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THE 19 AND 20-TH HOMOTOPY GROUPS OF THE
ROTATION GROUPS R,

HIDEYUKI KACHI AND JUNO MUKAI

ABSTRACT. We determine the group structures of the homotopy
groups of the rotation groups 7 (R, ) for kK = 19 and 20. The main tool
of the computaion is the homotopy exact sequence associated with the
fibration Ry41/Rn = S".

INTRODUCTION

The present paper is the continuation of [6] and is devoted to the
computation of the homtopy groups 7 (R,,) of the rotation groups R, for
k =19 and 20. According to [8] and [11], the group structures of 7 (R;)
for £ < 22 and n < 9 are known. For —1 < r < 4, the group structure of
Tm-+r (Rm) are determined in [7]. On [1], Barratt-Mahowald shows that for
n>13and k <2n—1

ﬂ'k(Rn) = ﬂ'k(Roo) & 7Tk+1(v2n,n)7

where Vb, ,, = Ray /Ry, is the Stiefel manifold. By use of this splitting, [13]
and [14], we can obtain 7, (R,,) for £ = 19 and 20 with n > 13. So our main
task is to determine 7, (R,) for £ = 19 and 20 in the case 10 < n < 12.
Summarizing these results, we have the following table:

n 3 4 5 6 7
ng(Rn) 26 D Lo (Z@)Q D (Z2)2 (Z2)2 Z19 P Ly 7o
m20(Rn) | Z12 ® (Z2)% | (Z12)? ® (Z2)* | (Z2)? | Zeo ® Z2 | (Z2)?
8 9 10 11 12 13 14
Zy Zo| Zin (Ze(Z)? | Za(Z)' | Z0(Z)? | Z® Zy
Zs © (Z2)? | Zo | Z3s @ Zo (Z2)3 (Z5)° (Z2)? Za10
15 16 17 18 | 19 20 21 122<n
LDy | LDy | ZD Ly | Z | Z |\ ZDZ| Z A
0 0 0 | Zw| 22| (Z2)% | Z2| O

Here (Z;)™ indicates the direct sum of n-copies of a cyclic group Zj
of order k. Odd primary componets of m(R,,) for kK = 19, 20 are easily ob-
tained from [8] and its method. We denote by 7 (R, : 2) a suitablly chosen
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subgroup of the homotopy group 7 (R,) which consists of the 2-primary
components and a free part such that the index |m(Ry) : mr(Ry @ 2)| is
odd. This group 7 (R, : 2) is roughly called as the 2-primary components
of mp(Ry,). The results of (R, : 2) for k = 19 and 20 are stated in
Theorems 2.1 and 3.2, in which generators of the 2-primary components
7 (Ry, : 2) are given.

The main tool of the computation is the following homotopy exact
sequence associated with the fibration R, +1/R, = S™;

= Mhg1(87) B m(Rn) 5 my(Rugr) 7 mu(87) S mica (Ba) =,
where i : R, — R,41 is the inclusion, p : R,11 — S™ is the projection and
A1 (S™) — mr(R,y,) is the connecting map. We can form the following
exact sequence:

A Ty P A

(k) mr41(S™:2) = m(Ry, 0 2) = mrp(Rpg1 1 2) = mp(S™ 2 2) =

Te—1(Ry 1 2).

The computation will be done by use of the exact sequence (k)p,
the results [18], [10] on the homotopy groups of sphere S™ and the J-
homomorphism J : mg(Ry, : 2) — Tgyn(S™ 1 2).

We use the notations and the results of [5], [6], [18] and [10], freely. For
an element a € 7 (S™), we denote by [a] € mi(R,,) an element satisfying
p«[a] = a. Though [a] is only determined modulo Im i, = i, (mx(Ry)),
we will sometimes give restriction on [a] to fix it more concretely. We set
() = j«la] € Tk (Ry,), where j : R, — Ry, for n+1 < m is the inclusion.
Hereafter we only deal with the 2-primary components 7 (X : 2) of the
homotopy group mx(X) and its is denoted by 7, (X) for simplicity.

1. PRERIMINARIES

We recall the elements [n2] € m3(R3), [t3] € m3(R4) and [¢7] € 77 (R7)
given in [5]. It is well know that the homomorphism

(1) (1) : 7k (S°) — 7k (R3)
is an isomorphism for all £ > 3 and p. o [12]« = n2,. For n = 4 or 8,
(2) Ty + [Ln—l]* : ﬂ'k(Rn_l) D Wk(Sn_l) — 7Tk<Rn)

is an isomorphism for all k.
For the J-homomorphism J : 7 (Ry) — Tyn(S™), we have the dia-
gram
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(3)
Wk(Rn_l) Wk(Rn) b Wk(snfl) 4A>'/Tk71(Rn—1)

s s |= s

a1 (S™1) 2 Ty (57— 1 (52 1) —E o (S

which is commutative up to sign and its lower sequence is the EHP exact
sequence ([18]). Moreover, we have a formula
(4) J(aof)=J(a)oX"B
for a € 7j(Ry) and B € m(S7).
The connecting homomorphism A : 7 (S™) — m,_1(Ry,) satisfies the
following relation
(5) Aao8) = Aa)o 3
for a € 7;(S™) and B € mp_1(S77L).
As to the Toda bracket, from Theorem 5.2 of [12], we have following

Proposition 1.1. Assume that a0 X8 = o~y =0 for a € mj11(S™),3 €
T (S7) and v € T (S™). Then we have

A{a7 Zﬂy 2’7}1 C {Aa7 ﬁ7 ’Y}
On m12(Ry,), from [5], we have the following.

Lemma 1.2. (1) There exists an element [0"'] € m2(Rg) = Z4 which
satisfies the relations p.([0"']) = o",2[c"] = [i3]ens and A(c”) =
[UW], where A : 7T13(S6) — 7T12(R6).

(2) There exists an element [n3,] € m2(R11) of order 2 such that

J(Iniol) = ¢'.
(3) There exists an element [m1] € mi2(R12) of order 2 such that
J([mi]) = 0.

From Table 2 of [5], we have mg(Rg) = Zg{[vs]} and mo(Rs) =
Zo{[vsIns}. Since 8[vs] = 8vg = 0, a Toda bracket {[vs],8ts, v} is de-
fined and it is a coset of [v5] o m12(S®) +7m9(Rg) o vg = 0. From Lemma 5.13
of [18], 0" = {vs,8ts, us}. Then we have

p«({[vs], 8ts, v8}) = {vs, 818,18} = 0.

