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A CONVENIENT AXIOM TO CONVENIENT
CATEGORIES FOR HOMOTOPY THEORY

YASUMASA HIRASHIMA

Introduction

As a suitable topology for spaces of cotinuous maps, Brown ([1]) does
not adopt the usual compact-open topology but the test-open topology.
The adoptation of this topology provides for example that if Y is locally
compact and Hausdorff then the natural exponential map C2(X ×Y,Z) →
C2(X,C2(Y,Z)) is a homeomorphism, where C2(X,Y ) is the set T op(X,Y )
endowed with the test-open topology. The exponential law is a general-
ization of the classical Hausdorff type one (Corollary 12 (i)). However, it
seems for us that these conditions on Y is surplus and incongruous to the
test-open topology. We replace these conditions with a more natural lo-
cal condition (Theorem 9 (ii)). Moreover, we introduce an axiom which is
slightly different from Axiom 2 of Vogt [5]. For each category C which satis-
fies our axiom we have both the exponential law in the categry of kC-spaces
and similar one described above in T op, by making use of Brown’s method.
For example, the second exponential law with respect to C3, the category
of compact regular spaces, is a generalization of the classical regular type
one.

1. kC-spaces, C-test-open topology and Axiom

Let C be a non-empty full subcategory of the category T op of small
topological spaces ([2]). By a C-test map on X we mean a continuous
map ϕ with the souce Sϕ ∈ OC and the target Tϕ = X. Let CX denote
the class of all C-test maps on X. (The class is a set which may not be
small in general ([2]).) Given a space X, we define a space kCX to be
the same underlying set endowed with the final topology with respect to
all ϕ ∈ CX . The identity map εX : kCX → X is cotinuous and induces a
bijection εX∗ : CkCX → CX , i.e. for any ϕ ∈ CX there exists an unique lifting
′ϕ ∈ CkCX such that εX ◦ ′ϕ = ϕ. These constructions define an idempotent
functor kC : T op → T op and a natural transformation ε : kC→̇1T op. A
space X is called a kC-space if kCX = X. Let KC be the full subcategory
of T op consisting of all kC-spaces. C is a subcategory of KC .

115



116 YASUMASA HIRASHIMA

Let C2, C3 and Cω be the category of compact Hausdorff spaces, of
compact regular spaces and of compact spaces respectively. Our K2 = KC2

is the Brown’s category of k-spaces which is denoted by HG in Vogt’s paper
[5].

The following proposition which is due to Brown ([1]) in C2 case is a
characterization of kC-spaces.

Proposition 1. X is a kC-space if and only if there exists a subfamily
(ϕλ)λ∈Λ of CX with small index set Λ such that π :

∐
λ∈Λ

Sϕλ → X, π|Sϕλ
=

ϕλ, is an identification.

Proof. Since X is a kC-space, {(ϕ,B)|ϕ−1B 6∈ FSϕ, ϕ ∈ CX , B 6∈ FX} →
PX − FX , (ϕ,B) 7→ B is a surjection, where PX is the power set of X
and FX ,FSϕ are the sets of closed sets in X,Sϕ respectively. Applying
Axiom of Choice to this surjection, we have a family (ϕB)B∈PX−FX

of CX

such that ϕ−1
B B is not closed in Sϕ. Since C is not empty, for every x ∈ X

there exists a constant map cx with the souce in OC and the value x. The
function Λ = (PX −FX)

∐
X → CX , given by B 7→ ϕB and x 7→ cx, defines

a family (ϕλ)λ∈Λ which we need. Since π is a continuous surjection and
every non-closed subset of X is not closed with respect to the identification
topology, π is an identification. The converse is obvious.

A space or its subspace in general is called C-imaged if it is the image
of a C-test map and is called C-objective if it is C-imaged by a C-test map
which is an embedding. A space X is called C-reflective if every C-imaged
subset of X is always C-objective. With respect to such a property P it is
usual to say a space X is locally P if each point of X has a fundamental
system of neighbourhoods with the property P . We call X locally P in the
weak sence if each point of X has a neighbourhood with the property P .
We have the following

Proposition 2. Suppose that X is locally C-reflective in the weak sence.
Then X is locally C-objective if and only if it is locally C-imaged.

