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THE 19 AND 20-TH HOMOTOPY GROUPS OF THE
ROTATION GROUPS Rn

HIDEYUKI KACHI AND JUNO MUKAI

Abstract. We determine the group structures of the homotopy
groups of the rotation groups πk(Rn) for k = 19 and 20. The main tool
of the computaion is the homotopy exact sequence associated with the
fibration Rn+1/Rn = Sn.

Introduction

The present paper is the continuation of [6] and is devoted to the
computation of the homtopy groups πk(Rn) of the rotation groups Rn for
k = 19 and 20. According to [8] and [11], the group structures of πk(Rn)
for k ≤ 22 and n ≤ 9 are known. For −1 ≤ r ≤ 4, the group structure of
πm+r(Rm) are determined in [7]. On [1], Barratt-Mahowald shows that for
n ≥ 13 and k ≤ 2n − 1

πk(Rn) ∼= πk(R∞) ⊕ πk+1(V2n,n),

where V2n,n = R2n/Rn is the Stiefel manifold. By use of this splitting, [13]
and [14], we can obtain πk(Rn) for k = 19 and 20 with n ≥ 13. So our main
task is to determine πk(Rn) for k = 19 and 20 in the case 10 ≤ n ≤ 12.
Summarizing these results, we have the following table:

n 3 4 5 6 7
π19(Rn) Z6 ⊕ Z2 (Z6)2 ⊕ (Z2)2 (Z2)2 Z12 ⊕ Z2 Z2

π20(Rn) Z12 ⊕ (Z2)2 (Z12)2 ⊕ (Z2)4 (Z2)2 Z60 ⊕ Z2 (Z2)2

8 9 10 11 12 13 14
Z2 Z2 Z12 Z ⊕ (Z2)2 Z ⊕ (Z2)4 Z ⊕ (Z2)2 Z ⊕ Z4

Z6 ⊕ (Z2)2 Z2 Z8 ⊕ Z2 (Z2)3 (Z2)5 (Z2)3 Z240

15 16 17 18 19 20 21 22 ≤ n
Z ⊕ Z2 Z ⊕ Z2 Z ⊕ Z2 Z Z Z ⊕ Z Z Z

0 0 0 Z12 Z2 (Z2)2 Z2 0

Here (Zk)n indicates the direct sum of n-copies of a cyclic group Zk

of order k. Odd primary componets of πk(Rn) for k = 19, 20 are easily ob-
tained from [8] and its method. We denote by πk(Rn : 2) a suitablly chosen
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subgroup of the homotopy group πk(Rn) which consists of the 2-primary
components and a free part such that the index |πk(Rn) : πk(Rn : 2)| is
odd. This group πk(Rn : 2) is roughly called as the 2-primary components
of πk(Rn). The results of πk(Rn : 2) for k = 19 and 20 are stated in
Theorems 2.1 and 3.2, in which generators of the 2-primary components
πk(Rn : 2) are given.

The main tool of the computation is the following homotopy exact
sequence associated with the fibration Rn+1/Rn = Sn;

→ πk+1(Sn) ∆→ πk(Rn) i∗→ πk(Rn+1)
p∗→ πk(Sn) ∆→ πk−1(Rn) →,

where i : Rn → Rn+1 is the inclusion, p : Rn+1 → Sn is the projection and
∆ : πk+1(Sn) → πk(Rn) is the connecting map. We can form the following
exact sequence:

(k)n πk+1(Sn : 2) ∆→ πk(Rn : 2) i∗→ πk(Rn+1 : 2)
p∗→ πk(Sn : 2) ∆→

πk−1(Rn : 2).

The computation will be done by use of the exact sequence (k)n,
the results [18], [10] on the homotopy groups of sphere Sn and the J-
homomorphism J : πk(Rn : 2) → πk+n(Sn : 2).

We use the notations and the results of [5], [6], [18] and [10], freely. For
an element α ∈ πk(Sn), we denote by [α] ∈ πk(Rn) an element satisfying
p∗[α] = α. Though [α] is only determined modulo Im i∗ = i∗(πk(Rn)),
we will sometimes give restriction on [α] to fix it more concretely. We set
[α]m = j∗[α] ∈ πk(Rm), where j : Rn → Rm for n + 1 ≤ m is the inclusion.
Hereafter we only deal with the 2-primary components πk(X : 2) of the
homotopy group πk(X) and its is denoted by πk(X) for simplicity.

1. Preriminaries

We recall the elements [η2] ∈ π3(R3), [ι3] ∈ π3(R4) and [ι7] ∈ π7(R7)
given in [5]. It is well know that the homomorphism

(1) [η2]∗ : πk(S3) → πk(R3)

is an isomorphism for all k ≥ 3 and p∗ ◦ [η2]∗ = η2∗. For n = 4 or 8,

(2) i∗ + [ιn−1]∗ : πk(Rn−1) ⊕ πk(Sn−1) → πk(Rn)

is an isomorphism for all k.
For the J-homomorphism J : πk(Rn) → πk+n(Sn), we have the dia-

gram
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(3)

πk(Rn−1)
i∗ //

J
²²

πk(Rn)
p∗ //

J
²²

πk(Sn−1) ∆ //

Σn

²²

πk−1(Rn−1)

J
²²

πk+n−1(Sn−1) Σ // πk+n(Sn) H // πk+n(S2n−1) P // πk+n−2(Sn−1)

which is commutative up to sign and its lower sequence is the EHP exact
sequence ([18]). Moreover, we have a formula

(4) J(α ◦ β) = J(α) ◦ Σnβ

for α ∈ πj(Rn) and β ∈ πk(Sj).
The connecting homomorphism ∆ : πk(Sn) → πk−1(Rn) satisfies the

following relation

(5) ∆(α ◦ Σβ) = ∆(α) ◦ β

for α ∈ πj(Sn) and β ∈ πk−1(Sj−1).
As to the Toda bracket, from Theorem 5.2 of [12], we have following

Proposition 1.1. Assume that α ◦ Σβ = β ◦ γ = 0 for α ∈ πj+1(Sn), β ∈
πm(Sj) and γ ∈ πk(Sm). Then we have

∆{α, Σβ,Σγ}1 ⊂ {∆α, β, γ}.

On π12(Rn), from [5], we have the following.

Lemma 1.2. (1) There exists an element [σ′′′] ∈ π12(R6) ∼= Z4 which
satisfies the relations p∗([σ′′′]) = σ′′′, 2[σ′′′] = [ι3]6µ3 and ∆(σ′′) =
[σ′′′], where ∆ : π13(S6) → π12(R6).

(2) There exists an element [η2
10] ∈ π12(R11) of order 2 such that

J([η2
10]) = θ′.

(3) There exists an element [η11] ∈ π12(R12) of order 2 such that

J([η11]) = θ.

From Table 2 of [5], we have π8(R6) ∼= Z8{[ν5]} and π9(R6) ∼=
Z2{[ν5]η8}. Since 8[ν5] = 8ν8 = 0, a Toda bracket {[ν5], 8ι8, ν8} is de-
fined and it is a coset of [ν5]◦π12(S8)+π9(R6)◦ν9 = 0. From Lemma 5.13
of [18], σ′′′ = {ν5, 8ι8, µ8}. Then we have

p∗({[ν5], 8ι8, ν8}) = {ν5, 8ι8, ν8} = σ′′′.

Consequently we have

Lemma 1.3.
[σ′′′] = {[ν5], 8ι8, ν8}.
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From Table 2 of [5], we have

π14(R4) ∼= Z4{[η2]4ε′} ⊕ Z2{[η2]4η3µ4} ⊕ Z4{[ι3]ε′} ⊕ Z2{[ι3]η3µ4}.

By Theorem 7.3 of [18], we have

π14(S4) ∼= Z8{ν4σ
′} ⊕ Z4{Σε′} ⊕ {η4µ5}.

For the homomorphism ∆ : π14(S4) → π13(R4), we prove

Lemma 1.4.
∆(ν4σ

′) = 2[ι3]ε′ + 2c[η2]4ε′

where c is an integer.