Consequently we have

Lemma 1.3.
[0"] = {[vs), 8us, 8}
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From Table 2 of [5], we have

m1a(Ra) = Za{[e)ae’y @ Zo{[nolamspia} @ Zaf[es]€'} ® Zo{[es]nzpal.

By Theorem 7.3 of [18], we have

m14(9Y) & Zs{vao'} & Zu{S€'} © {naps}-
For the homomorphism A : 714(S%) — m13(Ry4), we prove
Lemma 1.4.

A(vgo’) = 2[i3)e + 2cna)sé

where ¢ is an integer.
Proof. Set A(vyo’) = alig]e’ + bles|nspa + c[n2]a€’ + d[na2]anspa, for some
integers a,b, ¢ and d. Apply the J-homomorphism J : m3(Rs) — m17(S%)
to the both sides of this equation, where m17(S%) = Zs{v2010} D Zo{van:} @

Zo{(Xv)n7us} by Theorem 7.7 of [18]. From the diagram (3) and the
relation in p.76 of [18], we have

JA(vy0') = P(4ogrig) = 493’%%010,
where 2’ is an odd integer.
From [5], we have J([t3]) = v4 and J([n2]s) = Lv/. Then, by (7.10)
of [18], we have
J([L3]6’) = V424 ges :I:21/ZO’10,
J([t3]nspa) = vamzps,
I ([n2lanspa) = (S0 )nzps
and
J([m2]a€’) = Z/8% =0,
since V3¢ = 2(V/509) = 0 by (7.10) of [18] and v'v5 € me(S3) = 0. So
we obtain that ¢ = 2 and
A(vs0”) = 2[u3]e + c[n2]ae’.
On the other hand, we have
A(2(v40")) = A(vg020") = A(vg 0 B0”) = A(vg)o” = ([t3] + a[ne]s)v/o”
by Lemma 1.1 of [6]. Here we have
¥3 (0" = 8vgog = 0.

Since X3 : 713(93) — m16(S%) is a monomorphism by (7.15) of [18], we have
V'o” = 0. Tt follows that 2¢[ng]s€’ = 0. Therefore we obtain that ¢ is an
even integer. O
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2. DETERMINATION OF mig(R,, : 2)

In this section, we shall determine the generators of the 2-primary
components m19(R, : 2). The results for m9(R, : 2) are stated as follow:

Theorem 2.1.

m9(R3:2) = {[nlpsoiz} @ {[nelnséa} = Zo @ 2o,
mo(Re:2) = {[melapsorz} © {[nelanséa} @ {[tslpsoia} @ {[es]nsea}

& Zo® D Zy® Lo,
mo(Rs:2) = {[walspsoia} @ {[t3]sms€a} = Zo @ Zo,
mo(Re :2) = {[0"]o12} & {[vs]|Usrie} = Zs & Zo,
m9(Ry :2) = {[vs]nlsvic} = Zo forn="7,8 and 9,
mo(Ri0:2) = {[2w]ogrie} = Zy,
mo(R11:2) = {[32[t10, 110]]} ® {[er0]ms} ® {[niplona}

= 7 D Z2 D ZQa
m9(Ri2:2) = {[32[t10, 11012} © {[€10]12mm8} © {[n7p12012}

&{[miloi2} & {[en]}

= Z®Zy B Lr® Zy® Lo,
mo(Ri3:2) = {[32[10,¢10]]13} ® {[m1]izo12} & {le11]13}

= 2@ Zyd 4y
mg(R1a:2) = {[82[t10,t10]]14} @ {[v5]} = Z © Z4
mo(Rn:2) = {[32[u10, caolln} & {[s]n} = Z & 22

forn =15,16 and 17

m9(Ry 2 2) = {[32[t10,t10]]n} = Z for n =18 and 19,
Ti9(Ra0 1 2) = {[32[t10, t10])20} B {200} = Z B Z
7T19(Rn . 2) = {[32[L10, LlOHn} =7 fOT n > 21.

The relations hold: 2[c"|o12 = [13]su3012 and 2[v%5] = [e11]14-

Since m19(5%) & Za{uso12} @ Za{nsés} by Theorem 12.6 of [18], we
have the results for m19(R3) and m19(R4) from (1) and (2), respectively.

For n > 4, we will determine the group m19(R,+1) by applying the
exact sequence

(19)n 7T20<Sn) é) 7T19(Rn) ﬁ) 7T19(Rn+1) & KerA — 0,

where Im p, = Ker A for A : m9(S™) — mg(Ry). For the results on this
Ker A, we have the following lemma as the results of the computation of
mig(Ry) in [6].

Lemma 2.2. The homomrphism A : w9(S™) — ms(Ry) are monomor-
phisms for n =4,6,7,8,12,14,15,16,17 and 18. For the other values of n,
we have the following table of the kernel of A:
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n 5 9 10
KerA = Lo @B Ly 4 YASWAR WA
generators | vs(g, VsUslie | 20916 | 32[t10, L10], MoV11, N10€lL
11 13| 19
Zo® Zy | Zy A
T11, €11 | Vi3 | 219

From the exact sequence (19)4 and Lemma 2.2, we have the exact
sequence

m20(5%) 2 mi9(Ra) & mig(Rs) — 0,

where mo0(S*) =2 Zo{v2o10v17} © Zo{pao13} © Z2{nses} by Theorem 12.6
of [18].

Since A(v2) = 0 and A(u4) = 2[t3] — [12]4 by Table 3 of [5], we have

A(Vio'lon?) = A(VZ)O’QVlG = 0,

A(pao13) = A(ua)pzors = (2] — [m2la)psors = [nelapsors
and

A(mes) = A(ta)nzea = (2[es] — [m2]a)nses = [ma]nzes.
It follows from the above exact sequence that

m9(Rs) = {[t3]spzo12} @ {[t3]sm3€a} = Zo @ Zs.