Proof. Let X be locally C-imaged. Let Wx be a C-reflective neighbourhood
admitted by each x ∈ X. Then there exists a C-test map ϕ such that
x ∈ Int(Imϕ) ⊂ Imϕ ⊂ Wx. Hence Imϕ becomes C-objective. The converse
is trivial.

McCord ([3]) proved that every weak Hausdorff space is C2-reflective.
The inverse is also true. A subset A of a topological space X is closed if
and only if A is closed in A ∪ {b} for every b 6∈ A. In particular let A be
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C2-imaged in a C2-reflective space X. Then A ∪ {b} is also C2-imaged and
therefore is Hausdorff. A compact set A is closed in A ∪ {b}. Hence X is
weak Hausdorff.

Since every compact Hausdorff space is weak Hausdorff we conclude
that X is locally C2-objective if and only if it is locally C2-imaged and
locally weak Hausdorff. The set of non-negative real numbers [0,∞) with
the set of open sets {[0, a)|0 ≤ a ≤ ∞} is an example of locally C2-imaged
space which is not locally C2-objective.

The following proposition is due to Oshima in C2 case ([4]).

Proposition 3. Every space which is locally C-objective in the weak sence
is a kC-space.

Proof. Let X be a space which is locally C-objective in the weak sence and
let Nx denote a C-objective neighbourhood admitted by each x ∈ X. Let
U be an open set in kCX. We remark that if A is open in a subspace N
then A ∩ IntN is open in X. This implies that U ∩ IntNx is open in X
and therefore U =

⋃
x∈X(U ∩ IntNx) is open in X, which complete the

proof.

Let C(X,Y ) be the set T op(X,Y ) endowed with the C-test-open topo-
logy, i.e. the topology generated by the subbase {W (ϕ,U)|ϕ ∈ CX , U ∈
OY }, where OY is the set of open sets in Y and W (ϕ, U) = W (Imϕ,U) =
{f ∈ T op(X,Y )|f(Imϕ) ⊂ U}. The topology of C2(X,Y ) is the Brown’s
test-open topology and that of Cω(X,Y ) is the usual compact-open topol-
ogy.

Lemma 4. (i) If ι : B → Y is an embedding, so is ι∗ : C(X,B) →
C(X,Y ).

(ii) f : X → Z induces an embedding f∗ : C(Z, Y ) → C(X,Y ) if for
any ψ ∈ CZ there exists a ϕ ∈ CX such that f(Imϕ) = Imψ. Especially
εX

∗ : C(X,Z) → C(kCX,Z) is an embedding.

Proof. Let P,Q are topological spaces and j : P → Q be an injective set
function. We remark that j is an embedding if (and only if) there exists
a subbase S of Q such that j−1S = {j−1S|S ∈ S} is a subbase of P . It
is easy to see that the subbase {W (ϕ,U)|ϕ ∈ CX , U ∈ OY } satisfies the
if-condition of the remark in both cases (i), (ii). It remains to complete the
proof of (ii) by showing that f∗ : C(Z, Y ) → C(X,Y ) is injective. Since
every C-imaged subset in Z is contained in Imf by the condition of (ii) and
every one point subset is C-imaged by a constant C-map, f is surjective
and hence f∗ is injective.

We now introduce the following axiom which is slightly different from
Axiom 2 of Vogt [5].
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Axiom. (i) The cartesian product of two spaces in C is again in C.
(ii) Every object in C is compact and locally C-imaged.
Since every object of C2, C3 is regular, these categories satisfy our

axiom. If C satisfies Axiom, so is the full subcategory C′ ⊂ T op of compact
locally C-imaged spaces. We therefore have an increasing sequence, indexed
by the ordinals, of categories which satisfy Axiom.

Proposition 5. Suppose that C satisfies Axiom. Then the cartesian prod-
uct of a kC-space and a space which is locally C-objective in the weak sence
is a kC-space.

