Math. J. Okayama Univ. 42 (2000), 115-122

A CONVENIENT AXIOM TO CONVENIENT CATEGORIES FOR HOMOTOPY THEORY

YASUMASA HIRASHIMA

INTRODUCTION

As a suitable topology for spaces of cotinuous maps, Brown ([1]) does not adopt the usual compact-open topology but the test-open topology. The adoptation of this topology provides for example that if Y is locally compact and Hausdorff then the natural exponential map $C_2(X \times Y, Z) \rightarrow$ $C_2(X, C_2(Y, Z))$ is a homeomorphism, where $C_2(X, Y)$ is the set $\mathcal{T}op(X, Y)$ endowed with the test-open topology. The exponential law is a generalization of the classical Hausdorff type one (Corollary 12 (i)). However, it seems for us that these conditions on Y is surplus and incongruous to the test-open topology. We replace these conditions with a more natural local condition (Theorem 9 (ii)). Moreover, we introduce an axiom which is slightly different from Axiom 2 of Vogt [5]. For each category \mathcal{C} which satisfies our axiom we have both the exponential law in the category of $k_{\mathcal{C}}$ -spaces and similar one described above in $\mathcal{T}op$, by making use of Brown's method. For example, the second exponential law with respect to C_3 , the category of compact regular spaces, is a generalization of the classical regular type one.

1. $k_{\mathcal{C}}$ -spaces, \mathcal{C} -test-open topology and Axiom

Let \mathcal{C} be a non-empty full subcategory of the category $\mathcal{T}op$ of small topological spaces ([2]). By a \mathcal{C} -test map on X we mean a continuous map φ with the souce $S\varphi \in O\mathcal{C}$ and the target $T\varphi = X$. Let \mathcal{C}_X denote the class of all \mathcal{C} -test maps on X. (The class is a set which may not be small in general ([2]).) Given a space X, we define a space $k_{\mathcal{C}}X$ to be the same underlying set endowed with the final topology with respect to all $\varphi \in \mathcal{C}_X$. The identity map $\varepsilon_X : k_{\mathcal{C}}X \to X$ is cotinuous and induces a bijection $\varepsilon_{X*} : \mathcal{C}_{k_{\mathcal{C}}X} \to \mathcal{C}_X$, i.e. for any $\varphi \in \mathcal{C}_X$ there exists an unique lifting $\varphi \in \mathcal{C}_{k_{\mathcal{C}}X}$ such that $\varepsilon_X \circ \varphi = \varphi$. These constructions define an idempotent functor $k_{\mathcal{C}} : \mathcal{T}op \to \mathcal{T}op$ and a natural transformation $\varepsilon : k_{\mathcal{C}} \to 1_{\mathcal{T}op}$. A space X is called a $k_{\mathcal{C}}$ -space if $k_{\mathcal{C}}X = X$. Let $\mathcal{K}_{\mathcal{C}}$ be the full subcategory of $\mathcal{T}op$ consisting of all $k_{\mathcal{C}}$ -spaces. \mathcal{C} is a subcategory of $\mathcal{K}_{\mathcal{C}}$. Let C_2 , C_3 and C_{ω} be the category of compact Hausdorff spaces, of compact regular spaces and of compact spaces respectively. Our $\mathcal{K}_2 = \mathcal{K}_{C_2}$ is the Brown's category of k-spaces which is denoted by \mathcal{HG} in Vogt's paper [5].

The following proposition which is due to Brown ([1]) in C_2 case is a characterization of $k_{\mathcal{C}}$ -spaces.

Proposition 1. X is a $k_{\mathcal{C}}$ -space if and only if there exists a subfamily $(\varphi_{\lambda})_{\lambda \in \Lambda}$ of \mathcal{C}_X with small index set Λ such that $\pi : \prod_{\lambda \in \Lambda} S\varphi_{\lambda} \to X, \ \pi_{|S\varphi_{\lambda}|} =$

 φ_{λ} , is an identification.