Consider the homomorphism A : 790(S?) — mo(R5), where mq(S%) =2
Z2{&s} @ Zo{p""'} by Theorem 10.5 of [18]. Since A(i5) = [t3]57m3 by Table
3 of [5], we have

A(&) = [ta]sm3€a
By the definition of p¥" (p.103 of [18]),
(6) pIV S {J/H, 2L12, 80’12}1
where the Toda bracket {¢”’,2112,8012}1 consists of a single element.
By Proposition 1.1 and Lemma 1.2 (1), we have
A(plv) (S {A(O’”’), 2L12,8012} = {0, 2L12, 8012} =0

and its coset is m12(R5) 0 8012 = 0 because m12(R5) = Zs & Zs by Table 2
of [5]. Therefore we have
A(p"V) = 0.
It follows from the exact sequence (19); and Lemma 2.2 that the
sequence

0 — Zo{[t3]spsoi3} I, m9(Re) 25 Zo{usls} @ Zo{vsTsrig) — 0

is exact.
The element [1/5]f8V16 is of order 2 and p*([Vg,]nglG) = U5Usl16-
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By Lemma 1.2 (1) , we have

(7) ts]epsoiz = 2[0™ o2

l/l]

Hence we obtain that [0”']o12 is of order 4.

We need the following.
Lemma 2.3. (N. Oda) ¢"012 = v5(s
Proof. From (10.7) and Lemma 5.14 of [18], we have
Y(0"012) = 20" 013 = v6(o = L(v5(3).
By Theorem 10.3 of [18], we have
0" 19 = vs(s + avsvgvis,
where a = 0 or 1.
By (7.20) of [18],
" 019119 = 0.
By Proposition 2.4 (2) of [15] and p.145 of [18§],
vs(si19 = V311 = 0.
By (15.1) of [10] and p.145 of [18] and Theorem 12.7 of [18],
vsUglis = vs(2kg) = 2(vskg) # 0.

It follows that a = 0. This completes the proof. 0

From Lemma 2.3, we have
(8) [0"]o12 = [v5]Cs-
By the exactness of the above sequence, we have the result
mi9(Rs) = {[0"]o12} @ {[vs|vsvi6} = Z4 @ Zo.
From the exact sequence (19)¢ and Lemma 2.2, the following sequence
m20(S%) 3 m19(Re) & mg(Ry) — 0
is exact, where m0(S%) = Z4{0" 013} @ Zo{wsv?,} by Theorem 10.3 of [18].
From Lemma 1.2 (1) and the formula (5), we have
(9) Alo" 13) = A(0 )orz = [0 Jo1a.

Since A(7g + €5) = 0 by Table 3 of [5] and esr14 = 0 by (7.13) of [18], we
have

A(ﬁ6y%4) = A((fﬁ + 66)V14)V16 = 0.
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It follows from the above exact sequence that
m9(R7) = {[vs]7Vsvie} = Zo.
From (2) and m19(S7) = 0 by Theorem 7.6 of [18], we have
m9(Rs) = {[vs]sVsvi6} = Zs.
From the exact sequence (19)g and Lemma 2.2, we obtain that

m19(Ry) = {[vs]osri6} = Zo

since 720(9%) = 0 by Theorem 7.4 of [18].

Consider the homomorphism A : mq(S?) — 719(Rg), where maq(S?)
= Zs{(o} ® Zo{vgri7} by Theorem 7.4 of [18]. By Lemma 1.1 of [6],
A(ug) = [vs)o + [t7]omz. So by the fact n7¢s € m19(S7) = 0 of Theorem 7.6
of [18], we have

A(Go) = Aleo)Cs
= ([vslo + [t7]om7)Cs
= [vs]oCs + [t7]omrCs
=0 by (8) and (9)

and
A(fgyl'y) = A(Lg)fgyw

= [vs]ovsie + [L7]omrVsie

= [vs]ovsiie + [L7]oPrmsvie

= [vs]oTsris.
Hence A : m90(SY) — m19(Ry) is an epimorphism. It follows from the exact
sequence (19)g that p, : m9(R10) — Ker A is an isomorphism, where Ker
A = Z4{209116} by Lemma 2.2. Then we have

m19(R10) = {[2e0]o9ri6} = Zs.

Consider the homomorphism A : m90(S'°) — m9(R1p), where
m0(S1Y) = Zy{o1ov17} ® Za{mop11} by Theorem 7.7 of [18]. We know
A(t10) = [2w] by [16] and A(nio) = 2[t7]iovr by Theorem 1 of [7] and
Table 2 of [5]. So we have

A(o10m17) = A(t10)o9vie = [2e0]ogrie
and
A(mopar) = 2[er]iovzpio = 0.
Therefore A : mo(S™) — m9(R10) is an epimorphism. It follows from

the exact sequence (19)19 that p, : m9(R11) — Ker A is an isomorphism.
From Lemma 2.2, we have

m9(Ri1) = {[32[t10, t10]]} ® {[er0]ms} ® {[niplore} = Z ® Zo ® Zo
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where p.([e10]ms) = €10m18 = Mo€11 and P*([U%O]Um) = 77%0012 = MoV11 +
N10€11-

To determine the group structures of mg(R,) for n = 12 and 13,
we need some lemmas. By Lemma 3.10 (ii) of [6], we have J([e10]) =
N mod Ymeg(S'Y).  We recall that the stable J-image is trivial in
T35 (S0) = Zg{v*} @ Zo{nii}. We also recall that mog(S10) = (Zs @ Zo @
Z2){)‘//7£//a7710ﬂ11}7 TN = 2>\/7 Eg” = 25/3 LN = 4V*> Eoog/ = 2%,
So we obtain

(x) Jle1o) = aXN + 2b¢" (a,b: odd)

We show the following.

Lemma 2.4. For the J-homomorphism J : m19(R11) — m30(S*!), we have
(1) J([32[10, t10]]) € Bma9(S'0) = Zo{T11} @ Zs{C11},
(2) J([er0]ms) = N'm2g,
(3) J([nfolonz) = &nao.

Proof. From the diagram (3), we have
HJ([32[L10, Llo]]) = lep*([32[(,10, Ll()]]) = 211(32[L10, L10]) =0.

By the exactness of the EHP sequence, we have the first relation.

By use of the formula (4) and (), we have J([e10]ms) = N'nag.

By (2.6) of [9], §'023 = &'nag. By Lemma 1.2 (2), J([n?,]) = ¢’. Hence
we obtain J([n?y]o12) = 0'oa3 = &'nag. This completes the proof. O

Consider the homomorphism A : m90(S*) — m9(R11), where
mo0(SM) = Zo{nuvi2} @ Zo{miern} ® Za{p11} by Theorem 7.2 of [18].
Since A(e11) = [¢7]11v7 by Lemma 1.1 (i) of [6], we have

A(mivi2) = [vr]lnivemorin =0,
A(mier2) = [t7]1ivmoens =0
and
A(p11) = [trliivrpio = 0.