Proof. Set ∆(ν4σ
′) = a[ι3]ε′ + b[ι3]η3µ4 + c[η2]4ε′ + d[η2]4η3µ4, for some

integers a, b, c and d. Apply the J-homomorphism J : π13(R4) → π17(S4)
to the both sides of this equation, where π17(S4) ∼= Z8{ν2

4σ10}⊕Z2{ν4η7}⊕
Z2{(Σν ′)η7µ8} by Theorem 7.7 of [18]. From the diagram (3) and the
relation in p.76 of [18], we have

J∆(ν4σ
′) = P (4σ9ν16) = 4x′ν2

4σ10,

where x′ is an odd integer.
From [5], we have J([ι3]) = ν4 and J([η2]4) = Σν ′. Then, by (7.10)

of [18], we have
J([ι3]ε′) = ν4Σ4ε′ = ±2ν2

4σ10,

J([ι3]η3µ4) = ν4η7µ8,

J([η2]4η3µ4) = (Σν ′)η7µ8

and
J([η2]4ε′) = Σν ′Σ4ε′ = 0,

since ν ′Σ3ε′ = 2(ν ′ν6σ9) = 0 by (7.10) of [18] and ν ′ν6 ∈ π9(S3) = 0. So
we obtain that a = 2 and

∆(ν4σ
′) = 2[ι3]ε′ + c[η2]4ε′.

On the other hand, we have

∆(2(ν4σ
′)) = ∆(ν4 ◦ 2σ′) = ∆(ν4 ◦ Σσ′′) = ∆(ν4)σ′′ = ([ι3] + a[η2]4)ν ′σ′′

by Lemma 1.1 of [6]. Here we have

Σ3(ν ′σ′′) = 8ν6σ9 = 0.

Since Σ3 : π13(S3) → π16(S6) is a monomorphism by (7.15) of [18], we have
ν ′σ′′ = 0. It follows that 2c[η2]4ε′ = 0. Therefore we obtain that c is an
even integer.
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2. Determination of π19(Rn : 2)

In this section, we shall determine the generators of the 2-primary
components π19(Rn : 2). The results for π19(Rn : 2) are stated as follow:

Theorem 2.1.

π19(R3 : 2) = {[η2]µ3σ12} ⊕ {[η2]η3ε4} ∼= Z2 ⊕ Z2,
π19(R4 : 2) = {[η2]4µ3σ12} ⊕ {[η2]4η3ε4} ⊕ {[ι3]µ3σ12} ⊕ {[ι3]η3ε4}

∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2,
π19(R5 : 2) = {[ι3]5µ3σ12} ⊕ {[ι3]5η3ε4} ∼= Z2 ⊕ Z2,
π19(R6 : 2) = {[σ′′′]σ12} ⊕ {[ν5]ν8ν16} ∼= Z4 ⊕ Z2,
π19(Rn : 2) = {[ν5]nν8ν16} ∼= Z2 for n = 7, 8 and 9,
π19(R10 : 2) = {[2ι9]σ9ν16} ∼= Z4,
π19(R11 : 2) = {[32[ι10, ι10]]} ⊕ {[ε10]η18} ⊕ {[η2

10]σ12}
∼= Z ⊕ Z2 ⊕ Z2,

π19(R12 : 2) = {[32[ι10, ι10]]12} ⊕ {[ε10]12η18} ⊕ {[η2
10]12σ12}

⊕{[η11]σ12} ⊕ {[ε11]}
∼= Z ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2,

π19(R13 : 2) = {[32[ι10, ι10]]13} ⊕ {[η11]13σ12} ⊕ {[ε11]13}
∼= Z ⊕ Z2 ⊕ Z2

π19(R14 : 2) = {[32[ι10, ι10]]14} ⊕ {[ν2
13]} ∼= Z ⊕ Z4

π19(Rn : 2) = {[32[ι10, ι10]]n} ⊕ {[ν2
13]n} ∼= Z ⊕ Z2

for n = 15, 16 and 17
π19(Rn : 2) = {[32[ι10, ι10]]n} ∼= Z for n = 18 and 19,
π19(R20 : 2) = {[32[ι10, ι10]]20} ⊕ {[2ι19]} ∼= Z ⊕ Z
π19(Rn : 2) = {[32[ι10, ι10]]n} ∼= Z for n ≥ 21.

The relations hold: 2[σ′′′]σ12 = [ι3]5µ3σ12 and 2[ν2
13] = [ε11]14.

Since π19(S3) ∼= Z2{µ3σ12} ⊕ Z2{η3ε4} by Theorem 12.6 of [18], we
have the results for π19(R3) and π19(R4) from (1) and (2), respectively.

For n ≥ 4, we will determine the group π19(Rn+1) by applying the
exact sequence

(19)n π20(Sn) ∆→ π19(Rn) i∗→ π19(Rn+1)
p∗→ Ker∆ → 0,

where Im p∗ = Ker ∆ for ∆ : π19(Sn) → π18(Rn). For the results on this
Ker ∆, we have the following lemma as the results of the computation of
π18(Rn) in [6].

Lemma 2.2. The homomrphism ∆ : π19(Sn) → π18(Rn) are monomor-
phisms for n = 4, 6, 7, 8, 12, 14, 15, 16, 17 and 18. For the other values of n,
we have the following table of the kernel of ∆:
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n 5 9 10
Ker∆ ∼= Z2 ⊕ Z2 Z4 Z ⊕ Z2 ⊕ Z2

generators ν5ζ8, ν5ν8ν16 2σ9ν16 32[ι10, ι10], η10ν11, η10ε11
11 13 19

Z2 ⊕ Z2 Z2 Z
ν11, ε11 ν2

13 2ι19

From the exact sequence (19)4 and Lemma 2.2, we have the exact
sequence

π20(S4) ∆→ π19(R4)
i∗→ π19(R5) → 0,

where π20(S4) ∼= Z2{ν2
4σ10ν17} ⊕ Z2{µ4σ13} ⊕ Z2{η4ε5} by Theorem 12.6

of [18].
Since ∆(ν2

4) = 0 and ∆(ι4) = 2[ι3] − [η2]4 by Table 3 of [5], we have
∆(ν2

4σ10ν17) = ∆(ν2
4)σ9ν16 = 0,

∆(µ4σ13) = ∆(ι4)µ3σ13 = (2[ι3] − [η2]4)µ3σ13 = [η2]4µ3σ13

and
∆(η4ε5) = ∆(ι4)η3ε4 = (2[ι3] − [η2]4)η3ε4 = [η2]η3ε4.

It follows from the above exact sequence that

π19(R5) = {[ι3]5µ3σ12} ⊕ {[ι3]5η3ε4} ∼= Z2 ⊕ Z2.

Consider the homomorphism ∆ : π20(S5) → π20(R5), where π20(S5) ∼=
Z2{ε5}⊕Z2{ρIV } by Theorem 10.5 of [18]. Since ∆(ι5) = [ι3]5η3 by Table
3 of [5], we have

∆(ε5) = [ι3]5η3ε4.

By the definition of ρIV (p.103 of [18]),

(6) ρIV ∈ {σ′′′, 2ι12, 8σ12}1

where the Toda bracket {σ′′′, 2ι12, 8σ12}1 consists of a single element.
By Proposition 1.1 and Lemma 1.2 (1), we have

∆(ρIV ) ∈ {∆(σ′′′), 2ι12, 8σ12} = {0, 2ι12, 8σ12} ≡ 0

and its coset is π12(R5) ◦ 8σ12 = 0 because π12(R5) ∼= Z2 ⊕ Z2 by Table 2
of [5]. Therefore we have

∆(ρIV ) = 0.