Proof. At first we remark that a space which is locally C-objective in the
weak sence is locally C-imaged, and therefore is locally compact. Secondly,
by making use of Proposition 1, 3, we deduce that P is a kC-space if and only
if there exists an identification L → P such that L is locally C-objective in
the weak sence. Now let X be a kC-space and L2 be locally C-objective in the
weak sence. Following the above second remark, we take an identification
π : L1 → X where L1 is locally C-objective in the weak sence. Since L2

is localy compact by the first remark, π × L2 : L1 × L2 → X × L2 is also
an identification ([1]). Moreover L1 ×L2 is locally C-objective in the weak
sence. Hence X × L2 is a kC-space.

Lemma 6. Suppose that C satisfies Axiom. Then
(i) the topology of C(kC(X × Y ), Z) is generated by the subbase

{W (′(ϕ × ψ), U)|ϕ ∈ CX , ψ ∈ CY , U ∈ OZ},
(ii) the topology of C(X × Y,Z) is generated by the subbase

{W (ϕ × ψ,U)|ϕ ∈ CX , ψ ∈ CY , U ∈ OZ},
(iii) the topology of C(X,T ) is generated by {W (ϕ, S)|ϕ ∈ CX , S ∈ S}

if the topology of T is generated by S.

Proof. (i) It suffices to prove that for every W (′Φ,U), Φ ∈ CX×Y , U ∈ OZ

and every f ∈ W (′Φ,U) there exist ϕp ∈ CX , ψp ∈ CY , 1 ≤ p ≤ N such
that f ∈

⋂N
p=1 W (′(ϕp × ψp), U) ⊂ W (′Φ,U). We have the decomposition

Φ = (ϕ,ψ) = (ϕ × ψ) ◦ ∆, where ϕ ∈ CX , ψ ∈ CY and ∆ : SΦ → SΦ × SΦ
is the diagonal map. Since Im∆ ⊂ ′(ϕ × ψ)−1f−1U , for every k ∈ Sϕ
there exists an open set Uk such that (k, k) ∈ Uk ×Uk ⊂ ′(ϕ×ψ)−1f−1U .
Since SΦ is locally C-imaged by Axiom, there exists σk ∈ CSΦ such that
k ∈ Int(Imσk) ⊂ Imσk ⊂ Uk. We have an open covering (Int(Imσk))k∈SΦ of
the compact space SΦ. Therefore we can chose a finite set {1, 2, · · · , N} ⊂
SΦ which satisfies SΦ =

⋃N
p=1 Imσp. Applying ′(ϕ × ψ) to the sequence

of subsets Im∆ ⊂
⋃N

p=1(Imσp × Imσp) ⊂ ′(ϕ × ψ)−1f−1U , we have the
sequence Im′Φ ⊂

⋃N
p=1 Im ′(ϕp × ψp) ⊂ f−1U , where ϕp = ϕ ◦ σp and
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ψp = ψ ◦σp. It is easy to see that
⋃N

p=1 Im ′(ϕp ×ψp) ⊂ f−1U is equivalent
to f ∈

⋂N
p=1 W (′(ϕp×ψp), U) and that Im′Φ ⊂

⋃N
p=1 Im ′(ϕp×ψp) and g ∈⋂N

p=1 W (′(ϕp×ψp), U) induces g ∈ W (′Φ, U), in other word
⋂N

p=1 W (′(ϕp×
ψp), U) ⊂ W (′Φ,U).

(ii) Since εX×Y
∗ : C(X ×Y,Z) → C(kC(X ×Y ), Z) is an embedding,

the topology of C(X×Y,Z) generated by the subbase (εX×Y
∗)−1{W (′(ϕ×

ψ), U)|ϕ ∈ CX , ψ ∈ CY , U ∈ OZ}, which coincides with {W (ϕ × ψ,U)|ϕ ∈
CX , ψ ∈ CY , U ∈ OZ}.

