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A CONVENIENT AXIOM TO CONVENIENT
CATEGORIES FOR HOMOTOPY THEORY

YASUMASA HIRASHIMA

INTRODUCTION

As a suitable topology for spaces of cotinuous maps, Brown ([1]) does
not adopt the usual compact-open topology but the test-open topology.
The adoptation of this topology provides for example that if Y is locally
compact and Hausdorff then the natural exponential map Ca(X xY, Z) —
C2(X,Cs(Y, Z)) is a homeomorphism, where C3(X,Y") is the set Top(X,Y)
endowed with the test-open topology. The exponential law is a general-
ization of the classical Hausdorff type one (Corollary 12 (i)). However, it
seems for us that these conditions on Y is surplus and incongruous to the
test-open topology. We replace these conditions with a more natural lo-
cal condition (Theorem 9 (ii)). Moreover, we introduce an axiom which is
slightly different from Axiom 2 of Vogt [5]. For each category C which satis-
fies our axiom we have both the exponential law in the categry of kc-spaces
and similar one described above in 7 op, by making use of Brown’s method.
For example, the second exponential law with respect to Cs, the category
of compact regular spaces, is a generalization of the classical regular type
one.

1. kc-SPACES, C-TEST-OPEN TOPOLOGY AND AXIOM

Let C be a non-empty full subcategory of the category 7 op of small
topological spaces ([2]). By a C-test map on X we mean a continuous
map ¢ with the souce S¢ € OC and the target T = X. Let Cx denote
the class of all C-test maps on X. (The class is a set which may not be
small in general (][2]).) Given a space X, we define a space k¢X to be
the same underlying set endowed with the final topology with respect to
all ¢ € Cx. The identity map ex : k¢ X — X is cotinuous and induces a
bijection e x, : Cr,x — Cx, i.e. for any ¢ € Cx there exists an unique lifting
'¢ € Ci,x such that ex o’y = ¢. These constructions define an idempotent
functor k¢ : Top — Top and a natural transformation € : ke—>17,p. A
space X is called a k¢-space if ke X = X. Let K¢ be the full subcategory
of T op consisting of all k¢-spaces. C is a subcategory of Ke¢.
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Let Co, C3 and C, be the category of compact Hausdorff spaces, of
compact regular spaces and of compact spaces respectively. Our Ko = K¢,
is the Brown’s category of k-spaces which is denoted by HG in Vogt’s paper

[5].
The following proposition which is due to Brown ([1]) in Cy case is a
characterization of kc-spaces.

Proposition 1. X is a kc-space if and only if there exists a subfamily
(@x)ren of Cx with small index set A such that 7 : H Sox — X, Mgy, =

AEA
vy, 18 an identification.

Proof. Since X is a ke-space, {(p, B)|¢ !B &€ Fsy,p € Cx,B ¢ Fx} —
Px — Fx , (p,B) — B is a surjection, where Px is the power set of X
and Fy, Fs, are the sets of closed sets in X, Sy respectively. Applying
Axiom of Choice to this surjection, we have a family (¢pp)pepy—7y of Cx
such that gong is not closed in S¢. Since C is not empty, for every z € X
there exists a constant map ¢, with the souce in OC and the value x. The
function A = (Px —Fx) ][ X — Cx, given by B — ¢p and = — ¢, defines
a family (¢x)aea which we need. Since 7 is a continuous surjection and
every non-closed subset of X is not closed with respect to the identification
topology, 7 is an identification. The converse is obvious. O

A space or its subspace in general is called C-imaged if it is the image
of a C-test map and is called C-objective if it is C-imaged by a C-test map
which is an embedding. A space X is called C-reflective if every C-imaged
subset of X is always C-objective. With respect to such a property P it is
usual to say a space X is locally P if each point of X has a fundamental
system of neighbourhoods with the property P. We call X locally P in the
weak sence if each point of X has a neighbourhood with the property P.
We have the following

Proposition 2. Suppose that X is locally C-reflective in the weak sence.
Then X is locally C-objective if and only if it is locally C-imaged.

Proof. Let X be locally C-imaged. Let W, be a C-reflective neighbourhood
admitted by each z € X. Then there exists a C-test map ¢ such that
z € Int(Imep) C Imp C W,.. Hence Imyp becomes C-objective. The converse
is trivial. O

McCord ([3]) proved that every weak Hausdorff space is Co-reflective.
The inverse is also true. A subset A of a topological space X is closed if
and only if A is closed in AU {b} for every b ¢ A. In particular let A be
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Co-imaged in a Cy-reflective space X. Then A U {b} is also Ca-imaged and
therefore is Hausdorff. A compact set A is closed in AU {b}. Hence X is
weak Hausdorff.

