQ)(R) is infinite. Any smooth conic D ∈ V (R) with D near to
AP ∪ AQ has D(R) 6= ∅. ¤

Since any smooth conic has genus zero, every real D ∈ V with D(R) 6= ∅
has connected real locus. By the Claim there are distinct smooth conics
D1, . . . , Dd/2 ∈ V , all of them defined over R, with Di(R) 6= ∅ for every
i. Set Y := D1 ∪ · · · ∪ Dd/2. Thus Y is a reduced plane curve of degree
d defined over R with Y (R) = D1(R) ∪ · · · ∪ Dd/2(R). Since Di 6= Dj if
i 6= j, Bezout theorem implies Di ∩ Dj = {P,Q, σ(P ), σ(Q)} if i 6= j and
that Di intersects Dj transversally. Hence Sing(Y ) = {P,Q, σ(P ), σ(Q)},
Y has exactly 4 ordinary points of multiplicity d/2 as only singularities and
Y (R) has d/2 connected component. A small real smoothing of Y inside P2

gives a curve X which proves the theorem ([Br]). ¤
Theorem 2.1. Fix even integers d, t with d ≥ 4 and 0 ≤ t ≤ (d−2)(d−3)/2.
There exists an irreducible plane curve Z ⊂ P2 with Z defined over R, Z(R)
formed by d/2 disjoint circles, Z(R) ∩ Sing(Z) = ∅, deg(Z) = d, Z with
exactly t ordinary nodes as only singularities and such that no real smooth
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point of Z is a flex of Z. Let π : X → Z be the normalization of Z. The
curve X is a real smooth curve of genus (d−1)(d−2)/2−t and the morphism
X → P2 induced by π has no real ramification point. The real locus X(R)
has d/2 connected components.

Proof. By the proof of the Claim in the proof of Theorem 1.1 there are
smooth conics Di ⊂ P2, 1 ≤ i ≤ d/2, defined over R, with Di(R) 6= ∅ for
every i, with Di ∩ Dj formed by 4 points, none of them real, for all pairs
(i, j) with 1 ≤ i < j ≤ d/2 and such that Di ∩ Dj ∩ Dk = ∅ for all triples
(i, j, k) with 1 ≤ i < j < k ≤ d/2. Hence Di(R) ∩ Dj(R) = ∅ if i 6= j.
Set Y := D1 ∪ · · · ∪ Dd/2. Thus Y is a reduced plane curve of degree d
defined over R and with Y (R) = D1(R) ∪ · · · ∪ Dd/2(R) (disjoint union)
and with exactly (d− 1)(d− 2)/2 + d/2− 1 nodes, none of them real. Since
t ≤ (d−2)(d−3)/2, there is a σ-invariant subset G of Sing(Y ) with card(G)
such that any nearby partial smoothing of Y in which we smooth exactly
the nodes in G is irreducible. Since G is σ-invariant, we may find one such
real smoothing and take as Z any such nearby partial smoothing. All the
assertions on X are just translations of properties of Z. ¤

3. Ramified and/or unramified real embeddings

In this section we gives several restrictions for the numerical invariants of
real embeddings without ramification. We also give examples of construc-
tions of real ramification points.

Remark 3.1. Fix an integer g ≥ 3. Take 2g distinct points Pi, 1 ≤ i ≤ g,
and Qi, 1 ≤ i ≤ g, of P1(C). Let Y be the nodal curve obtained pinching
together Pi and Qi, 1 ≤ i ≤ g. Thus Y is an integral projective curve with
P1(C) as normalization and exactly g ordinary nodes as only singularities.
Hence pa(Y ) = g and the canonical sheaf of Y is a spanned line bundle.
If Y is not hyperelliptic the canonical line bundle induces an embedding
φ : Y → Pg−1. The canonical model φ(Y ) of Y may be obtained in this
way. Let C ⊂ P2g−2 be a rational normal curve. Thus there is an embedding
h : P1(C) → P2g−2 with C = h(P1(C)) and deg(C) = 2g − 2. There is a
linear subspace W of P2g−2 with dim(W ) = g−2, W∩C = ∅, W intersecting
all the lines 〈h(Pi), h(Qi)〉 spanned by Pi and Qi and such that φ(Y ) is the
linear projection of C from W . Now take the usual real structure on assume
Pi ∈ (P1(C)\P1(R)) for every i and take Qi = σ(Pi). The nodal curve Y is
defined over R. The real locus of Y (R) is the disjoint union of a circle (the
image of the real locus P1(R) of P1(C)) and the g singular points. We may
smooth independently over R each of these singular points either obtaining
a new circle in the real locus or not, i.e. for every integer t with 1 ≤ t ≤ g+1
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the curve Y is the flat limit of a flat family of smooth real curves whose real
locus has exactly t connected components ([Br]).

Theorem 3.2. Fix integers g, t with g ≥ 3 and 1 ≤ t ≤ g + 1. Then there
exists a smooth non-hyperelliptic curve X of genus g defined over R, with
X(R) having exactly t connected components and such that X has at least
one real Weierstrass point, i.e. such that the canonical embedding of X has
no real inflection point.