(iii) Let B denote the base generated by S. Let W (ϕ, U) be an arbi-
trary element of the canonical subbase of C(X,T ), let f ∈ W (ϕ,U) and let
k ∈ Sϕ. Since f(ϕ(k)) ∈ U and B is a base, there exists Bk ∈ B such that
f(ϕ(k)) ∈ Bk ⊂ U . Since Sϕ is locally C-imaged, there exists ψk ∈ CSϕ

such that k ∈ Int(Imψk) ⊂ Imψk ⊂ φ−1f−1Bk. We have an open covering
(Int(Imψk))k∈Sϕ of the compact space Sϕ. Therefore we can chose a finite
subset {1, 2, · · · , N} ⊂ Sϕ and have Sϕ =

⋃N
p=1 Imψp, f(φ(Imψp)) ⊂ Bp ⊂

U, (1 ≤ p ≤ N). Hence we have f ∈ ∩N
p=1W (ϕp, Bp) ⊂ ∩N

p=1W (ϕp, U) =
W (ϕ,U), where ϕp = ϕ ◦ ψp. Since Bp is an intersection of finite ele-
ments of S, ∩N

p=1W (ϕp, Bp) is also an intersection of finite sets of the form
W (ϕ, S), ϕ ∈ CX , S ∈ S. This completes the proof.

Lemma 7. (i) If Y is locally C-imaged then evY,Z : C(Y,Z) × Y →
Z, evY,Z(f, y) = f(y), is continuous.

(ii) Suppose C satisfies Axiom, evY,Z ◦ εC(Y,Z)×Y is continuous.

Proof. (i) Let (f, y) ∈ C(Y,Z) × Y be an arbitrary element, and let W
be an open set such that f(y) ∈ W . Then there exists a C-test map ϕ
such that y ∈ Int(Imϕ) ⊂ Imϕ ⊂ f−1W . Hence we have a neighbourhood
W (ϕ,W ) × Imϕ of (f, y) such that evY,Z(W (ϕ, W ) × Imϕ) ⊂ W .

(ii) It suffices to prove that evY,Z ◦ Φ is continuous for every Φ ∈
CC(Y,Z)×Y . We have the decompoxition evY,Z ◦ Φ = evSΦ,Z ◦ ((ψ∗ ◦ ϕ) ×
1SΦ) ◦∆SΦ, where Φ = (ϕ, ψ). The right side of the equation is continuous
by (i).

2. exponential laws

In Set, the category of small sets, we have a natural bijection eSet :
Set(X × Y,Z) → Set(X,Set(Y,Z)), f 7→ f̃ , f̃(x)(y) = f(x, y). If X,Y and
Z are topological spaces and C ⊂ Cω, we have sequences of subsets

T op(X × Y,Z) ⊂ T op(kC(X × Y ), Z) ⊂ Set(X × Y,Z),
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and

T op(X,Cω(Y,Z)) ⊂ T op(X,C(Y,Z)) ⊂ T op(X,C(kCY,Z))

⊂ T op(kCX,C(kCY,Z)) ⊂ Set(X, T op(kCY,Z)) ⊂ Set(X,Set(Y,Z)).

Lemma 8. (i) eSet(T op(kC(X × Y ), Z)) ⊂ T op(kCX,C(kCY,Z)).
(ii) eSet(T op(X × Y,Z)) ⊂ T op(X,C(Y,Z)).

Proof. (i) Let f : X × Y → Z be a function such that f ◦ ε is continuous,
and let x ∈ X. Then we have eSet(f)(x) ◦ ψ = f ◦ (cx, ψ) and the right
side of the equation is continuous for every ψ ∈ CY where cx : Sψ →
X is the constant map with the value x. This shows eSet(T op(kC(X ×
Y ), Z)) ⊂ Set(X, T op(kCY,Z)). Moreover let ϕ be an arbitrary C-test
map, let k ∈ Sϕ and let W (Imψ,W ) be a neighbourhood of eSet(f)(ϕ(k)).
Since f ◦ (ϕ × ψ)(k × Sφ) ⊂ W , there exists a neighbourhood U of k such
that f ◦ (ϕ × ψ)(U × Sφ) ⊂ W by the tube lemma. This proves that
eSet(f)◦ϕ is continuous for every ϕ. The proof is completed. (ii) It is well
known that eSet(T op(X ×Y,Z)) ⊂ T op(X,Cω(Y,Z)) is also proved by the
tube lemma.

Therefore we have two restrictions of eSet, e′C : T op(kC(X ×Y ), Z) →
T op(kCX,C(kCY,Z)) and eC : T op(X × Y,Z) → T op(X,C(Y,Z)). The
following proposition (i) is due to Brown in C2 case ([1]).