Since every compact Hausdorff space is weak Hausdorff we conclude
that X is locally Cs-objective if and only if it is locally Co-imaged and
locally weak Hausdorff. The set of non-negative real numbers [0, c0) with
the set of open sets {[0,a)|0 < a < 0o} is an example of locally Co-imaged
space which is not locally Cs-objective.

The following proposition is due to Oshima in Cy case ([4]).

Proposition 3. Fvery space which is locally C-objective in the weak sence
s a ke-space.

Proof. Let X be a space which is locally C-objective in the weak sence and
let N, denote a C-objective neighbourhood admitted by each x € X. Let
U be an open set in k¢ X. We remark that if A is open in a subspace N
then A N IntN is open in X. This implies that U N Int/N, is open in X
and therefore U = J,cx(U N IntN,) is open in X, which complete the
proof. O

Let C(X,Y) be the set Top(X,Y') endowed with the C-test-open topo-
logy, i.e. the topology generated by the subbase {W(p,U)|p € Cx,U €
Oy}, where Oy is the set of open sets in Y and W(p,U) = W(Imep,U) =
{f € Top(X,Y)|f(Imp) C U}. The topology of C2(X,Y) is the Brown’s
test-open topology and that of C,,(X,Y) is the usual compact-open topol-
ogy.

Lemma 4. (i) If « : B — Y s an embedding, so is v, : C(X,B) —
C(X,Y).

(ii) f: X — Z induces an embedding f* : C(Z,Y) — C(X,Y) if for
any ¥ € Cyz there exists a ¢ € Cx such that f(Img) = Imi. Especially
ex*: C(X,Z) — CkeX,Z) is an embedding.

Proof. Let P, are topological spaces and j : P — @) be an injective set
function. We remark that j is an embedding if (and only if) there exists
a subbase S of @ such that j71S = {j~15|S € S} is a subbase of P. It
is easy to see that the subbase {W(p,U)|p € Cx,U € Oy} satisfies the
if-condition of the remark in both cases (i), (ii). It remains to complete the
proof of (ii) by showing that f* : C(Z,Y) — C(X,Y) is injective. Since
every C-imaged subset in Z is contained in Imf by the condition of (ii) and
every one point subset is C-imaged by a constant C-map, f is surjective
and hence f* is injective. O

We now introduce the following axiom which is slightly different from
Axiom 2 of Vogt [5].
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Axiom. (i) The cartesian product of two spaces in C is again in C.

(ii) Every object in C is compact and locally C-imaged.

Since every object of Co, Cs3 is regular, these categories satisfy our
axiom. If C satisfies Axiom, so is the full subcategory C' C 7T op of compact
locally C-imaged spaces. We therefore have an increasing sequence, indexed
by the ordinals, of categories which satisfy Axiom.

Proposition 5. Suppose that C satisfies Axiom. Then the cartesian prod-
uct of a kc-space and a space which is locally C-objective in the weak sence
s a ke-space.

Proof. At first we remark that a space which is locally C-objective in the
weak sence is locally C-imaged, and therefore is locally compact. Secondly,
by making use of Proposition 1, 3, we deduce that P is a k¢-space if and only
if there exists an identification L. — P such that L is locally C-objective in
the weak sence. Now let X be a k¢-space and Ls be locally C-objective in the
weak sence. Following the above second remark, we take an identification
7w : L1 — X where Lp is locally C-objective in the weak sence. Since Lo
is localy compact by the first remark, m x Lo : L1 X Lo — X X Lo is also
an identification ([1]). Moreover Ly x Lo is locally C-objective in the weak
sence. Hence X X Ls is a kg-space. ]

Lemma 6. Suppose that C satisfies Aziom. Then

(i) the topology of C(ke(X xY),Z) is generated by the subbase
{W((e xv),U)lp € Cx,¥ €Cy,U € Oz},

(ii) the topology of C(X X Y, Z) is generated by the subbase
{W(px,U)|g € Cx,v € Cy,U € Oz},

(iii) the topology of C'(X,T) is generated by {W(p,S)|p € Cx,S € S}
if the topology of T is generated by S.