It follows from the exact sequence (19)5 and Lemma 2.2 that the
sequence

0 → Z2{[ι3]5µ3σ13}
i∗→ π19(R6)

p∗→ Z2{ν5ζ8} ⊕ Z2{ν5ν8ν16} → 0

is exact.
The element [ν5]ν8ν16 is of order 2 and p∗([ν5]ν8ν16) = ν5ν8ν16.
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By Lemma 1.2 (1) , we have

(7) [ι3]6µ3σ12 = 2[σ′′′]σ12.

Hence we obtain that [σ′′′]σ12 is of order 4.
We need the following.

Lemma 2.3. (N. Oda) σ′′′σ12 = ν5ζ8

Proof. From (10.7) and Lemma 5.14 of [18], we have

Σ(σ′′′σ12) = 2σ′′σ13 = ν6ζ9 = Σ(ν5ζ8).

By Theorem 10.3 of [18], we have

σ′′′σ12 = ν5ζ8 + aν5ν8ν16,

where a = 0 or 1.
By (7.20) of [18],

σ′′′σ12ν19 = 0.

By Proposition 2.4 (2) of [15] and p.145 of [18],

ν5ζ8ν19 = ν2
5ζ11 = 0.

By (15.1) of [10] and p.145 of [18] and Theorem 12.7 of [18],

ν5ν8ν
2
16 = ν5(2κ8) = 2(ν5κ8) 6= 0.

It follows that a = 0. This completes the proof.

From Lemma 2.3, we have

(8) [σ′′′]σ12 = [ν5]ζ8.

By the exactness of the above sequence, we have the result

π19(R6) = {[σ′′′]σ12} ⊕ {[ν5]ν8ν16} ∼= Z4 ⊕ Z2.

From the exact sequence (19)6 and Lemma 2.2, the following sequence

π20(S6) ∆→ π19(R6)
i∗→ π19(R7) → 0

is exact, where π20(S6) ∼= Z4{σ
′′
σ13}⊕Z2{ν6ν

2
14} by Theorem 10.3 of [18].

From Lemma 1.2 (1) and the formula (5), we have

(9) ∆(σ
′′
σ13) = ∆(σ

′′
)σ12 = [σ

′′′
]σ12.

Since ∆(ν6 + ε6) = 0 by Table 3 of [5] and ε6ν14 = 0 by (7.13) of [18], we
have

∆(ν6ν
2
14) = ∆((ν6 + ε6)ν14)ν16 = 0.
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It follows from the above exact sequence that

π19(R7) = {[ν5]7ν8ν16} ∼= Z2.

From (2) and π19(S7) = 0 by Theorem 7.6 of [18], we have

π19(R8) = {[ν5]8ν8ν16} ∼= Z2.

From the exact sequence (19)8 and Lemma 2.2, we obtain that

π19(R9) = {[ν5]9ν8ν16} ∼= Z2

since π20(S8) = 0 by Theorem 7.4 of [18].
Consider the homomorphism ∆ : π20(S9) → π19(R9), where π20(S9)

∼= Z8{ζ9} ⊕ Z2{ν9ν17} by Theorem 7.4 of [18]. By Lemma 1.1 of [6],
∆(ι9) = [ν5]9 + [ι7]9η7. So by the fact η7ζ8 ∈ π19(S7) = 0 of Theorem 7.6
of [18], we have

∆(ζ9) = ∆(ι9)ζ8

= ([ν5]9 + [ι7]9η7)ζ8

= [ν5]9ζ8 + [ι7]9η7ζ8

= 0 by (8) and (9)

and
∆(ν9ν17) = ∆(ι9)ν8ν16

= [ν5]9ν8ν16 + [ι7]9η7ν8ν16

= [ν5]9ν8ν16 + [ι7]9ν7η15ν16

= [ν5]9ν8ν16.

Hence ∆ : π20(S9) → π19(R9) is an epimorphism. It follows from the exact
sequence (19)9 that p∗ : π19(R10) → Ker ∆ is an isomorphism, where Ker
∆ ∼= Z4{2σ9ν16} by Lemma 2.2. Then we have

π19(R10) = {[2ι9]σ9ν16} ∼= Z4.

Consider the homomorphism ∆ : π20(S10) → π19(R10), where
π20(S10) = Z4{σ10ν17} ⊕ Z2{η10µ11} by Theorem 7.7 of [18]. We know
∆(ι10) = [2ι9] by [16] and ∆(η10) = 2[ι7]10ν7 by Theorem 1 of [7] and
Table 2 of [5]. So we have

∆(σ10ν17) = ∆(ι10)σ9ν16 = [2ι9]σ9ν16

and
∆(η10µ11) = 2[ι7]10ν7µ10 = 0.

Therefore ∆ : π20(S10) → π19(R10) is an epimorphism. It follows from
the exact sequence (19)10 that p∗ : π19(R11) → Ker ∆ is an isomorphism.
From Lemma 2.2, we have

π19(R11) = {[32[ι10, ι10]]} ⊕ {[ε10]η18} ⊕ {[η2
10]σ12} ∼= Z ⊕ Z2 ⊕ Z2



THE 19 AND 20-TH HOMOTOPY GROUPS OF THE ROTATION GROUPS Rn 97

where p∗([ε10]η18) = ε10η18 = η10ε11 and p∗([η2
10]σ12) = η2

10σ12 = η10ν11 +
η10ε11.

To determine the group structures of π19(Rn) for n = 12 and 13,
we need some lemmas. By Lemma 3.10 (ii) of [6], we have J([ε10]) ≡
λ′ mod Σπ28(S10). We recall that the stable J-image is trivial in
πS

18(S
0) ∼= Z8{ν∗} ⊕ Z2{ηµ̄}. We also recall that π28(S10) ∼= (Z8 ⊕ Z2 ⊕

Z2){λ′′, ξ′′, η10µ̄11}, Σλ′′ = 2λ′, Σξ′′ = 2ξ′, Σ∞λ′ = 4ν∗, Σ∞ξ′ = −2ν∗.
So we obtain

(∗) J [ε10] = aλ′ + 2bξ′ (a, b : odd)

We show the following.

Lemma 2.4. For the J-homomorphism J : π19(R11) → π30(S11), we have

(1) J([32[ι10, ι10]]) ∈ Σπ29(S10) ∼= Z2{σ11} ⊕ Z8{ζ11},
(2) J([ε10]η18) = λ′η29,
(3) J([η2

10]σ12) = ξ′η29.

Proof. From the diagram (3), we have

HJ([32[ι10, ι10]]) = Σ11p∗([32[ι10, ι10]]) = Σ11(32[ι10, ι10]) = 0.

By the exactness of the EHP sequence, we have the first relation.
By use of the formula (4) and (∗), we have J([ε10]η18) = λ′η29.
By (2.6) of [9], θ′σ23 = ξ′η29. By Lemma 1.2 (2), J([η2

10]) = θ′. Hence
we obtain J([η2

10]σ12) = θ′σ23 = ξ′η29. This completes the proof.

Consider the homomorphism ∆ : π20(S11) → π19(R11), where
π20(S11) ∼= Z2{η11ν12} ⊕ Z2{η11ε12} ⊕ Z2{µ11} by Theorem 7.2 of [18].
Since ∆(ι11) = [ι7]11ν7 by Lemma 1.1 (i) of [6], we have

∆(η11ν12) = [ι7]11ν7η10ν11 = 0,
∆(η11ε12) = [ι7]11ν7η10ε11 = 0

and

∆(µ11) = [ι7]11ν7µ10 = 0.

Thus we obtained that ∆ : π20(S11) → π19(R11) is a trivial homomorphism.
It follows from the exact sequence (19)11 that the sequence

0 → π19(R11)
i∗→ π19(R12)

p∗→ Ker ∆ → 0

is exact, where Ker ∆ ∼= Z2{ν11} ⊕ Z2{ε11} ∼= Z2{η11σ12} ⊕ Z2{ε11} by
Lemma 6.4 of [18] and Lemma 2.2.