Proof. Since X is a $k_{\mathcal{C}}$ -space, $\{(\varphi, B) | \varphi^{-1}B \notin \mathcal{F}_{S\varphi}, \varphi \in \mathcal{C}_X, B \notin \mathcal{F}_X\} \rightarrow \mathcal{P}_X - \mathcal{F}_X$, $(\varphi, B) \mapsto B$ is a surjection, where \mathcal{P}_X is the power set of X and $\mathcal{F}_X, \mathcal{F}_{S\varphi}$ are the sets of closed sets in $X, S\varphi$ respectively. Applying Axiom of Choice to this surjection, we have a family $(\varphi_B)_{B\in\mathcal{P}_X-\mathcal{F}_X}$ of \mathcal{C}_X such that $\varphi_B^{-1}B$ is not closed in $S\varphi$. Since \mathcal{C} is not empty, for every $x \in X$ there exists a constant map c_x with the souce in $O\mathcal{C}$ and the value x. The function $\Lambda = (\mathcal{P}_X - \mathcal{F}_X) \coprod X \to \mathcal{C}_X$, given by $B \mapsto \varphi_B$ and $x \mapsto c_x$, defines a family $(\varphi_\lambda)_{\lambda \in \Lambda}$ which we need. Since π is a continuous surjection and every non-closed subset of X is not closed with respect to the identification topology, π is an identification. The converse is obvious.

A space or its subspace in general is called C-imaged if it is the image of a C-test map and is called C-objective if it is C-imaged by a C-test map which is an embedding. A space X is called C-reflective if every C-imaged subset of X is always C-objective. With respect to such a property P it is usual to say a space X is locally P if each point of X has a fundamental system of neighbourhoods with the property P. We call X locally P in the weak sence if each point of X has a neighbourhood with the property P. We have the following

Proposition 2. Suppose that X is locally C-reflective in the weak sence. Then X is locally C-objective if and only if it is locally C-imaged.

Proof. Let X be locally \mathcal{C} -imaged. Let W_x be a \mathcal{C} -reflective neighbourhood admitted by each $x \in X$. Then there exists a \mathcal{C} -test map φ such that $x \in \operatorname{Int}(\operatorname{Im} \varphi) \subset \operatorname{Im} \varphi \subset W_x$. Hence $\operatorname{Im} \varphi$ becomes \mathcal{C} -objective. The converse is trivial.

McCord ([3]) proved that every weak Hausdorff space is C_2 -reflective. The inverse is also true. A subset A of a topological space X is closed if and only if A is closed in $A \cup \{b\}$ for every $b \notin A$. In particular let A be C_2 -imaged in a C_2 -reflective space X. Then $A \cup \{b\}$ is also C_2 -imaged and therefore is Hausdorff. A compact set A is closed in $A \cup \{b\}$. Hence X is weak Hausdorff.

Since every compact Hausdorff space is weak Hausdorff we conclude that X is locally C_2 -objective if and only if it is locally C_2 -imaged and locally weak Hausdorff. The set of non-negative real numbers $[0, \infty)$ with the set of open sets $\{[0, a)|0 \le a \le \infty\}$ is an example of locally C_2 -imaged space which is not locally C_2 -objective.

The following proposition is due to Oshima in C_2 case ([4]).

Proposition 3. Every space which is locally C-objective in the weak sence is a $k_{\mathcal{C}}$ -space.

Proof. Let X be a space which is locally C-objective in the weak sence and let N_x denote a C-objective neighbourhood admitted by each $x \in X$. Let U be an open set in $k_{\mathcal{C}}X$. We remark that if A is open in a subspace N then $A \cap \operatorname{Int}N$ is open in X. This implies that $U \cap \operatorname{Int}N_x$ is open in X and therefore $U = \bigcup_{x \in X} (U \cap \operatorname{Int}N_x)$ is open in X, which complete the proof.