Proof. (i) Tt suffices to prove that for every W('®,U),® € Cxxy,U € Oy
and every f € W('®,U) there exist ¢, € Cx,9p € Cy,1 < p < N such
that f € ﬂfov:l W (' (pp x 1p),U) C W('®,U). We have the decomposition
b= (p,90) = (¢ x)o A, where p € Cx,1) € Cy and A: S® — SP x SP
is the diagonal map. Since ImA C /(¢ x ¥)~1f~1U, for every k € Sy
there exists an open set Uy such that (k, k) € Uy x U, C (o x )L f71U.
Since S is locally C-imaged by Axiom, there exists o, € Cse such that
k € Int(Imoy) C Imoy, C Uy. We have an open covering (Int(Imoy))kese of
the compact space S®. Therefore we can chose a finite set {1,2,--- N} C
S which satisfies S® = Uévzl Imo,. Applying '(¢ x 1) to the sequence

of subsets ImA C Uévzl(lmap x Imap) C /(¢ x ¥)"1f~1U, we have the

sequence Im'® C U;)VZI Im’(¢p x ¥,) C f7U, where ¢, = ¢ o0, and
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Yy =Yooy It is easy to see that U;V:1 Im’(¢p X 1) C f7LU is equivalent

to f € ﬂfovzl W (' (¢p x p), U) and that Im'® C Uf,vzl Im'(¢p X 1Pp) and g €
ﬂévzl W ('(ppx1bp),U) induces g € W('®,U), in other word ﬂ;vzl W (' (pp x
Pp), U) C W('P,U).

(ii) Since exxy* : C(X xY,Z) — C(ke(X xY), Z) is an embedding,
the topology of C(X xY, Z) generated by the subbase (exxy*) ™ H{W ('(¢ x
V), U)|p € Cx,¢ € Cy,U € Oz}, which coincides with {W(p x ¢,U)|p €
Cx,y eCy,Uc€ Oz}.

(iii) Let B denote the base generated by S. Let W (¢, U) be an arbi-
trary element of the canonical subbase of C(X,T), let f € W (¢, U) and let
k € Se. Since f(¢(k)) € U and B is a base, there exists By € B such that
f(p(k)) € By C U. Since Sy is locally C-imaged, there exists 1, € Cg,
such that & € Int(Imy,) C Imvp, C ¢~ f~1B;. We have an open covering
(Int(Im)y))res, of the compact space S¢. Therefore we can chose a finite
subset {1,2,---, N} C Sy and have Sy = )., Impp, f(¢(Imyy,)) C B, C
U,(1 < p < N). Hence we have f € QIJ)VZIW(@p,Bp) C ﬂ;],VZIW(cpp,U) =
W(p,U), where ¢, = ¢ o1,. Since B, is an intersection of finite ele-
ments of S, ﬁ:f)vzl W (pp, Bp) is also an intersection of finite sets of the form
W(p,S),p € Cx,S €S. This completes the proof. O

Lemma 7. (i) If Y is locally C-imaged then evyy : C(Y,Z) x Y —
Z,evy z(f,y) = f(y), is continuous.
(ii) Suppose C satisfies Aziom, evy,z o €c(y,z)xy 5 continuous.

Proof. (i) Let (f,y) € C(Y,Z) x Y be an arbitrary element, and let W
be an open set such that f(y) € W. Then there exists a C-test map ¢
such that y € Int(Imyp) C Imy C f~!W. Hence we have a neighbourhood
W(p, W) x Imy of (f,y) such that evy z(W (o, W) x Imp) C W.

(ii) It suffices to prove that evy z o @ is continuous for every ¢ €
Co(v.z)xy- We have the decompoxition evy,7z o @ = evgg z o ((¢* o ¢) X
1s¢) 0 Aga, where @ = (p,1)). The right side of the equation is continuous
by (i). O

2. EXPONENTIAL LAWS

In Set, the category of small sets, we have a natural bijection eset :
Set(X x Y, Z) — Set(X, Set(Y, 2)), f = f, f(x)(y) = f(z,y)- If X,¥ and
Z are topological spaces and C C C,, we have sequences of subsets

Top(X xY,Z) C Top(ke(X xY),Z) C Set(X xY,2),
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and

Top(X, Cu(Y, 2)) € Top(X, C(Y, Z)) C Top(X, C(keY, 2)
C Top(keX,C(keY,Z)) C Set(X,Top(keY,Z)) C Set(X,Set(Y, Z)).

Lemma 8. (i) eset(Top(ke(X xY),Z)) C Top(keX,C(keY, Z)).
(i) esa(Top(X x Y, 2)) € Top(X, C(Y, 2).