Proof. We fix g − 1 general points Pi, 1 ≤ i ≤ g − 1, and Qi, 1 ≤ i ≤ g − 1,
of P1(C) \ P1(R) and set Qi := σ(Pi). Let T be the nodal curve obtained
pinching together Pi and Qi, 1 ≤ i ≤ g − 1. Let h : P1(C) → P2g−2 be the
rational normal embedding. We repeat the construction of (1.1). There is
a real linearly normal embedding f : T → Pg with deg(f(T )) = 2g − 2 and
a linear subspace W of P2g−2 with dim(W ) = g − 3, W ∩ h(P1(C)) = ∅, W
intersecting all the lines 〈h(Pi), h(Qi)〉, 1 ≤ i ≤ g−1, spanned by Pi and Qi,
W defined over R, and such that f(T ) is the linear projection of h(P1(C))
from W . Take a general P ∈ f(T (C) \ T (R)) and set Q := σ(P ). Thus the
line 〈P,Q〉 ⊂ Pg spanned by P and Q is real. By the generality of P the
line 〈P,Q〉 is a secant line of f(T ) and the linear projection pA of f(T ) from
a general real point, A, of into Pg−1 is a canonically embedded real curve
Y with P1(C) as normalization and exactly g nodes as only singularities, Y
obtained from P1(C) pinching together the pairs {Pi, Qi}, 1 ≤ i ≤ g − 1,
and {f−1(P ), f−1(Q)}.

Claim. There is a real curve Y as in Remark 3.1 whose canonical model
is not exceptional, i.e. such that there is P ∈ (Yreg)(R) such that P is
a Weierstrass point of the nodal curve Y . Furthermore P is an ordinary
Weierstrass point of Y , i.e. its weight in the sense of [L] is exactly one.

Proof of the Claim. To prove the claim it is sufficient to show that for almost
all A ∈ 〈P,Q〉(R) there is B ∈ f(Treg(R)), B not a ramification point of
f , such that the osculating hyperplane HB to f(T ) at B contains A but
the codimension two; indeed, pA(HB) will be a hyperplane of Pg−1 whose
order of contact with the curve pA(f(T )) at pA(B) is at least g; the other
assumptions on B show that this order of contact is exactly g. This is true
because there are infinitely many points of f(Treg(R)) and every hyperplane
of Pg intersects the line 〈P,Q〉. ¤

By the last sentence of a1 the Claim implies Theorem 3.2; here we use
that P as weight one and hence in a smoothing of Y it cannot split into two
complex conjugate ramification points. ¤
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Proposition 3.3. Fix integers d, n with d odd and n even. Let X be a
smooth projective curve defined over R and f : X → Pn a non-degenerate
birational morphism defined over R. Then there is P ∈ X(R) such that f
is ramified at P .

Proof. By the Brill-Segre formula ([L, Theorem 9]) the total weight of all
ramification points of f is odd. Hence there is at least one real ramification
point. ¤

Theorem 3.4. Let X be a smooth projective curve defined over R and with
X(R) 6= ∅. Let f : X → Pn a non-degenerate birational morphism. Assume
that f is not linearly normal, i.e. assume h0(X, f∗(OP1(1)) ≥ n + 2. Then
f has a real ramification point.

Proof. Set N := h0(X, f∗(OP1(1)) − 1 and let h : X → PN the morphism
associated to the complete linear system P(H0(X, f∗(OP1(1))). Since f is
real, f∗(OP1(1)) is real. Thus h is real. Since f is birational, h is birational.
The morphism f is obtained composing h with a linear projection from a
subspace W of PN with dim(W ) = N − n − 1, W ∩ h(X) = ∅ and W real.
We take a hyperplane V of W defined over R and call C ⊂ Pn+1 the linear
projection of h(X) from V . Since X(R) 6= ∅, there are infinitely many
smooth points of C defined over R. For any such point P call HP ⊂ Pn+1

the osculating hyperplane to C at P . Since P is real, HP is real. The
union of the real loci of all such hyperplanes covers a dense open subset of
Pn+1(R). Since f(X) is obtained from C taking a linear projection from
a point of Pn+1(R), the curve f(X) is a limit of projections of C all of
them with an ordinary ramification point (see the proof of Theorem 3.2).
Hence f has a real ramification point; the limit of a family of real ordinary
ramification points is real, but not necessarily ordinary. ¤

Remark 3.5. Let X be a smooth hyperelliptic curve of genus g ≥ 2 and
u : X → P1 the degree two hyperelliptic pencil. The morphism u has 2g +2
ramification points and these points are exactly the Weierstrass points of X.
Now assume X defined over R and X(R) 6= ∅. Then, taking on P1 the usual
real structure with P1(R) 6= ∅, u is defined over R. The 2g+2 images of the
Weierstrass points of X forms the branch locus B of u. We have σ(B) = B.
It is easy to check that the condition X(R) 6= ∅ is equivalent to the condition
B ∩ P1(R) 6= ∅. Hence if X(R) 6= ∅ the hyperelliptic curve X has at least
one real Weierstrass point, i.e. the degree two canonical morphism of X has
at least one real ramification point. Every smooth curve of genus two is
hyperelliptic. Hence the example given by Corollary 1.2 has the minimal
possible genus.
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