Thus we obtained that A : 79 (S') — m19(R11) is a trivial homomorphism.
It follows from the exact sequence (19)1; that the sequence

0 — mg(R11) L, m19(R12) 2 Ker A —0

is exact, where Ker A = Zg{ﬁll} b 22{611} = 22{7711012} D 22{611} by
Lemma 6.4 of [18] and Lemma 2.2.

Consider the elements [32[t10, t10]]12, [€10]12718, [150) 12012, [711]012 and
[e11] of T19(R12) and the J-homomorphism J : mi9(R12) — m31(S'2). We
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recall from Theorem 12.23 of [18] that
31(S') 2Z2{EN 0130} © Zo{5E" om0} ® Zo{T12} @ Zs{(10} @ Zo{w'}
® Za{&12m30}-

Then we have

Lemma 2.5. (1) J([32[t10, ¢10]]12) € £2ma9(S™) = Zo{o12} @ Zs{(10},
(2) ([610]127718) = (ZX)n30,
(3) J(Infoli2oi2) = (3 )ns0,
(4) J(Imilo12) = o4 = &1am30 mod Bmsp(SH),
(5) J(le11]) =’ mod Emso(S) + &12m30.

Proof. From Lemma 2.4 and the diagram (3), we obtain (1), (2) and (3).
By Lemma 12.14 of [18], the element &5 of 730(S'?) satisfies H(£12) = 023
mod 2093. From Lemma 7.5 of [18], the element 6 € mo4(S'?) satisfies
H(0) = n23. We have
H(0o24) = H(0)024 = 123024 = 023130 = H (&12130)-
Hence it follows from the EHP sequence that
0024 = E12m30 mod Lag(S™).

Since J([m1]) = 6 by Lemma 1.1 (3), we obtain (4).
From Lemma 12.21 of [18], the element w’ of 73;(S'2) satisfies
H(w') = €23 mod Ta3 + €23. Since HJ([e11]) = €23, we have

H(W') = HJ([e11]) mod Va3 + €a3.
Hence we obtain that

J([EH]) = w/ mod Eﬂgo(sll) =+ 5127730.

Here we have
P*([n11]012) =n11012 = V11 + €11 and [?711]012 is of order 2.
From Lemma 2.5, the J-image of five elements [32[t10, t10]]12,

[610]127’]18, [7]%0]120'12, [7]11]0’12 and [611] Of 7719(R12) are independent on
731(S'?). Tt follows that

mo(R12) = {[32[t10,t10]]12} ® {[€10]12m8} ® {[n%o)12012} ® {[m1]o12}

®{[enn]}
= ZD® LD Zr® 2oy Zo.

We note that [e11] € {[n11], 2t12, v }1. We show

Lemma 2.6. [611] c {[mﬂ,yﬂ,mlg}l
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Proof. From Theorem 2.1 of [5], we have [g11]v12 € m15(Ri2) = Z{[803]12}®
Zo{[vs]1208}. Hence

[mi]vi2 = z[vs]i20s.
for some integer x. Then, from Lemma 2.3 (ii) of [6],
[milviy = z[vslizosvis

= U + €6l12mavis
=0

By the fact 2v2, = 0, a Toda bracket {[n11], %, 2t18}1 is defined and it is
a coset of [7711] O 7T19(Sl2> + 7T19(R12) o 2L19 = {[7711]012} + {2[32[L10, LIOHH}-

From (6.1) of [18], €11 € {n11, v, 2t1s}1 and it is a coset of {11012}
Since

px({lmi1) via, 2us}h1) C {m, viz, 2ush,
we can take [e11] € {[n11], V%, 2018 }1. O

From the exact sequence (19)12 and Lemma 2.2, the following se-

quence
T0(S1?) A Ti9(Ri2) =5 mig(Riz) — 0

is exact, where mo0(S'%) & Zo{v12} @ Za{e12} by Theorem 7.1 of [18].

By (12.26) of [18], JA(m20(S'?)) = P(m33(5*)) = {(EN)ms0} +
{(3&")n30} has four elements. From Lemma 2.5,

J({lerolizms} & {[nfo)12012}) = {(ZN )30} + {(Z¢ )m30}-
It follows that A(meo(S'?)) has four elements and
{lerolizms} @ {[nfp)12012} C A(ma0(S™)).
Hence we obtain that
m19(R13) = {[32[t10, t10]]13} @ {[Mm1l13012} © {[e11]13} = Z D Z2 @ Zo.

Consider the homomorphism A : 79 (S'®) — m9(R13), where
7['20(513) = 216{013} by Propsition 5.15 of [18] Since A(L13) = [7711]13
by Table 3 of [5], we have

(10) A(o13) = A(uz)orz = [milizoie.
It follows from the exact sequence (19)13 that the sequence
0 — Zo{[enn]13} ® Z{[32[t10, t10]]13} 2, T19(R14) B Ker A — 0

is exact, where Ker A 2 Z5{v2;} by Lemma 2.2.
Since A(u3)vdy, = A(v) = 0 and 2vf, = 0, a Toda bracket
{A(113), V35, 2018} is defined. Then, from Lemma 2.6, we have
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€ i*({[n11]71/12272”8})

C {[7711]137’/%272“8}

= {A(L13)7V%272L18}

by A(usz) = [miiz ([7]), where i, : m9(Ri2) — mi9(R13). According
to Theorem 2.1 of [11], for an element [e11]13, there exists an element
[v33] € m19(R14) such that

[e11]13 = i« ([€11])

pe([vis]) = viy  and  [en]is = 2[vfy).
It follows from the above exact sequence (19)13 that
m19(R1a) = {[32[t10, tr0]l1a} @ {[v3s]} = Z ® Z4.

From the exact sequence (19)14 and Lemma 2.2, the following se-
quence

A s
790(S1) S mi9(Rys) = m9(Rys) — 0
is exact, where mo0(S'4) = Zo{v?,} by Propsition 5.11 of [18].
By (12.27) of [18], we have JA(v?)) = P(v3,) = YW = 2wiqvgg. It

follows that A(v2,) is of order 2. Since m19(R14) & Z & Z4, we have
(11) A(viy) = 2[vis).
From the above exact sequence we have

m9(Ris) = {[32[t10, t10]l15} & {[vi3)s} = Z & Zs.