Consider the elements [32[ι10, ι10]]12, [ε10]12η18, [η2
10]12σ12, [η11]σ12 and

[ε11] of π19(R12) and the J-homomorphism J : π19(R12) → π31(S12). We
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recall from Theorem 12.23 of [18] that

π31(S12) ∼=Z2{Σλ′ ◦ η30} ⊕ Z2{Σξ′ ◦ η30} ⊕ Z2{σ12} ⊕ Z8{ζ12} ⊕ Z2{ω′}
⊕ Z2{ξ12η30}.

Then we have

Lemma 2.5. (1) J([32[ι10, ι10]]12) ∈ Σ2π29(S10) ∼= Z2{σ12} ⊕ Z8{ζ12},
(2) J([ε10]12η18) = (Σλ′)η30,
(3) J([η2

10]12σ12) = (Σξ′)η30,
(4) J([η11]σ12) = θσ24 ≡ ξ12η30 mod Σπ30(S11),
(5) J([ε11]) ≡ ω′ mod Σπ30(S11) + ξ12η30.

Proof. From Lemma 2.4 and the diagram (3), we obtain (1), (2) and (3).
By Lemma 12.14 of [18], the element ξ12 of π30(S12) satisfies H(ξ12) ≡ σ23

mod 2σ23. From Lemma 7.5 of [18], the element θ ∈ π24(S12) satisfies
H(θ) = η23. We have

H(θσ24) = H(θ)σ24 = η23σ24 = σ23η30 = H(ξ12η30).

Hence it follows from the EHP sequence that

θσ24 ≡ ξ12η30 mod Σπ30(S11).

Since J([η11]) = θ by Lemma 1.1 (3), we obtain (4).
From Lemma 12.21 of [18], the element ω′ of π31(S12) satisfies

H(ω′) ≡ ε23 mod ν23 + ε23. Since HJ([ε11]) = ε23, we have

H(ω′) ≡ HJ([ε11]) mod ν23 + ε23.

Hence we obtain that

J([ε11]) ≡ ω′ mod Σπ30(S11) + ξ12η30.

Here we have
p∗([η11]σ12) = η11σ12 = ν11 + ε11 and [η11]σ12 is of order 2.
From Lemma 2.5, the J-image of five elements [32[ι10, ι10]]12,

[ε10]12η18, [η2
10]12σ12, [η11]σ12 and [ε11] of π19(R12) are independent on

π31(S12). It follows that
π19(R12) = {[32[ι10, ι10]]12} ⊕ {[ε10]12η18} ⊕ {[η2

10]12σ12} ⊕ {[η11]σ12}
⊕{[ε11]}

∼= Z ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2.

We note that [ε11] ∈ {[η11], 2ι12, ν
2
12}1. We show

Lemma 2.6. [ε11] ∈ {[η11], ν2
12, 2ι18}1
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Proof. From Theorem 2.1 of [5], we have [η11]ν12 ∈ π15(R12) ∼= Z{[8σ8]12}⊕
Z2{[ν5]12σ8}. Hence

[η11]ν12 = x[ν5]12σ8.

for some integer x. Then, from Lemma 2.3 (ii) of [6],

[η11]ν2
12 = x[ν5]12σ8ν15

= x[ν6 + ε6]12η14ν15

= 0

By the fact 2ν2
12 = 0, a Toda bracket {[η11], ν2

12, 2ι18}1 is defined and it is
a coset of [η11] ◦π19(S12)+π19(R12) ◦ 2ι19 = {[η11]σ12}+ {2[32[ι10, ι10]]12}.

From (6.1) of [18], ε11 ∈ {η11, ν
2
12, 2ι18}1 and it is a coset of {η11σ12}.

Since
p∗({[η11], ν2

12, 2ι18}1) ⊂ {η11, ν
2
12, 2ι18}1,

we can take [ε11] ∈ {[η11], ν2
12, 2ι18}1.

From the exact sequence (19)12 and Lemma 2.2, the following se-
quence

π20(S12) ∆→ π19(R12)
i∗→ π19(R13) → 0

is exact, where π20(S12) ∼= Z2{ν12} ⊕ Z2{ε12} by Theorem 7.1 of [18].
By (12.26) of [18], J∆(π20(S12)) = P (π33(S25)) = {(Σλ′)η30} +

{(Σξ′)η30} has four elements. From Lemma 2.5,

J({[ε10]12η18} ⊕ {[η2
10]12σ12}) = {(Σλ′)η30} + {(Σξ′)η30}.

It follows that ∆(π20(S12)) has four elements and

{[ε10]12η18} ⊕ {[η2
10]12σ12} ⊂ ∆(π20(S12)).

Hence we obtain that

π19(R13) = {[32[ι10, ι10]]13} ⊕ {[η11]13σ12} ⊕ {[ε11]13} ∼= Z ⊕ Z2 ⊕ Z2.

Consider the homomorphism ∆ : π20(S13) → π19(R13), where
π20(S13) ∼= Z16{σ13} by Propsition 5.15 of [18]. Since ∆(ι13) = [η11]13
by Table 3 of [5], we have

(10) ∆(σ13) = ∆(ι13)σ12 = [η11]13σ12.

It follows from the exact sequence (19)13 that the sequence

0 → Z2{[ε11]13} ⊕ Z{[32[ι10, ι10]]13}
i∗→ π19(R14)

p∗→ Ker ∆ → 0

is exact, where Ker ∆ ∼= Z2{ν2
13} by Lemma 2.2.

Since ∆(ι13)ν2
12 = ∆(ν2

13) = 0 and 2ν2
12 = 0, a Toda bracket

{∆(ι13), ν2
12, 2ι18} is defined. Then, from Lemma 2.6, we have
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[ε11]13 = i∗([ε11]) ∈ i∗({[η11], ν2
12, 2ι18})

⊂ {[η11]13, ν2
12, 2ι18}

= {∆(ι13), ν2
12, 2ι18}

by ∆(ι13) = [η11]13 ([7]), where i∗ : π19(R12) → π19(R13). According
to Theorem 2.1 of [11], for an element [ε11]13, there exists an element
[ν2

13] ∈ π19(R14) such that

p∗([ν2
13]) = ν2

13 and [ε11]14 = 2[ν2
13].

It follows from the above exact sequence (19)13 that

π19(R14) = {[32[ι10, ι10]]14} ⊕ {[ν2
13]} ∼= Z ⊕ Z4.

From the exact sequence (19)14 and Lemma 2.2, the following se-
quence

π20(S14) ∆→ π19(R14)
i∗→ π19(R15) → 0

is exact, where π20(S14) ∼= Z2{ν2
14} by Propsition 5.11 of [18].

By (12.27) of [18], we have J∆(ν2
14) = P (ν2

29) = Σ2ω′ = 2ω14ν30. It
follows that ∆(ν2

14) is of order 2. Since π19(R14) ∼= Z ⊕ Z4, we have

(11) ∆(ν2
14) = 2[ν2

13].

From the above exact sequence we have

π19(R15) = {[32[ι10, ι10]]15} ⊕ {[ν2
13]15} ∼= Z ⊕ Z2.

In the exact sequence (19)15, Ker ∆ = 0 and π20(S15) = 0 and in the
exact sequence (19)16, Ker ∆ = 0 and π20(S16) = 0. Hence we have

π19(Rn) = {[32[ι10, ι10]]n} ⊕ {[ν2
13]n} ∼= Z ⊕ Z2 for n = 16, 17.

Consider the homomorphism ∆ : π20(S17) → π19(R17), where
π20(S17) ∼= Z8{ν17} by Proposition 5.6 of [18]. By Theorem 3 (v) of [7],
∆(ν17) 6= 0 and ∆(2ν17) = 0. Therefore we have

(12) ∆(ν17) = [ν2
13]17.

From the exact sequence (19)17, we have

π19(R18) = {[32[ι10, ι10]]18} ∼= Z.

In the exact sequence (19)18, Ker ∆ = 0 by Lemma 2.2. According
to [7], ∆(η2

18) = 0 . Hence we have

π19(R19) = {[32[ι10, ι10]]19} ∼= Z.