Let C(X, Y) be the set $\mathcal{T}op(X, Y)$ endowed with the \mathcal{C} -test-open topology, i.e. the topology generated by the subbase $\{W(\varphi, U) | \varphi \in \mathcal{C}_X, U \in \mathcal{O}_Y\}$, where \mathcal{O}_Y is the set of open sets in Y and $W(\varphi, U) = W(\operatorname{Im}\varphi, U) = \{f \in \mathcal{T}op(X, Y) | f(\operatorname{Im}\varphi) \subset U\}$. The topology of $C_2(X, Y)$ is the Brown's test-open topology and that of $C_{\omega}(X, Y)$ is the usual compact-open topology.

Lemma 4. (i) If $\iota : B \to Y$ is an embedding, so is $\iota_* : C(X, B) \to C(X, Y)$.

(ii) $f: X \to Z$ induces an embedding $f^*: C(Z,Y) \to C(X,Y)$ if for any $\psi \in \mathcal{C}_Z$ there exists a $\varphi \in \mathcal{C}_X$ such that $f(\operatorname{Im} \varphi) = \operatorname{Im} \psi$. Especially $\varepsilon_X^*: C(X,Z) \to C(k_{\mathcal{C}}X,Z)$ is an embedding.

Proof. Let P, Q are topological spaces and $j: P \to Q$ be an injective set function. We remark that j is an embedding if (and only if) there exists a subbase S of Q such that $j^{-1}S = \{j^{-1}S | S \in S\}$ is a subbase of P. It is easy to see that the subbase $\{W(\varphi, U) | \varphi \in \mathcal{C}_X, U \in \mathcal{O}_Y\}$ satisfies the if-condition of the remark in both cases (i), (ii). It remains to complete the proof of (ii) by showing that $f^*: C(Z, Y) \to C(X, Y)$ is injective. Since every \mathcal{C} -imaged subset in Z is contained in Imf by the condition of (ii) and every one point subset is \mathcal{C} -imaged by a constant \mathcal{C} -map, f is surjective and hence f^* is injective.

We now introduce the following axiom which is slightly different from Axiom 2 of Vogt [5].

- **Axiom.** (i) The cartesian product of two spaces in C is again in C.
 - (ii) Every object in C is compact and locally C-imaged.

Since every object of C_2 , C_3 is regular, these categories satisfy our axiom. If C satisfies Axiom, so is the full subcategory $C' \subset Top$ of compact locally C-imaged spaces. We therefore have an increasing sequence, indexed by the ordinals, of categories which satisfy Axiom.

Proposition 5. Suppose that C satisfies Axiom. Then the cartesian product of a k_{C} -space and a space which is locally C-objective in the weak sence is a k_{C} -space.

Proof. At first we remark that a space which is locally C-objective in the weak sence is locally C-imaged, and therefore is locally compact. Secondly, by making use of Proposition 1, 3, we deduce that P is a k_C -space if and only if there exists an identification $L \to P$ such that L is locally C-objective in the weak sence. Now let X be a k_C -space and L_2 be locally C-objective in the weak sence. Following the above second remark, we take an identification $\pi : L_1 \to X$ where L_1 is locally C-objective in the weak sence. Since L_2 is locally compact by the first remark, $\pi \times L_2 : L_1 \times L_2 \to X \times L_2$ is also an identification ([1]). Moreover $L_1 \times L_2$ is locally C-objective in the weak sence. \Box

Lemma 6. Suppose that C satisfies Axiom. Then

(i) the topology of $C(k_{\mathcal{C}}(X \times Y), Z)$ is generated by the subbase $\{W('(\varphi \times \psi), U) | \varphi \in \mathcal{C}_X, \psi \in \mathcal{C}_Y, U \in \mathcal{O}_Z\},\$

(ii) the topology of $C(X \times Y, Z)$ is generated by the subbase $\{W(\varphi \times \psi, U) | \varphi \in \mathcal{C}_X, \psi \in \mathcal{C}_Y, U \in \mathcal{O}_Z\},\$

(iii) the topology of C(X,T) is generated by $\{W(\varphi,S)|\varphi \in \mathcal{C}_X, S \in \mathcal{S}\}$ if the topology of T is generated by \mathcal{S} .