In the exact sequence (19)15, Ker A = 0 and 720(S'°) = 0 and in the
exact sequence (19)15, Ker A = 0 and 720(5'%) = 0. Hence we have

7T19<Rn) = {[32[L10, LlO”n} S5 {[V%g]n} 27Z®Zy, for n=16,17.
Consider the homomorphism A : 790(S'") — m9(R17), where
m20(S'7) = Zg{v17} by Proposition 5.6 of [18]. By Theorem 3 (v) of [7],
A(v17) # 0 and A(2v17) = 0. Therefore we have
(12) A(r) = [vishr.
From the exact sequence (19)17, we have

m19(R1g) = {[32[t10, t10]]18} = Z.

In the exact sequence (19)15, Ker A = 0 by Lemma 2.2. According
to [7], A(n?s) = 0 . Hence we have

m19(R19) = {[32[t10, L10]]19} = Z.

From the exact sequence (19)19, we have the following exact sequence;

0 — m9(Rig) — mi9(R20) — Z{2t19} — 0
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Hence we have

m19(R20) = {[32[t10, t10]]20} B {[2010]} = Z & Z

where A(t9) = [2t19] by [16].
From the stability of m;(Ry,) ([2]), we have

7T19(Rn) = {[32[L10,L10Hn} ~ 7 for n>21.

3. DETERMINATION OF oo (R, : 2)

First, we list the kernel of the homomorphism A : w0 (S™) — m19(Ry)
from the computations of m19(R,,).

Lemma 3.1. The homomrphism A : wyo(S™) — m9(Ry) are monomor-
phisms for n = 7,8,12,14,15,16 and 20. For the other values of n, we have
the following table of the kernel of A:

n 4 5 6 9 10
Ker A = Zo 7 Za Zs | 22
generators VZUH)I/N pIV 361/%4 = (U + 66)7/%4 Co | mop11
11 13 17 | 18 | 19
Zoy ® Ly ® Ly Zg | Zy | Zo | Za
M1V12, 11, M1€12 | 2013 | 2v17 77%8 9

In this section, we shall determine the generators of the 2-primary
components og(R, : 2). The results for moo (R, : 2) are stated as follow:

Theorem 3.2.

moo(R3:2) = {[m]e} @ {[nlns}t & {[melnspacis} = Zs ® Zy & Zs,
moo(Ra:2) = {[n2la€} @ {[no]ams} ® {[mlanspacis} & {[es]€’}
S{[eslmst @ {[ea]nspaois}
S ZiPLBLy B Ly P Ly D Lo,
mao(Rs:2) = {[vilowrir} @ {[ts]5is} @ {[talsmspacns}
& Zo® 2y P 2o,
m0(Re:2) = {[p"V]} @ {[vilsorovir} = Zs  Zs,
mo(R7:2) = {[Vilrorovi7} @ {[V6 + €o]viy} = Zo © Za,
mao(Rs :2) = {[vilsorwovir} ® {[Vs + eslsviy} @ {[tr]vrorovin}
= Zo® 2o D Lo,
m0(Ry:2) = {[76 + €cloviy} = Zo,
m0(Ri0:2) = {[Us+ esliovis} @ {[Co]} = Zo @ Zs,
mo(R11:2) = {[T6 + eelurfy} @ {[Co)un} ® {[mop1]}

ZQ@ZQ@Z%
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moo(Ri2:2) = {[Cli2} @ {[mop1]ie} ® {[m1]712} @ {[n1]e12}

©{[p11]}
Ly @ Zy ® Loy @ Zy ® Za,

I

moo(Ri3:2) = {[mi)13712} @ {[mi)izer2} ®© {[p11)13} = Zo ® Zo @ Zo,
moo(Ria :2) = {[2us]ois} = Zis,

moo(Rp:2) = 0 forn=15,16 and 17,

mo(Rs :2) = {[2v17]} = Zy,

m0(Rig :2) = {[nis]} = 2o,

m0(Rao :2) = {[nisl2o} ® {[mo]} = Z2 @ 2o,

moo(Ro1:2) = {[molai} = 2o,

moo(Rp:2) = 0 forn > 22,

We have the relations 2[plv] = [t3]6Tis and 8[2t13)o13 = [14]14

Since m0(S%) = Zy{e'} @ Zo{fig} ® Z2{nspso13} by Theorem 12.7
of [18], we have the results for moo(R3) and moo(R4) from (1) and (2),
respectively.

Consider the J-homomorphism J : moo(R4) — m24(S?), where
m24(S?) = Zo{ (SV) 7} © Zo{ (B0 )17 pso17} @ Za{vao mapns } ® Za{vi k10 } ©
Zo{vafiz} ® Zo{vanzusoir} by Theorem of [10].

Lemma 3.3. (1) J([n2)s€’) =0,
(2) J([mlaps) = (Xv)pz,
(3) J([772]4773M4013) (S )nrpsor,
(4) J([es)e') =

(5) J([es]p )—1/4u77

(6) J([ta]nspacis) = vanzusorr.

Proof. From Lemma 12.3 and Theorem 12.7 of [18], we have
»ie = 23(21/ o I€7) = 2v7k19 = 0.

By use of the formula (4), J([n2]4) = Xv/ and J([t3]) = v4, we obtain the
lemma. O

For n > 4, we will determine the group moo(R,+1) by applying the
exact sequence

(20),, T91(S™) S 7a0(Rp) 2 ma0(Rug1) 25 Ker A — 0

where Im p, = Ker A for A : my0(S™) — mi9(Ry).
From the exact sequence (20)4, we obtain the following exact se-
quence;

0 — Coker A 5 T20(R5) & Ker A — 0
where Ker A = Zy{v2oiov17} by Lemma 3.1.
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From Table 2 of [5], m19(R5) = Zs{[v3]}. Obviously, p.([vi]o1ov17) =
vioiorir. X(2010v17) = 2011118 = 0 by (7.20) of [18]. Then it follows from
Lemma 2.2 of [11]

2([vflo1omir) = (V3] o 2(o10117) = [VF] 0 0 = 0.
This shows that
(13) 7T20(R5) = Coker A ® ZQ{[VZ]O']_OV]_’?}.

Consider the homomorphism A : 79 (S%) — mag(R4), where mo1(S4)
= Zg{vao' 014} © Za{vaks}y © Zy{ E€} © Zo{fig} © Za{napso14} by Theorem
12.7 of [18]. By use of A(t4) = 2[t3] — [12)4 and the formula (5), we obtain
that

A(XE) = A(a)€ = (2[es] — [mo]a)€ = 2[e3]€’ — [ma]4€,

A(py) = Au)pis = [n2]aps,

A(napso1a) = A(ta)n3paois = [n2]anspaois.