From the exact sequence (19)19, we have the following exact sequence;

0 → π19(R19) → π19(R20) → Z{2ι19} → 0
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Hence we have

π19(R20) = {[32[ι10, ι10]]20} ⊕ {[2ι19]} ∼= Z ⊕ Z

where ∆(ι20) = [2ι19] by [16].
From the stability of πk(Rn) ([2]), we have

π19(Rn) = {[32[ι10, ι10]]n} ∼= Z for n ≥ 21.

3. Determination of π20(Rn : 2)

First, we list the kernel of the homomorphism ∆ : π20(Sn) → π19(Rn)
from the computations of π19(Rn).

Lemma 3.1. The homomrphism ∆ : π20(Sn) → π19(Rn) are monomor-
phisms for n = 7, 8, 12, 14, 15, 16 and 20. For the other values of n, we have
the following table of the kernel of ∆:

n 4 5 6 9 10
Ker ∆ ∼= Z2 Z2 Z2 Z8 Z2

generators ν2
4σ10ν17 ρIV ν6ν

2
14 = (ν6 + ε6)ν2

14 ζ9 η10µ11

11 13 17 18 19
Z2 ⊕ Z2 ⊕ Z2 Z8 Z4 Z2 Z2

η11ν12, µ11, η11ε12 2σ13 2ν17 η2
18 η19

In this section, we shall determine the generators of the 2-primary
components π20(Rn : 2). The results for π20(Rn : 2) are stated as follow:

Theorem 3.2.

π20(R3 : 2) = {[η2]ε′} ⊕ {[η2]µ3} ⊕ {[η2]η3µ4σ13} ∼= Z4 ⊕ Z2 ⊕ Z2,
π20(R4 : 2) = {[η2]4ε′} ⊕ {[η2]4µ3} ⊕ {[η2]4η3µ4σ13} ⊕ {[ι3]ε′}

⊕{[ι3]µ3} ⊕ {[ι3]η3µ4σ13}
∼= Z4 ⊕ Z2 ⊕ Z2 ⊕ Z4 ⊕ Z2 ⊕ Z2,

π20(R5 : 2) = {[ν2
4 ]σ10ν17} ⊕ {[ι3]5µ3} ⊕ {[ι3]5η3µ4σ13}

∼= Z2 ⊕ Z2 ⊕ Z2,
π20(R6 : 2) = {[ρIV ]} ⊕ {[ν2

4 ]6σ10ν17} ∼= Z4 ⊕ Z2,
π20(R7 : 2) = {[ν2

4 ]7σ10ν17} ⊕ {[ν6 + ε6]ν2
14} ∼= Z2 ⊕ Z2,

π20(R8 : 2) = {[ν2
4 ]8σ10ν17} ⊕ {[ν6 + ε6]8ν2

14} ⊕ {[ι7]ν7σ10ν17}
∼= Z2 ⊕ Z2 ⊕ Z2,

π20(R9 : 2) = {[ν6 + ε6]9ν2
14} ∼= Z2,

π20(R10 : 2) = {[ν6 + ε6]10ν2
14} ⊕ {[ζ9]} ∼= Z2 ⊕ Z8,

π20(R11 : 2) = {[ν6 + ε6]11ν2
14} ⊕ {[ζ9]11} ⊕ {[η10µ11]}

∼= Z2 ⊕ Z2 ⊕ Z2,
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π20(R12 : 2) = {[ζ9]12} ⊕ {[η10µ11]12} ⊕ {[η11]ν12} ⊕ {[η11]ε12}
⊕{[µ11]}

∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2,
π20(R13 : 2) = {[η11]13ν12} ⊕ {[η11]13ε12} ⊕ {[µ11]13} ∼= Z2 ⊕ Z2 ⊕ Z2,
π20(R14 : 2) = {[2ι13]σ13} ∼= Z16,
π20(Rn : 2) = 0 for n = 15, 16 and 17,
π20(R18 : 2) = {[2ν17]} ∼= Z4,
π20(R19 : 2) = {[η2

18]} ∼= Z2,
π20(R20 : 2) = {[η2

18]20} ⊕ {[η19]} ∼= Z2 ⊕ Z2,
π20(R21 : 2) = {[η19]21} ∼= Z2,
π20(Rn : 2) = 0 forn ≥ 22,

We have the relations 2[ρIV ] = [ι3]6µ3 and 8[2ι13]σ13 = [µ14]14.

Since π20(S3) ∼= Z4{ε′} ⊕ Z2{µ3} ⊕ Z2{η3µ4σ13} by Theorem 12.7
of [18], we have the results for π20(R3) and π20(R4) from (1) and (2),
respectively.

Consider the J-homomorphism J : π20(R4) → π24(S4), where
π24(S4) ∼= Z2{(Σν ′)µ7}⊕Z2{(Σν ′)η7µ8σ17}⊕Z2{ν4σ

′η14µ15}⊕Z2{ν2
4κ10}⊕

Z2{ν4µ7} ⊕ Z2{ν4η7µ8σ17} by Theorem of [10].

Lemma 3.3. (1) J([η2]4ε′) = 0,
(2) J([η2]4µ3) = (Σν ′)µ7,
(3) J([η2]4η3µ4σ13) = (Σν ′)η7µ8σ17,
(4) J([ι3]ε′) = 0,
(5) J([ι3]µ3) = ν4µ7,
(6) J([ι3]η3µ4σ13) = ν4η7µ8σ17.

Proof. From Lemma 12.3 and Theorem 12.7 of [18], we have

Σ4ε′ = Σ3(Σν ′ ◦ κ7) = 2ν7κ10 = 0.

By use of the formula (4), J([η2]4) = Σν ′ and J([ι3]) = ν4, we obtain the
lemma.

For n ≥ 4, we will determine the group π20(Rn+1) by applying the
exact sequence

(20)n π21(Sn) ∆→ π20(Rn) i∗→ π20(Rn+1)
p∗→ Ker ∆ → 0

where Im p∗ = Ker ∆ for ∆ : π20(Sn) → π19(Rn).
From the exact sequence (20)4, we obtain the following exact se-

quence;
0 → Coker ∆ i∗→ π20(R5)

p∗→ Ker ∆ → 0
where Ker ∆ ∼= Z2{ν2

4σ10ν17} by Lemma 3.1.
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From Table 2 of [5], π10(R5) ∼= Z8{[ν2
4 ]}. Obviously, p∗([ν2

4 ]σ10ν17) =
ν2
4σ10ν17. Σ(2σ10ν17) = 2σ11ν18 = 0 by (7.20) of [18]. Then it follows from

Lemma 2.2 of [11]

2([ν2
4 ]σ10ν17) = [ν2

4 ] ◦ 2(σ10ν17) = [ν2
4 ] ◦ 0 = 0.

This shows that

(13) π20(R5) ∼= Coker ∆ ⊕ Z2{[ν2
4 ]σ10ν17}.

Consider the homomorphism ∆ : π21(S4) → π20(R4), where π21(S4)
∼= Z8{ν4σ

′σ14}⊕Z4{ν4κ7}⊕Z4{Eε′}⊕Z2{µ4}⊕Z2{η4µ5σ14} by Theorem
12.7 of [18]. By use of ∆(ι4) = 2[ι3]− [η2]4 and the formula (5), we obtain
that

∆(Σε′) = ∆(ι4)ε′ = (2[ι3] − [η2]4)ε′ = 2[ι3]ε′ − [η2]4ε′,
∆(µ4) = ∆(ι4)µ3 = [η2]4µ3,
∆(η4µ5σ14) = ∆(ι4)η3µ4σ13 = [η2]4η3µ4σ13.

By Lemma 1.4 and by Lemma 6.6 of [18], we have

∆(ν4σ
′σ14) = ∆(ν4σ

′)σ13

= 2[ι3]ε′σ13 + 2c[η2]4ε′σ13

= [ι3]η2
3ε5σ13 + c[η2]4η2

3ε5σ13

= 0,

since ε5σ13 = 0 by Lemma 10.7 of [18].
We need the following

Lemma 3.4. ν ′ν6ν
2
14 = 2ε′.