Proof. (i) It suffices to prove that for every $W('\Phi, U), \Phi \in \mathcal{C}_{X \times Y}, U \in \mathcal{O}_Z$ and every $f \in W('\Phi, U)$ there exist $\varphi_p \in \mathcal{C}_X, \psi_p \in \mathcal{C}_Y, 1 \leq p \leq N$ such that $f \in \bigcap_{p=1}^N W('(\varphi_p \times \psi_p), U) \subset W('\Phi, U)$. We have the decomposition $\Phi = (\varphi, \psi) = (\varphi \times \psi) \circ \Delta$, where $\varphi \in \mathcal{C}_X, \psi \in \mathcal{C}_Y$ and $\Delta : S\Phi \to S\Phi \times S\Phi$ is the diagonal map. Since $\operatorname{Im}\Delta \subset '(\varphi \times \psi)^{-1}f^{-1}U$, for every $k \in S\varphi$ there exists an open set U_k such that $(k,k) \in U_k \times U_k \subset '(\varphi \times \psi)^{-1}f^{-1}U$. Since $S\Phi$ is locally \mathcal{C} -imaged by Axiom, there exists $\sigma_k \in \mathcal{C}_{S\Phi}$ such that $k \in \operatorname{Int}(\operatorname{Im}\sigma_k) \subset \operatorname{Im}\sigma_k \subset U_k$. We have an open covering $(\operatorname{Int}(\operatorname{Im}\sigma_k))_{k \in S\Phi}$ of the compact space $S\Phi$. Therefore we can chose a finite set $\{1, 2, \cdots, N\} \subset S\Phi$ which satisfies $S\Phi = \bigcup_{p=1}^N \operatorname{Im}\sigma_p$. Applying $'(\varphi \times \psi)$ to the sequence of subsets $\operatorname{Im}\Delta \subset \bigcup_{p=1}^N \operatorname{Im}\sigma_p \times \operatorname{Im}\sigma_p) \subset '(\varphi \times \psi)^{-1}f^{-1}U$, we have the sequence $\operatorname{Im}'\Phi \subset \bigcup_{p=1}^N \operatorname{Im}'(\varphi_p \times \psi_p) \subset f^{-1}U$, where $\varphi_p = \varphi \circ \sigma_p$ and

118

$$\begin{split} \psi_p &= \psi \circ \sigma_p. \text{ It is easy to see that } \bigcup_{p=1}^N \operatorname{Im}'(\varphi_p \times \psi_p) \subset f^{-1}U \text{ is equivalent} \\ \text{to } f \in \bigcap_{p=1}^N W('(\varphi_p \times \psi_p), U) \text{ and that } \operatorname{Im}' \Phi \subset \bigcup_{p=1}^N \operatorname{Im}'(\varphi_p \times \psi_p) \text{ and } g \in \\ \bigcap_{p=1}^N W('(\varphi_p \times \psi_p), U) \text{ induces } g \in W('\Phi, U), \text{ in other word } \bigcap_{p=1}^N W('(\varphi_p \times \psi_p), U) \subset W('\Phi, U). \end{split}$$

(ii) Since $\varepsilon_{X \times Y}^* : C(X \times Y, Z) \to C(k_{\mathcal{C}}(X \times Y), Z)$ is an embedding, the topology of $C(X \times Y, Z)$ generated by the subbase $(\varepsilon_{X \times Y}^*)^{-1} \{ W('(\varphi \times \psi), U) | \varphi \in \mathcal{C}_X, \psi \in \mathcal{C}_Y, U \in \mathcal{O}_Z \}$, which coincides with $\{ W(\varphi \times \psi, U) | \varphi \in \mathcal{C}_X, \psi \in \mathcal{C}_Y, U \in \mathcal{O}_Z \}$.