By Lemma 1.4 and by Lemma 6.6 of [18], we have
A(V4U/O'14) = A(V40',)O'13
= 2[/,3]6/0'13 + 26[?72}46,0'13
= [L3]77§€5013 + 6[772]47732,65013
= 07

since €5013 = 0 by Lemma 10.7 of [18].
We need the following

Lemma 3.4.  V'pgv?y = 2¢.

Proof. By by (7.12) and Lemma 6.3 of [18], we have
V'?6V124 = 63Vi9'1 = €3MN11V12.
By Lemma 12.3 and Lemma 12.10 of [18], we have
2¢' = n§E5 = N3€4V12.
Since nz€e4 = €3m11 by (7.5) of [18], we obtain that

Vgl = 2€.

Next we prove

Lemma 3.5.  A(vykr) = d'[is]é + a'[n2]4€,
where d' is odd integer and o' = a mod 2. Here A(vy) = [w3]V + a[nz]ar/’

([6])-
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Proof. Set A(vakr) = a'[n2]a€+V [n2]afis+ [n2]anspaois+d [3]€ +€[es]s+
I'[ts]mspacis. Apply the J-homomorphism to the both sides. By the dia-
gram (3) and p.46 of [10], we have

JA(v4k7) = P(rgri2) = 0.
Hence, from Lemma 3.3, we obtain that
A(vatir) = a'[na]s€ 4 d'[13]€ .

where o' and d’' are integers such that 0 < a’,d’ < 3.
From Lemma 10.1 of [18], we have

— 2 — 9
2k7 = Urvis + av7Co = S(Teriy + 2v6(o)
for some integer x. Then we have

A(2(vak7)) = A(vg 0 267) = Alvy)(Tevd, + 216o)
= ([ts] + alm]a) (W' Poviy + 21v6G)
= ([s] + almela)v'veriy,

since v'vg € m9(S%) = 0 by Proposition 5.11 of [18].
From Lemma 3.4, we obtain that

A(2(vgk7)) = 2[i3]€ + 2a[ne]4€.
This completes the proof. O
It follows from (13) that
mo0(Rs : 2) = {[vi]orovir} @ {[islsis} © {[ealsmspaciz} = 22 © Zo © Zo
and
(14) [t3]5€ = [n2]5€ = 0.

Consider the homomorphism A : 791 (S%) — mag(R5), where 721 (S5%)
= Zo{uso14} ® Za{nses} by Theorem 12.6 of [18]. By the formula (5) and
the relation A(ts) = [t3]5m3 , we have

Apsoia) = A(es)paoi3 = [t3]sn3paons.
By (14) and the relation n3es = 2€’ ( Lemma 12.3 of [18]), we have
Anses) = [talsm3e = 2[ea)se’ = 0.

Then, from the exact sequence (20);5 and Lemma 3.1, we obtain that the
following sequence

0 — Zo{[Vi]owovir} ® Zof{[es]stis} = mao(Re) 25 Zo{p"V '} — 0.
is exact.

Lemma 3.6. [p'V] = {[0"],4112,4012}1 and 2[p'V] = [13]67i3.
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Proof. By Lemma 1.2 (1) and the fact 16012 = 0, the Toda bracket
{[0""], 4112, 4012} is defined and it is a coset of [0"]omag(S*2)+713(Rg)0do13.
Since 71'13(R6) = Z4 by Table 2 of [5], 7T13(R6) o 4013 = 0. By Lemma 1.3,

[0""]e12 = {[vs], 8us, v8}1 0 €19 = —[v5] 0 B{8u7, 17, €10} = 0,
since X{8u7,v7, €10} C m20(S®) = 0 by Theorem 7.6 of [18].

//l}

mea = {[vs],8ts, v8}1 0 M2 = —[vs) 0 E{8ur,v7, M0} =0,

since {87, v7,m0} C m3(S®) = 0 by Proposition 5.9 of [18]. Then we
have

[o

[0””]?12 = [O'/”](Glg —l—?m) = [0/1/]7]120'13 = 0.

Hence we have [0"] o ma0(S'2) = 0. It follows that the Toda bracket
{[6"],4t12,4012}1 consists of a single element. By (6), we have

p({[0""), 4112, 4012}1) = {0”", 412, do12}1 = p'V.

Denote by tr, the homotopy class of the identity map of R5. By
Lemma 1.2 (1) and the definition of 7i5 (p.136 of [18]), we have

2™ 2up; o [p'V]

{2[0””], 4L12, 40’12}1

{[e3leps, 4t12, 401211

[t3]6 0 {u3,4t12,4012}1

[t3]6 © {13, 2t12,8012}1

[13]6Tt3

The indeterminacy of {2[0"],4t19,4012}1 is 2[0"] 0 70(S*2) + m13(Re) ©
4013 = 0. Thus we have

wyUuillN

2[p""] = [13]673-

From the above exact sequence and Lemma 3.6, we obtain that

mao(Re) = {[p"]} @ {[vileoromi7} = Zs @ Zo.

From the exact sequence (20)g and Lemma 3.1, we obtain the follow-
ing exact sequence;

0 — Coker A — mog(Ry) — Zo{ (U6 + €6)viy} — 0.

We recall the element [Ug + €] € m14(R7) given in [5]. The element
[U6 + €6]v24 € ma0(R7) is of order two and satisfies p. ([Ug + €5]v2y) = (Vs +
€6)v2y. It follows from the above sequence that

(15) 7T20(R7) = Coker A & Zg{[ﬁ@ + 66]1/%4}.

Consider the homomorphism A : 71(S%) — m99(Rg), where a1 (S°)
=~ Z4{p"} ® Z2{€}, by Theorem 10.5 of [18].



106 HIDEYUKI KACHI AND JUNO MUKAI

By the definition of p"" (p.103 of [18]),
p" € {o”, 4113,4013}1.
By Proposition 1.1, Lemmas 1.2 and 3.4, we have
A(p”/) S A{O’”,4L13,40’13}1
C {A( ) 4L13,40’13}
= {lo"], 4013, 4013} = [p"V].
Consider the element [ng]x7 of mo1(R7). From (15.3) of [10], we have
Nek7 = €. Then we obtain that
A(es) = Anerr) = Alp«([n)r7) = 0.
That is Coker A = Zy{[v3]so10v17}-
It follows from (15) that
7T20(R7) = {[W%]?UIOVN} D {[ﬁ6 + 66]1/%4} > 7D Zs.
From (2) and mo0(S7) & Za{vro10v17} by Theorem 7.7 of [18], we have
m0(Rs) = {[vilsorovi7} ® {[Vs + eslsvis} ® {[t7]vroronir} & Zo ® Zo @ Zs.