Proof. (i) Let f: X xY — Z be a function such that f o¢ is continuous,
and let x € X. Then we have eget(f)(x) 01 = f o (¢z, 1) and the right
side of the equation is continuous for every @ € Cy where ¢, : Sy —
X is the constant map with the value x. This shows eget(7 op(ke(X X
Y),Z)) C Set(X,Top(kcY,Z)). Moreover let ¢ be an arbitrary C-test
map, let k& € Sy and let W (Im, W) be a neighbourhood of ese(f)(w(k)).
Since fo (¢ x ¢)(k x S¢) C W, there exists a neighbourhood U of k such
that f o (p x ¥)(U x S¢) C W by the tube lemma. This proves that
eset(f)op is continuous for every ¢. The proof is completed. (ii) It is well
known that eset(7op(X x Y, Z)) C Top(X,C,(Y, Z)) is also proved by the
tube lemma. O

Therefore we have two restrictions of eset, ep : Top(ke(X xY),Z) —
Top(keX,C(keY,Z)) and ec : Top(X xY,Z) — Top(X,C(Y,Z)). The
following proposition (i) is due to Brown in Cs case ([1]).

Theorem 9. (Main Theorem) Suppose that C satisfies Aziom. Then
(i) eq: Clhke(X xY),Z) — C(keX,C(kcY, Z)) is a natural homeo-
morphism,
(ii)) ec : C(X xY,Z) - C(X,C(Y,Z)) is a natural embedding and is
a homeomorphism if Y is locally C-imaged or X XY is a ke-space.

Proof. Applying lemma 6 and the remark in the proof of Lemma 4, we
deduce that the two injections ep,ec are embeddings. (i) Let g be an
arbitrary map in C'(k¢ X, C'(kcY, Z)). We define a map f by f = evg.y.z 0
(g X kcY') 0 ko xxkey © ke(ex X ey)~!. Since the lifting of the continuous
map (kepri, kepra) : ke(X x Y) — keX x keY is equal to ke(ex X ey) ™1,
it is contimuous. By making use of Lemma 7 (ii) and the commutativity
(g X kcY') 0 eke X xkeY = EC(keY,2)) ey © k(g X keY'), evkey,z 0 (9 X keY') o
EkeXxkey 1s continuous. These show that f is certainly an element of
C(ke(X xY),Z). Since €’s are identities as set functions, it is eaey to see
f(z,y) = g(x)(y), in other word ese:(f) = g. Hence e is surjective. (ii) If
X x Y is a ke-space then ex ! = kepri oexxy 'o (lx, cy) is continuous
and hence X is a k¢-space, so also is Y. We have e¢c = e[;, which complete
the proof of this case. Let Y be locally C-imaged. By making use of Lemma
7 (i), similar argument in (i) proves that ec is surjective. O
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Lemma 10. Suppose that C satisfies Axiom. Then
(i) keCy(keX,Z) — keC(keX, Z) is a natural homeomorphism,
(i1) so is keC(ke X, keZ) — keCl(ke X, Z).

Proof. If K is an object of C we have a k¢-space K x k¢ X by Proposition 5
and hence the exponential map e¢ : C(K x k¢ X, Z) — C(K,C (ke X, Z)) is
a homeomorphism for every Z. (i) Since e¢ is defined to be the composition
Top(K X keX,Z) — Top(K,C,(keX,Z)) C Top(K,C(keX,Z)) as a set
map, 7Top(K,Cy(keX,Z)) — Top(K,C(kcX,Z)) is bijective. This says
that the continuous bijection C,, (k¢ X, Z) — C(kcX, Z) induces a bijection
Cau(kex,2) = Co(kex,z)> Which complete the proof of (i). Let us now turn to
(ii). Since K X k¢ X is a ke-space, e : C(K X ke X, ke Z) — C(K x ke X, Z)
is bijective. By the naturality of exponential homeomorphisms, (). :
Top(K,C(keX,keZ)) — Top(K,C(kcX, Z)) is bijective for every K € OC.
This complete the proof. O

In the category of k¢-spaces K¢ the product and the function space
of spaces X,Y are defined to be XXY = k¢(X xY) and map(X,Y) =
keC(X,Y). Mixing up Theorem 9 (i) and Lemma 10 (ii) we have the
following exponential law in KC¢.

Corollary 11. Suppose that C satisfies Aziom. Then map( X XY, Z) —
map( X, map(Y, Z)) is a natural homeomorphism.

Suppose that C = Cq,C3 then the assumptions of the following each
classical exponential law are strong enough to deduce the first assumption
of Theorem 9 (ii) and that the C-test-open topology coincides with the
compact-open topology.

Corollary 12. (i) If X, Y are Hausdorff spaces and Y is locally compact
then C,(X xY,Z) — C,(X,C,(Y, Z)) is a natural homeomorphism.

(ii) If X, Y are regular and Y is locally compact then C,(X XY, Z) —
Cu(X,C,(Y,2)) is a natural homeomorphism.
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