(iii) Let \mathcal{B} denote the base generated by \mathcal{S} . Let $W(\varphi, U)$ be an arbitrary element of the canonical subbase of C(X, T), let $f \in W(\varphi, U)$ and let $k \in S\varphi$. Since $f(\varphi(k)) \in U$ and \mathcal{B} is a base, there exists $B_k \in \mathcal{B}$ such that $f(\varphi(k)) \in B_k \subset U$. Since $S\varphi$ is locally \mathcal{C} -imaged, there exists $\psi_k \in \mathcal{C}_{S\varphi}$ such that $k \in \operatorname{Int}(\operatorname{Im}\psi_k) \subset \operatorname{Im}\psi_k \subset \phi^{-1}f^{-1}B_k$. We have an open covering $(\operatorname{Int}(\operatorname{Im}\psi_k))_{k\in S\varphi}$ of the compact space $S\varphi$. Therefore we can chose a finite subset $\{1, 2, \dots, N\} \subset S\varphi$ and have $S\varphi = \bigcup_{p=1}^N \operatorname{Im}\psi_p$, $f(\phi(\operatorname{Im}\psi_p)) \subset B_p \subset U$, $(1 \leq p \leq N)$. Hence we have $f \in \bigcap_{p=1}^N W(\varphi_p, B_p) \subset \bigcap_{p=1}^N W(\varphi_p, U) = W(\varphi, U)$, where $\varphi_p = \varphi \circ \psi_p$. Since B_p is an intersection of finite elements of $\mathcal{S}, \bigcap_{p=1}^N W(\varphi_p, B_p)$ is also an intersection of finite sets of the form $W(\varphi, S), \varphi \in \mathcal{C}_X, S \in \mathcal{S}$. This completes the proof.

Lemma 7. (i) If Y is locally C-imaged then $ev_{Y,Z} : C(Y,Z) \times Y \rightarrow Z, ev_{Y,Z}(f,y) = f(y)$, is continuous.

(ii) Suppose C satisfies Axiom, $ev_{Y,Z} \circ \varepsilon_{C(Y,Z) \times Y}$ is continuous.

Proof. (i) Let $(f, y) \in C(Y, Z) \times Y$ be an arbitrary element, and let W be an open set such that $f(y) \in W$. Then there exists a C-test map φ such that $y \in \text{Int}(\text{Im}\varphi) \subset \text{Im}\varphi \subset f^{-1}W$. Hence we have a neighbourhood $W(\varphi, W) \times \text{Im}\varphi$ of (f, y) such that $ev_{Y,Z}(W(\varphi, W) \times \text{Im}\varphi) \subset W$.

(ii) It suffices to prove that $ev_{Y,Z} \circ \Phi$ is continuous for every $\Phi \in \mathcal{C}_{C(Y,Z)\times Y}$. We have the decomposition $ev_{Y,Z} \circ \Phi = ev_{S\Phi,Z} \circ ((\psi^* \circ \varphi) \times 1_{S\Phi}) \circ \Delta_{S\Phi}$, where $\Phi = (\varphi, \psi)$. The right side of the equation is continuous by (i).

2. EXPONENTIAL LAWS

In Set, the category of small sets, we have a natural bijection e_{Set} : $Set(X \times Y, Z) \to Set(X, Set(Y, Z)), f \mapsto \tilde{f}, \tilde{f}(x)(y) = f(x, y)$. If X, Y and Z are topological spaces and $\mathcal{C} \subset \mathcal{C}_{\omega}$, we have sequences of subsets

$$\mathcal{T}op(X \times Y, Z) \subset \mathcal{T}op(k_{\mathcal{C}}(X \times Y), Z) \subset \mathcal{S}et(X \times Y, Z),$$

and

$$\mathcal{T}op(X, C_{\omega}(Y, Z)) \subset \mathcal{T}op(X, C(Y, Z)) \subset \mathcal{T}op(X, C(k_{\mathcal{C}}Y, Z)) \\ \subset \mathcal{T}op(k_{\mathcal{C}}X, C(k_{\mathcal{C}}Y, Z)) \subset \mathcal{S}et(X, \mathcal{T}op(k_{\mathcal{C}}Y, Z)) \subset \mathcal{S}et(X, \mathcal{S}et(Y, Z))$$