Proof. By by (7.12) and Lemma 6.3 of [18], we have

ν ′ν6ν
2
14 = ε3ν

3
11 = ε3η11ν12.

By Lemma 12.3 and Lemma 12.10 of [18], we have

2ε′ = η2
3ε5 = η3ε4ν12.

Since η3ε4 = ε3η11 by (7.5) of [18], we obtain that

ν ′ν6ν
2
14 = 2ε′.

Next we prove

Lemma 3.5. ∆(ν4κ7) = d′[ι3]ε′ + a′[η2]4ε′,
where d′ is odd integer and a′ ≡ a mod 2. Here ∆(ν4) = [ι3]ν ′ + a[η2]4ν ′

([6]).
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Proof. Set ∆(ν4κ7) = a′[η2]4ε′+b′[η2]4µ3+c′[η2]4η3µ4σ13+d′[ι3]ε′+e′[ι3]µ3+
f ′[ι3]η3µ4σ13. Apply the J-homomorphism to the both sides. By the dia-
gram (3) and p.46 of [10], we have

J∆(ν4κ7) = P (ν9κ12) = 0.

Hence, from Lemma 3.3, we obtain that

∆(ν4κ7) = a′[η2]4ε′ + d′[ι3]ε′.

where a′ and d′ are integers such that 0 ≤ a′, d′ ≤ 3.
From Lemma 10.1 of [18], we have

2κ7 = ν7ν
2
15 + xν7ζ10 = Σ(ν6ν

2
14 + xν6ζ9)

for some integer x. Then we have

∆(2(ν4κ7)) = ∆(ν4 ◦ 2κ7) = ∆(ν4)(ν6ν
2
14 + xν6ζ9)

= ([ι3] + a[η2]4)(ν ′ν6ν
2
14 + xν ′ν6ζ9)

= ([ι3] + a[η2]4)ν ′ν6ν
2
14,

since ν ′ν6 ∈ π9(S3) = 0 by Proposition 5.11 of [18].
From Lemma 3.4, we obtain that

∆(2(ν4κ7)) = 2[ι3]ε′ + 2a[η2]4ε′.

This completes the proof.

It follows from (13) that

π20(R5 : 2) = {[ν2
4 ]σ10ν17} ⊕ {[ι3]5µ3} ⊕ {[ι3]5η3µ4σ13} ∼= Z2 ⊕ Z2 ⊕ Z2

and

(14) [ι3]5ε′ = [η2]5ε′ = 0.

Consider the homomorphism ∆ : π21(S5) → π20(R5), where π21(S5)
∼= Z2{µ5σ14} ⊕ Z2{η5ε6} by Theorem 12.6 of [18]. By the formula (5) and
the relation ∆(ι5) = [ι3]5η3 , we have

∆(µ5σ14) = ∆(ι5)µ4σ13 = [ι3]5η3µ4σ13.

By (14) and the relation η2
3ε5 = 2ε′ ( Lemma 12.3 of [18]), we have

∆(η5ε6) = [ι3]5η2
3ε5 = 2[ι3]5ε′ = 0.

Then, from the exact sequence (20)5 and Lemma 3.1, we obtain that the
following sequence

0 → Z2{[ν2
4 ]σ10ν17} ⊕ Z2{[ι3]5µ3}

i∗→ π20(R6)
p∗→ Z2{ρIV } → 0.

is exact.

Lemma 3.6. [ρIV ] = {[σ′′′], 4ι12, 4σ12}1 and 2[ρIV ] = [ι3]6µ3.
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Proof. By Lemma 1.2 (1) and the fact 16σ12 = 0, the Toda bracket
{[σ′′′], 4ι12, 4σ12} is defined and it is a coset of [σ′′′]◦π20(S12)+π13(R6)◦4σ13.
Since π13(R6) ∼= Z4 by Table 2 of [5], π13(R6) ◦ 4σ13 = 0. By Lemma 1.3,

[σ′′′]ε12 = {[ν5], 8ι8, ν8}1 ◦ ε12 = −[ν5] ◦ Σ{8ι7, ν7, ε10} = 0,

since Σ{8ι7, ν7, ε10} ⊂ π20(S8) = 0 by Theorem 7.6 of [18].

[σ′′′]η12 = {[ν5], 8ι8, ν8}1 ◦ η12 = −[ν5] ◦ Σ{8ι7, ν7, η10} = 0,

since Σ{8ι7, ν7, η10} ⊂ π13(S8) = 0 by Proposition 5.9 of [18]. Then we
have

[σ′′′]ν12 = [σ′′′](ε12 + ν12) = [σ′′′]η12σ13 = 0.

Hence we have [σ′′′] ◦ π20(S12) = 0. It follows that the Toda bracket
{[σ′′′], 4ι12, 4σ12}1 consists of a single element. By (6), we have

p∗({[σ′′′], 4ι12, 4σ12}1) = {σ′′′, 4ι12, 4σ12}1 = ρIV .

Denote by ιR5 the homotopy class of the identity map of R5. By
Lemma 1.2 (1) and the definition of µ3 (p.136 of [18]), we have

2[ρIV ] = 2ιR5 ◦ [ρIV ]
⊂ {2[σ′′′], 4ι12, 4σ12}1

= {[ι3]6µ3, 4ι12, 4σ12}1

⊃ [ι3]6 ◦ {µ3, 4ι12, 4σ12}1

⊃ [ι3]6 ◦ {µ3, 2ι12, 8σ12}1

3 [ι3]6µ3

The indeterminacy of {2[σ′′′], 4ι12, 4σ12}1 is 2[σ′′′] ◦ π20(S12) + π13(R6) ◦
4σ13 = 0. Thus we have

2[ρIV ] = [ι3]6µ3.

From the above exact sequence and Lemma 3.6, we obtain that

π20(R6) = {[ρIV ]} ⊕ {[ν2
4 ]6σ10ν17} ∼= Z4 ⊕ Z2.

From the exact sequence (20)6 and Lemma 3.1, we obtain the follow-
ing exact sequence;

0 → Coker ∆ → π20(R7) → Z2{(ν6 + ε6)ν2
14} → 0.

We recall the element [ν6 + ε6] ∈ π14(R7) given in [5]. The element
[ν6 + ε6]ν2

14 ∈ π20(R7) is of order two and satisfies p∗([ν6 + ε6]ν2
14) = (ν6 +

ε6)ν2
14. It follows from the above sequence that

(15) π20(R7) ∼= Coker ∆ ⊕ Z2{[ν6 + ε6]ν2
14}.

Consider the homomorphism ∆ : π21(S6) → π20(R6), where π21(S6)
∼= Z4{ρ′′′} ⊕ Z2{ε6}, by Theorem 10.5 of [18].
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By the definition of ρ′′′ (p.103 of [18]),

ρ′′′ ∈ {σ′′, 4ι13, 4σ13}1.

By Proposition 1.1, Lemmas 1.2 and 3.4, we have

∆(ρ′′′) ∈ ∆{σ′′, 4ι13, 4σ13}1

⊂ {∆(σ′′), 4ι13, 4σ13}
= {[σ′′′], 4ι13, 4σ13} = [ρIV ].

Consider the element [η6]κ7 of π21(R7). From (15.3) of [10], we have
η6κ7 = ε6. Then we obtain that

∆(ε6) = ∆(η6κ7) = ∆(p∗([η6]κ7) = 0.

That is Coker ∆ ∼= Z2{[ν2
4 ]6σ10ν17}.

It follows from (15) that

π20(R7) = {[ν2
4 ]7σ10ν17} ⊕ {[ν6 + ε6]ν2

14} ∼= Z2 ⊕ Z2.

From (2) and π20(S7) ∼= Z2{ν7σ10ν17} by Theorem 7.7 of [18], we have

π20(R8) = {[ν2
4 ]8σ10ν17} ⊕ {[ν6 + ε6]8ν2

14} ⊕ {[ι7]ν7σ10ν17} ∼= Z2 ⊕Z2 ⊕Z2.