Theorem 9. (Main Theorem) Suppose that C satisfies Axiom. Then
(i) e′C : C(kC(X × Y ), Z) → C(kCX,C(kCY,Z)) is a natural homeo-

morphism,
(ii) eC : C(X ×Y,Z) → C(X,C(Y,Z)) is a natural embedding and is

a homeomorphism if Y is locally C-imaged or X × Y is a kC-space.

Proof. Applying lemma 6 and the remark in the proof of Lemma 4, we
deduce that the two injections e′C , eC are embeddings. (i) Let g be an
arbitrary map in C(kCX,C(kCY,Z)). We define a map f by f = evkCY,Z ◦
(g × kCY ) ◦ εkCX×kCY ◦ kC(εX × εY )−1. Since the lifting of the continuous
map (kCpr1, kCpr2) : kC(X × Y ) → kCX × kCY is equal to kC(εX × εY )−1,
it is contimuous. By making use of Lemma 7 (ii) and the commutativity
(g × kCY ) ◦ εkCX×kCY = εC(kCY,Z)),kCY ◦ kC(g × kCY ), evkCY,Z ◦ (g × kCY ) ◦
εkCX×kCY is continuous. These show that f is certainly an element of
C(kC(X × Y ), Z). Since ε’s are identities as set functions, it is eaey to see
f(x, y) = g(x)(y), in other word eSet(f) = g. Hence e′C is surjective. (ii) If
X × Y is a kC-space then εX

−1 = kCpr1 ◦ εX×Y
−1 ◦ (1X , cy) is continuous

and hence X is a kC-space, so also is Y . We have eC = e′C , which complete
the proof of this case. Let Y be locally C-imaged. By making use of Lemma
7 (i), similar argument in (i) proves that eC is surjective.
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Lemma 10. Suppose that C satisfies Axiom. Then
(i) kCCω(kCX,Z) → kCC(kCX,Z) is a natural homeomorphism,
(ii) so is kCC(kCX, kCZ) → kCC(kCX,Z).

Proof. If K is an object of C we have a kC-space K×kCX by Proposition 5
and hence the exponential map eC : C(K × kCX,Z) → C(K,C(kCX,Z)) is
a homeomorphism for every Z. (i) Since eC is defined to be the composition
T op(K × kCX,Z) → T op(K,Cω(kCX,Z)) ⊂ T op(K,C(kCX,Z)) as a set
map, T op(K,Cω(kCX,Z)) → T op(K,C(kCX,Z)) is bijective. This says
that the continuous bijection Cω(kCX,Z) → C(kCX,Z) induces a bijection
CCω(kCX,Z) → CC(kCX,Z), which complete the proof of (i). Let us now turn to
(ii). Since K ×kCX is a kC-space, ε∗ : C(K ×kCX, kCZ) → C(K ×kCX,Z)
is bijective. By the naturality of exponential homeomorphisms, (ε∗)∗ :
T op(K,C(kCX, kCZ)) → T op(K,C(kCX,Z)) is bijective for every K ∈ OC.
This complete the proof.

In the category of kC-spaces KC the product and the function space
of spaces X,Y are defined to be X×Y = kC(X × Y ) and map(X,Y ) =
kCC(X,Y ). Mixing up Theorem 9 (i) and Lemma 10 (ii) we have the
following exponential law in KC .

Corollary 11. Suppose that C satisfies Axiom. Then map( X×Y, Z ) →
map( X, map( Y, Z ) ) is a natural homeomorphism.

Suppose that C = C2, C3 then the assumptions of the following each
classical exponential law are strong enough to deduce the first assumption
of Theorem 9 (ii) and that the C-test-open topology coincides with the
compact-open topology.

Corollary 12. (i) If X, Y are Hausdorff spaces and Y is locally compact
then Cω(X × Y,Z) → Cω(X,Cω(Y,Z)) is a natural homeomorphism.

(ii) If X, Y are regular and Y is locally compact then Cω(X×Y,Z) →
Cω(X,Cω(Y,Z)) is a natural homeomorphism.
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