Lemma 8. (i) $e_{Set}(\mathcal{T}op(k_{\mathcal{C}}(X \times Y), Z)) \subset \mathcal{T}op(k_{\mathcal{C}}X, C(k_{\mathcal{C}}Y, Z)).$ (ii) $e_{Set}(\mathcal{T}op(X \times Y, Z)) \subset \mathcal{T}op(X, C(Y, Z)).$

Proof. (i) Let $f: X \times Y \to Z$ be a function such that $f \circ \varepsilon$ is continuous, and let $x \in X$. Then we have $e_{\mathcal{S}et}(f)(x) \circ \psi = f \circ (c_x, \psi)$ and the right side of the equation is continuous for every $\psi \in C_Y$ where $c_x: S\psi \to X$ is the constant map with the value x. This shows $e_{\mathcal{S}et}(\mathcal{T}op(k_{\mathcal{C}}(X \times Y), Z)) \subset \mathcal{S}et(X, \mathcal{T}op(k_{\mathcal{C}}Y, Z))$. Moreover let φ be an arbitrary \mathcal{C} -test map, let $k \in S\varphi$ and let $W(\operatorname{Im}\psi, W)$ be a neighbourhood of $e_{\mathcal{S}et}(f)(\varphi(k))$. Since $f \circ (\varphi \times \psi)(k \times S\phi) \subset W$, there exists a neighbourhood U of k such that $f \circ (\varphi \times \psi)(U \times S\phi) \subset W$ by the tube lemma. This proves that $e_{\mathcal{S}et}(f) \circ \varphi$ is continuous for every φ . The proof is completed. (ii) It is well known that $e_{\mathcal{S}et}(\mathcal{T}op(X \times Y, Z)) \subset \mathcal{T}op(X, C_{\omega}(Y, Z))$ is also proved by the tube lemma. \Box

Therefore we have two restrictions of e_{Set} , $e'_{\mathcal{C}} : \mathcal{T}op(k_{\mathcal{C}}(X \times Y), Z) \to \mathcal{T}op(k_{\mathcal{C}}X, C(k_{\mathcal{C}}Y, Z))$ and $e_{\mathcal{C}} : \mathcal{T}op(X \times Y, Z) \to \mathcal{T}op(X, C(Y, Z))$. The following proposition (i) is due to Brown in \mathcal{C}_2 case ([1]).

Theorem 9. (Main Theorem) Suppose that C satisfies Axiom. Then (i) $e'_{\mathcal{C}} : C(k_{\mathcal{C}}(X \times Y), Z) \to C(k_{\mathcal{C}}X, C(k_{\mathcal{C}}Y, Z))$ is a natural homeomorphism,

(ii) $e_{\mathcal{C}}: C(X \times Y, Z) \to C(X, C(Y, Z))$ is a natural embedding and is a homeomorphism if Y is locally C-imaged or $X \times Y$ is a $k_{\mathcal{C}}$ -space.