Conside the homomorphism ∆ : π21(S8) → π20(R8), where π21(S8) ∼=
Z2{σ8ν

2
15} ⊕ Z2{ν8σ11ν18} by Theorem 7.7 of [18]. By Lemma 1.2 (ii) of

[6] and (7.19) of [18], we have

∆(σ8ν
2
15) ≡ [ι7]σ′ν2

14 + c[ν6 + ε6]8ν2
14 mod {[ν5]ν4

8 , [η5ε6]8ν2
14}

≡ x[ι7]ν7σ10ν17 + c[ν6 + ε6]8ν2
14 mod {[ν5]ν4

8 , [η5ε6]8ν2
14}

where x, c are odd integers. Since ∆(ι8) = 2[ι7] − [η6]8 by Table 3 of [5],
we have

∆(ν8σ11ν18) = (2[ι7] − [η6]8)ν7σ10ν17

= [η6]8ν7σ10ν17

= b[ν2
4 ]8σ10ν17 by Lemma 1.1 (iv) of [6]

where b is an odd integer. That is Coker ∆ ∼= Z2{[ν6 + ε6]8ν2
14}.

In the exact sequence (20)8, Ker ∆ = 0 by Lemma 3.1. It follows
that

i∗ : Coker ∆ → π20(R9)

is an isomorphism where ∆ : π21(S8) → π20(R8) . So we have

π20(R9) = {[ν6 + ε6]9ν2
14} ∼= Z2.

In the exact sequence (20)9, Ker ∆ ∼= Z8{ζ9} by Lemma 3.1 and
π21(S9) = 0 by Theorem 7.6 of [18]. It follows that the sequence

(16) 0 → π20(R9)
i∗→ π20(R10)

p∗→ Z8{ζ9} → 0
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is exact. By Lemma 1 of [17], Σ13p∗∆(ζ10) = Σ13p∗(2[ζ9]) for ∆ : π21(S10)
→ π20(R10). By Theorem 7.4 of [18], Ker {Σ13 : π20(S9) → π33(S22)} ∼=
Z2{ν̄9ν17}. When we determined the group π19(R10), we used the relation
∆(ν̄9ν17) = [ν5]9ν̄8ν16 6= 0. This implies the relation p∗(∆(ζ10)−2[ζ9]) = 0.
From the exactness of the sequence (16), we have

(17) ∆(ζ10) ≡ 2[ζ9] mod i∗π20(R9).

Consider the element [η2
10]µ12 of π21(R11). By (7.14) of [18], we have

p∗([η2
10]µ12) = η2

10µ12 = 4ζ10.

Therefore we have

8[ζ9] = ∆(4ζ10) = ∆p∗([η2
10]µ12) = 0.

Since the element [ζ9] is of order 8, the above exact sequence (16) is split.
So we have

π20(R10) = {[ν6 + ε6]10ν2
14} ⊕ {[ζ9]} ∼= Z2 ⊕ Z8.

From the exact sequence (20)10, (17) and Lemma 3.1, we obtain that
the following sequence

0 → Z2{[ζ9]11} ⊕ Z2{[ν6 + ε6]11ν2
14}

i→ π20(R11)
p∗→ Z2{η10µ11} → 0

is exact.
A Toda bracket {[η2

10], 2ι12, 8σ12}1 is defined by Lemma 1.2 (2) and
the fact 16σ12 = 0 and it is a coset of [η2

10] ◦ π20(S12) + π13(R11) ◦ 8σ13 =
{[η2

10]ν12, [η2
10]ε12} by Table 2 of [5]. Since µ11 ∈ {η11, 2ι12, 8σ12}1 + {ν3

11}
by Lemma 6.5 of [18], we have

η10µ11 ∈ {η2
10, 2ι12, 8σ12}1,

where its indeterminacy is η2
10◦π20(S12)+π13(S10)◦8σ13 = {η2

10ν12, η
2
10ε12}

= 0. Then we have

p∗{[η2
10], 2ι12, 8σ12}1 ⊂ {η2

10, 2ι12, 8σ12}1 = η10µ11.

Therefore we can take the element [η10µ11] ∈ π20(R11) such that
[η10µ11] ∈ {[η2

10]12, 2ι12, 8σ12}1. By Corollary 3.7 of [18], we have

2[η10µ11] = {[η2
10], 2ι12, 8σ12}1 ◦ 2ι19 = [η2

10] ◦ {2ι12, 8σ12, 2ι19}1 ≡ 0

where the indeterminacy of {2ι12, 8σ12, 2ι19} is 2π20(S12) = 0. It follows
from the above exact sequence that

π20(R11) ∼= Z2{[ν6 + ε6]11ν2
14} ⊕ Z2{[ζ9]11} ⊕ Z2{[η10µ11]}.

Lemma 3.7. For the J-homomorphism J : π20(R11) → π31(S11), we have
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J([ν6 + ε6]11ν2
14) = 0,

J([ζ9]11) = Σβ′ = θ′ε23,
J([η10µ11]) ≡ β′′ mod {Σβ′}

Proof. By the formula (4) and J([ν6 + ε6]) = σ′σ14, we have

J([ν6 + ε6]11ν
2
14) = Σ4J([ν6 + ε6])Σ7ν2

14

= Σ4(σ′σ14)ν2
21

= 2σ2
11ν

2
21 = 0,

since 2ν2
21 = 0.

From Lemma 16.1 of [10], the element β′ of π30(S10) satisfies the
relations Σβ′ = θ′ε23 and H(β′) = ζ19. From the diagram (3), we have

HJ([ζ9]) = ζ19 = H(β′).

By the exactness of the EHP sequence, we have

J([ζ9]) ≡ β′ mod Σπ29(S9) = {κ10}.

Since κ10 is not in the J-image, we have J([ζ9]) = β′. By the diagram (3),
we have J([ζ9]11) = Σβ′.

From Lemma 16.2 of [10], the element β
′′

of π31(S11) satisfies Σβ
′′

=
P (µ25) and H(β

′′
) = η21µ22. Since HJ([η10µ11]) = η21µ22 and κ11 is not

in the J-image, we have

J([η10µ11]) ≡ β
′′

mod Σβ′.

Consider the homomorphism ∆ : π21(S11) → π20(R11), where
π21(S11) ∼= Z2{σ11ν18} ⊕ Z2{η11µ12} by Theorem 7.3 of [18]. By use of
∆(ι11) = [ι7]11ν7 (Lemma 1.1 of [6]) and Lemma 2.3 (v) of [6], we have

∆(σ11ν18) = ∆(ι11)σ10ν17 = [ι7]11ν7σ10ν17 = d[ν6 + ε6]11ν2
14,

where d is an odd integer and

∆(η11µ12) = [ι7]11ν7η10µ11 = 0.

From the exact sequence (20)11 and Lemma 3.1, we obtain that the follow-
ing sequence

0 → Z2{[ζ9]11} ⊕ Z2{[η10µ11]} → π20(R12) →
Z2{η11ν12} ⊕ Z2{η11ε12} ⊕ Z2{µ11} → 0

is exact.
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Now consider the elements [ζ9]12, [η10µ11]12, [η11]ν12, [η11]ε12 and [µ11]
of π20(R12) and the J-homomorphism J : π20(R12) → π32(S12). Here, by
Theorem of [10],

π32(S12) ∼= Z8{κ12} ⊕ Z2{(Σθ′)ε24} ⊕ Z2{Σβ
′′} ⊕ Z2{θε24}⊕

Z2{θν24} ⊕ Z2{β
′′′}

with the relations ;

(18) Σ2β
′′′

= 8P (σ29), H(β
′′′

) = µ23.

by Lemma 16.3 of [10]. Then we have

Lemma 3.8. (1) J([ζ9]12) = (Σθ′)ε24,
(2) J([η10µ11]12) ≡ Σβ

′′
mod (Σθ′)ε24,

(3) J([η11]ν12) = θν24,
(4) J([η11]ε12) = θε24,

(5) J([µ11]) ≡ β
′′′

mod {(Σθ′)ε24, Σβ
′′}.