Conside the homomorphism A : 721 (S®) — 729(Rg), where ma; (S¥)
Zo{osv?} @ Za{vgo11v1s} by Theorem 7.7 of [18]. By Lemma 1.2 (ii) of
[6] and (7.19) of [18], we have

A(ogris) [17]o’vEy + |6 + eslsriy mod {[vs]vg, [nses]sviy}

z[vrlvrorovir + c[Ve + eg)sviy, mod {[vs]va, se)siy }

where z, ¢ are odd integers. Since A(tg) = 2[v7] — [n6]s by Table 3 of [5],
we have

A(vgonivig) = (2[v7] — [n6lg)vrorovir
= [n 6]8V70’10V17
= b[vi]so1ovir by Lemma 1.1 (iv) of [6]

where b is an odd integer. That is Coker A = Zo{[Us + €5]sviy}.
In the exact sequence (20)g, Ker A = 0 by Lemma 3.1. It follows
that
ix : Coker A — mo0(Ry)

is an isomorphism where A : m1(S®) — 720(Rg) . So we have
ma0(Ro) = {[V6 + eslovis} = Za.

In the exact sequence (20)g, Ker A = Zg{(9} by Lemma 3.1 and
721(S?) = 0 by Theorem 7.6 of [18]. It follows that the sequence

(16) 0 — ma0(Rg) = ma0(Ri0) 2 Zs{Co} — 0
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is exact. By Lemma 1 of [17], S3p.A(C10) = Z1ps(2[¢o]) for A : ma1(S19)
— ma0(R10). By Theorem 7.4 of [18], Ker {213 : m90(SY) — m33(5?%)} =
Zo{gr17}. When we determined the group mi9(Ri0), we used the relation
A(gu17) = [vs]ovsrie # 0. This implies the relation p.(A(C10) —2[¢o]) = 0.
From the exactness of the sequence (16), we have

(17) A(Gio) = 2[C]  mod ixmao(Ry).

Consider the element [n3,]p12 of mo1(R11). By (7.14) of [18], we have

pi([nio]pi2) = nigraz = 4Gio.

Therefore we have

8[Co] = A(4¢10) = Apa([niplpz) = 0.

Since the element [(9] is of order 8, the above exact sequence (16) is split.
So we have

ma0(R10) = {[T6 + €slioviy} & {[(o]} = Zo & Zs.
From the exact sequence (20)10, (17) and Lemma 3.1, we obtain that
the following sequence
0 — Zo{[Colu1} ® Zo{[6 + eslivis} — ma0(R11) 2 Za{mopn} — 0

is exact.
A Toda bracket {[n%],2t12,8012}1 is defined by Lemma 1.2 (2) and
the fact 16019 = 0 and it is a coset of [n%o] 0 m90(S'?) + m13(R11) 0 8013 =

{[77%0]?12, [n%O]QQ} by Table 2 of [5] Since Hi1 € {7711, 2612,8012}1 + {U%l}
by Lemma 6.5 of [18], we have

Mmot11 € {ny, 2012, 8012},

where its indeterminacy is 77,0720 (S?) +m13(S) 08013 = {1n? V12, Nip€12}
= 0. Then we have

pe{[nio], 2612, 801231 C {nio, 2012, 801211 = Mo

Therefore we can take the element [niou11] € m20(R11) such that
[mop11] € {[nfo]lg, 21192,8012}1. By Corollary 3.7 of [18], we have

2[mop1] = {[nfo)s 2t12, 812 }1 0 2019 = [03] © {2012, 80712, 261911 =0

where the indeterminacy of {2:12,8012,2t19} is 2m20(S'?) = 0. It follows
from the above exact sequence that

mo0(R11) = Zo{[T6 + e6]11v%4} © Zo{[Col11} © Zo{[mom11]}-

Lemma 3.7. For the J-homomorphism J : wao(R11) — m31(S'), we have
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J([76 + €sl11viy) = 0,
J([Co)11) = B = O'eas,
J(Imop11]) = " mod {X4'}

Proof. By the formula (4) and J([Us + €]) = 0’014, we have

J([7g + 66]111/%4) = E4J([fﬁ + 66])271/%4
= Yoo
since 2v3; = 0.
From Lemma 16.1 of [10], the element 3’ of 730(S10) satisfies the
relations 33 = 0’3 and H(') = (19. From the diagram (3), we have

HJ([G]) = Gro = H(S').
By the exactness of the EHP sequence, we have
J([G)) =B mod Bma(S?) = {F10}-

Since Ry is not in the J-image, we have J([(9]) = 3. By the diagram (3),
we have J([Cg]u) = E,B/
From Lemma 16.2 of [10], the element 3" of 731 (S'!) satisfies £8" =

P(uas) and H(B") = mo1pge. Since HJ([niopa1]) = ma1pee and Ry is not
in the J-image, we have

J([nlo,un]) = ﬂ" mod Eﬂ/
O
Consider the homomorphism A : m9;(S') — mo(R11), where

7'('21(511) = 22{0'117/18} D Zg{r]n,ulg} by Theorem 7.3 of [18] By use of
A(e11) = [t7]11v7 (Lemma 1.1 of [6]) and Lemma 2.3 (v) of [6], we have

A(o11v1g) = A(ur)orovr = [vr]uvroiovir = d[vs + esli1viy,
where d is an odd integer and

A(mipi2) = [t7]uvemopir = 0.

From the exact sequence (20)1; and Lemma 3.1, we obtain that the follow-
ing sequence

0 — Zo{[Col11} ® Zo{[mop11]} — ma0(Ri12) —
Zo{mivi2} @ Za{muiern} ® Zo{p11} — 0

is exact.
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Now consider the elements [(9]12, [7104¢11]12, [M11]712, [M11]€12 and [p11]
of m0(R12) and the J-homomorphism J : mao(R12) — 732(S'?). Here, by
Theorem of [10],

T32(S12) 2 Zg{Ri2} ® Zo{(X0)e21} ® Zo{XB"} ® Zo{Bean}®
Zo{0T24} © Zo{B"}

with the relations ;

111 111

(18) 3?37 =8P(0y), H(B )= pos.
by Lemma 16.3 of [10]. Then we have

Lemma 3.8. (1) J([Col12) = (20 )eaa,
(2) J([mop11]i2) = 26" mod (260 )ea,
(3) J([m1lvi2) = Ov2a,
(4) J([WH]GH) = feay,
(5) J([p1]) =B mod {(£60)exs, £"}.