Proof. From the diagram (3) and Lemma 3.7, we have (1) and (2). By
Lemma 1.2 (3) and the formula (4), we have (3) and (4). By the diagram
(3) and (18), we have HJ([µ11]) = µ23 = H(β

′′′
). From the exactness of

the EHP sequence, we obtain that

J([µ11]) ≡ β
′′′

mod Σπ31(S11).

By [10], Σπ31(S11) ∼= Z8{κ12} ⊕Z2{(Σθ′)ε24} ⊕Z2{Σβ
′′}. Since κ12 is not

in the J-image, we have (5).

From Lemma 3.8, the J-image of five elements [ζ9]12, [η10µ11]12,
[η11]ν12, [η11]ε12 and [µ11] of π20(R12) are independent on π32(S12). There-
fore we have

π20(R12) = {[ζ9]12} ⊕ {[η10µ11]12} ⊕ {[η11]ν12} ⊕ {[η11]ε12} ⊕ {[µ11]}
∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

In the exact sequence (20)12, Ker ∆ = 0 by Lemma 3.1. It follows
that

(19) p∗ : Coker ∆ → π20(R13)

is the isomorphism, where ∆ : π21(S12) → π20(R12) and π21(S12) ∼=
Z2{ν3

12} ⊕ Z2{µ12} ⊕ Z2{η12ε13} by Theorem 7.2 of [18].

Lemma 3.9. For the homomorphism ∆ : π21(S12) → π20(R12), we have
(1) ∆(η12ε13) = [ζ9]12,
(2) ∆(µ12) ≡ [η10µ11]12 mod [ζ9]12,
(3) ∆(ν3

12) = 0.
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Proof. By use of the diagram (3), we have

J∆(η12ε13) = P (η25ε26)
= (Σθ′)ε24 by (7.30) of [18]
= J([ζ9]12) by Lemma 3.8 (1).

Since the J-homomorphism J : π20(R12) → π32(S12) is a monomorphism
by Lemma 3.8, we obtain (1). Also we have

J∆(µ12) = P (µ25)
= Σβ

′′
by Lemma16.2 of [10]

≡ J([η10µ11]) mod (Σθ′)ε24 by Lemma 3.8 (2).

Since the J-homomorphism J : π20(R12) → π32(S12) is a monomorphism
by Lemma 3.8, we obtain (2).

From [6], we recall the element [ν2
12] ∈ π18(R13). Then [ν2

12]ν18 ∈
π21(R13) satisfies p∗([ν2

12]ν18) = ν3
12. So we have

∆(ν3
12) = ∆(p∗([ν2

12]ν18)) = 0.

Then, it follows from (19) that

π20(R13) = {[η11]13ν12} ⊕ {[η11]13ε12} ⊕ {[µ11]13} ∼= Z2 ⊕ Z2 ⊕ Z2

Consider the homomorphism ∆ : π21(S13) → π20(R13), where
π21(S13) ∼= Z2{ν13} ⊕ Z2{ε13} by Theorem 7.1 of [18]. By use of ∆(ι13) =
[η11]13 and the formula (5), we have

∆(ν13) = ∆(ι13)ν12 = [η11]13ν12,
∆(ε13) = [η11]13ε12.
Then, from the exact sequence (20)13 and Lemma 3.1, we obtain that

the sequence

(20) 0 → Z2{[µ11]13}
i∗→ π20(R14)

p∗→ Z8{2σ13} → 0

is exact. From Lemma 1 of [17], we have

p∗∆(σ14) = 2σ13 = p∗([2ι13]σ13),

where ∆ : π21(S14) → π20(R14). By the exactness of the sequence (20), we
obtain that

(21) ∆(σ14) ≡ [2ι13]σ13 mod [µ11]14.

On the other hand, we have

HJ([2ι13]σ13) = 2σ27 = HP (σ29).

From the exactness of the EHP sequence, we have

J([2ι13]σ13) ≡ P (σ29) mod Σπ33(S13).
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Since the order of P (σ29) is 16 by Lemma 16.3 of [10], we have that the
order of [2ι13]σ13 is 16. Therefore, from the exact sequence (20), we have

π20(R14) = {[2ι13]σ13} ∼= Z16,

with the relations [µ11]14 = 8[2ι13]σ13 and ∆(σ14) = [2ι13]σ13.
Then, from (21), we have obtained that ∆ : π21(S14) → π20(R14) is

an isomorphism. From the exact sequence (20)14 and Lemma 3.1, we have

π20(R15) = 0.

Since π20(S15) = π20(S16) = π21(S16) = 0, we have

π20(Rk) = 0 for k = 16, 17

from the exactness of the sequences (20)15 and (20)16 respectively.
From the exact sequence (20)17, we easily obtain that

π20(R18) = {[2ν17]} ∼= Z4,

since Ker ∆ ∼= Z4{2ν17} by Lemma 3.1.
Consider the homomorphism ∆ : π21(S18) → π20(R18), where

π21(S18) ∼= Z8{ν18}. By Lemma 1 of [17], we have

∆(ν18) = [2ν17].

Then, from the exact sequence (20)18 and Lemma 3.1, we easily obtain
that

π20(R19) = {[η2
18]} ∼= Z2.

Consider the exact sequence (20)19. By [7], we obtain that the se-
quence

0 → π20(R19) → π20(R20) → π20(S19) → 0
is a split exact sequence. Therefore we have

π20(R20) = {[η2
18]20} ⊕ {[η19]} ∼= Z2 ⊕ Z2

and J([η2
18]) = β, J([η2

18]20) = Σβ = P (η41), J([η19]) ≡ β mod Σπ39(S19)
by Lemma 16.4 of [10] and the diagram (3).

By Lemma 16.4 of [10] and the diagram (3), we have ∆(η20) = [η2
18]20.

Then, from the exact sequence (20)20, we obtain that

π20(R21) = {[η19]21} ∼= Z2.

Since P (ι43) = Σβ = J([η19]21) by Lemma 16.5 of [10] , we have

∆(ι21) = [η19]21.

It follows from the exact sequence (20)21 that

π20(R22) = 0.
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Additional remark in the proof.
From the fact ζ10 ∈ {η10, η11ε12, 2ι20}1 by Lemma 9.1 of [18] and

∆(η10) = 2[ι7]10ν7, by Theorem 1 of [7], we have

∆(ζ10) ∈ {∆(η10), η10ε11, 2ι19}
= {2[ι7]10ν7, η10ε11, 2ι19}
⊂ {2[ι7]10, ν7η10ε11, 2ι19}
≡ 0 mod 2π20(R10) = {2[ζ9]}

From (17), we obtain that

∆(ζ10) = 2[ζ9].
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[15] K. Ôguchi: Generators of 2-primary components of homotopy groups of spheres,
unitary groups and symplectic groups, J. Fac. Sci. Univ. of Tokyo, 11 (1964), 64-111.

[16] N. E. Steenrod: The topology of fiber bundles, Princeton Math. Series 14, Prince-
ton Univ. Press (1951).



THE 19 AND 20-TH HOMOTOPY GROUPS OF THE ROTATION GROUPS Rn 113

[17] M. Sugawara: Some remarks on homotopy groups of rotation groups, Math. J.
Okayama Univ. 3 (1954),129-133.

[18] H. Toda: Composition methods in homotopy groups of spheres, Ann. Math. Studies
49, Princeton (1962).

[19] G. W. Whitehead: A generalization of the Hopf invariant, Ann. of Math. 51
(1950), 192-237

Hideyuki Kachi
Department of Mathematical Seiences

Faculty of Seience
Shinshu University

Matumoto 390-8621, Japan

Juno Mukai
Department of Mathematical Seiences

Faculty of Seience
Shinshu University

Matumoto 390-8621, Japan

(Received August 30, 2000)