Proof. From the diagram (3) and Lemma 3.7, we have (1) and (2). By
Lemma 1.2 (3) and the formula (4), we have (3) and (4). By the diagram
(3) and (18), we have HJ([u11]) = posz = H(B"). From the exactness of
the EHP sequence, we obtain that

111

J([p11]) =4 mod Tmz(SH).

By [10], X731 (S™) = Zg{F12} ® Z2{ (26 )eau} ® Zo{X5"}. Since &1z is not
in the J-image, we have (5). O

From Lemma 3.8, the J-image of five elements [(o|12, [m104411]12,
[m11]712, [m1]e12 and [i11] of mag(R12) are independent on 732(S'?). There-
fore we have

m20(R12) {[¢ol12} @ {Imopa1]i2} ® {[m1]Pr2} © {[mile2} & {[p1]}

~ o@D 7y B Zo® Zy® Lo

In the exact sequence (20)12, Ker A = 0 by Lemma 3.1. It follows
that

(19) Px - Coker A — 7T20(R13)

is the isomorphism, where A : m1(S'?) — moo(Ri2) and moy(S1?) =
ZQ{V%Z} D Zz{,ulg} D 22{7712613} by Theorem 7.2 of [18]

Lemma 3.9. For the homomorphism A : w1 (S'2) — mag(R12), we have

(1) A(maes) = [Coli2,
(2) A(p12) = [mopirliz mod [Coli2,
(3) A(Vm) 0.
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Proof. By use of the diagram (3), we have

JA(mae13) = P(noses)
= (20/)624 by (7.30) of [18]
= J([Cg]lg) by Lemma 3.8 (1)

Since the J-homomorphism J : mog(R12) — m32(S'?) is a monomorphism
by Lemma 3.8, we obtain (1). Also we have

JA(p2) = P(ps)
»5" by Lemmal6.2 of [10]
J([nop11]) mod (X60')ez4 by Lemma 3.8 (2).

Since the J-homomorphism J : m0(R12) — m32(S'?) is a monomorphism
by Lemma 3.8, we obtain (2).

From [6], we recall the element [v%,] € mg(R13). Then [v%]vs €
721 (Ri3) satisfies p.([vfh]vis) = vfs. So we have

A(V%z) = A(p*([V%ﬂVlS)) = 0.

Then, it follows from (19) that

mo0(R13) = {[m1)13712} @ {[mi)izer2} ® {{pi1)3} = 2o ® Zo ® Z5

Consider the homomorphism A : 791(S™) — my(R13), where
71'21(513) = ZQ{?lg} D Z2{613} by Theorem 7.1 of [18] By use of A(ng) =
[m1]13 and the formula (5), we have

A(713) = A(n3)712 = [milis712,

A(ers) = [milisere.

Then, from the exact sequence (20)13 and Lemma 3.1, we obtain that
the sequence

(20) 0 — Zo{[u11]13} Iy ma0(Ri4) 2 Zg{2013} — 0
is exact. From Lemma 1 of [17], we have
P«A(014) = 2013 = p«([2t13]013),

where A : w1 (S') — m90(R14). By the exactness of the sequence (20), we
obtain that

(21) A(o14) = [2t13]013 mod [p11]14.
On the other hand, we have

HJ([2t13)013) = 2097 = HP(099).
From the exactness of the EHP sequence, we have

J([2L13]0'13) = P(O’gg) mod 271'33(813).
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Since the order of P(oa9) is 16 by Lemma 16.3 of [10], we have that the
order of [2¢13]o13 is 16. Therefore, from the exact sequence (20), we have

mo0(R4) = {[2u13]013} = Ze,
with the relations [u11]14 = 8[2t13]013 and A(o14) = [2¢13]0713.

Then, from (21), we have obtained that A : w21 (S') — mag(R14) is
an isomorphism. From the exact sequence (20)14 and Lemma 3.1, we have
FQQ(RLL',) = 0

Since 71'20(515) = 71'2()(516) = 71'21(516) = O, we have

WQO(Rk) =0 for k= 16, 17

from the exactness of the sequences (20)15 and (20);4 respectively.

From the exact sequence (20)17, we easily obtain that

ma0(R1s) = {[2v17]} = Z4,

since Ker A = Z4{2v17} by Lemma 3.1.

Consider the homomorphism A : 79;(S*) — my(Rig), where
m21(S'8) = Zg{115}. By Lemma 1 of [17], we have

A(l/lg) = [21/17].

Then, from the exact sequence (20);g and Lemma 3.1, we easily obtain
that

ma0(Rig) = {[nis]} = Za.
Consider the exact sequence (20)19. By [7], we obtain that the se-
quence
0 — ma0(R19) — m20(Ra20) — m20(S™) — 0

is a split exact sequence. Therefore we have
mo0(R20) = {[n¥s)20} @ {[mo]} = Zo © 2>

and J([nis]) = B, J([nisl20) = X8 = P(na1), J([mo]) = B mod Srse(S™)
by Lemma 16.4 of [10] and the diagram (3).

By Lemma 16.4 of [10] and the diagram (3), we have A(n20) = [nis]20-
Then, from the exact sequence (20)29, we obtain that

mo0(Ra1) = {[mo]a1} = Za.
Since P(t43) = ¥8 = J([ng)21) by Lemma 16.5 of [10] , we have

A(e21) = [mola1-
It follows from the exact sequence (20)2; that
7T20(R22) = 0
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Additional remark in the proof.
From the fact (10 € {mo,mi1€12,2t20}1 by Lemma 9.1 of [18] and

A(mo) = 2[e7]10v7, by Theorem 1 of [7], we have

A(Co) € {A(mo), moerr, 219}
= {2[er])1ov7, Mmo€rt, 2t19}
C  {2[er]10, vrmio€rr, 2t19}
= (O mod 27T20(R1()) = {2[(9]}

From (17), we obtain that

(1]
2]

3]

[10]
[11]
[12]
[13]
[14]
[15]

[16]

A(C10) = 2[Co]-
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