Proof. Applying lemma 6 and the remark in the proof of Lemma 4, we deduce that the two injections $e'_{\mathcal{C}}$, $e_{\mathcal{C}}$ are embeddings. (i) Let g be an arbitrary map in $C(k_{\mathcal{C}}X, C(k_{\mathcal{C}}Y, Z))$. We define a map f by $f = ev_{k_{\mathcal{C}}Y, Z} \circ (g \times k_{\mathcal{C}}Y) \circ \varepsilon_{k_{\mathcal{C}}X \times k_{\mathcal{C}}Y} \circ k_{\mathcal{C}}(\varepsilon_X \times \varepsilon_Y)^{-1}$. Since the lifting of the continuous map $(k_{\mathcal{C}}pr_1, k_{\mathcal{C}}pr_2) : k_{\mathcal{C}}(X \times Y) \to k_{\mathcal{C}}X \times k_{\mathcal{C}}Y$ is equal to $k_{\mathcal{C}}(\varepsilon_X \times \varepsilon_Y)^{-1}$, it is continuous. By making use of Lemma 7 (ii) and the commutativity $(g \times k_{\mathcal{C}}Y) \circ \varepsilon_{k_{\mathcal{C}}X \times k_{\mathcal{C}}Y} = \varepsilon_{C(k_{\mathcal{C}}Y,Z)), k_{\mathcal{C}}Y} \circ k_{\mathcal{C}}(g \times k_{\mathcal{C}}Y), ev_{k_{\mathcal{C}}Y,Z} \circ (g \times k_{\mathcal{C}}Y) \circ \varepsilon_{k_{\mathcal{C}}X \times k_{\mathcal{C}}Y}$ is continuous. These show that f is certainly an element of $C(k_{\mathcal{C}}(X \times Y), Z)$. Since ε 's are identities as set functions, it is easy to see f(x,y) = g(x)(y), in other word $e_{\mathcal{S}et}(f) = g$. Hence $e'_{\mathcal{C}}$ is surjective. (ii) If $X \times Y$ is a $k_{\mathcal{C}}$ -space then $\varepsilon_X^{-1} = k_{\mathcal{C}}pr_1 \circ \varepsilon_{X \times Y}^{-1} \circ (1_X, c_y)$ is continuous and hence X is a $k_{\mathcal{C}}$ -space, so also is Y. We have $e_{\mathcal{C}} = e'_{\mathcal{C}}$, which complete the proof of this case. Let Y be locally \mathcal{C} -imaged. By making use of Lemma 7 (i), similar argument in (i) proves that $e_{\mathcal{C}}$ is surjective. □

120

Lemma 10. Suppose that C satisfies Axiom. Then

- (i) $k_{\mathcal{C}}C_{\omega}(k_{\mathcal{C}}X,Z) \to k_{\mathcal{C}}C(k_{\mathcal{C}}X,Z)$ is a natural homeomorphism,
- (ii) so is $k_{\mathcal{C}}C(k_{\mathcal{C}}X, k_{\mathcal{C}}Z) \to k_{\mathcal{C}}C(k_{\mathcal{C}}X, Z)$.

Proof. If K is an object of C we have a $k_{\mathcal{C}}$ -space $K \times k_{\mathcal{C}}X$ by Proposition 5 and hence the exponential map $e_{\mathcal{C}}: C(K \times k_{\mathcal{C}}X, Z) \to C(K, C(k_{\mathcal{C}}X, Z))$ is a homeomorphism for every Z. (i) Since $e_{\mathcal{C}}$ is defined to be the composition $Top(K \times k_{\mathcal{C}}X, Z) \to Top(K, C_{\omega}(k_{\mathcal{C}}X, Z)) \subset Top(K, C(k_{\mathcal{C}}X, Z))$ as a set map, $Top(K, C_{\omega}(k_{\mathcal{C}}X, Z)) \to Top(K, C(k_{\mathcal{C}}X, Z))$ is bijective. This says that the continuous bijection $C_{\omega}(k_{\mathcal{C}}X, Z) \to C(k_{\mathcal{C}}X, Z)$ induces a bijection $\mathcal{C}_{C_{\omega}(k_{\mathcal{C}}X, Z)} \to \mathcal{C}_{C(k_{\mathcal{C}}X, Z)}$, which complete the proof of (i). Let us now turn to (ii). Since $K \times k_{\mathcal{C}}X$ is a $k_{\mathcal{C}}$ -space, $\varepsilon_*: C(K \times k_{\mathcal{C}}X, k_{\mathcal{C}}Z) \to C(K \times k_{\mathcal{C}}X, Z)$ is bijective. By the naturality of exponential homeomorphisms, $(\varepsilon_*)_*:$ $Top(K, C(k_{\mathcal{C}}X, k_{\mathcal{C}}Z)) \to Top(K, C(k_{\mathcal{C}}X, Z))$ is bijective for every $K \in OC$. This complete the proof. \Box

In the category of $k_{\mathcal{C}}$ -spaces $\mathcal{K}_{\mathcal{C}}$ the product and the function space of spaces X, Y are defined to be $X \times Y = k_{\mathcal{C}}(X \times Y)$ and $map(X, Y) = k_{\mathcal{C}}C(X,Y)$. Mixing up Theorem 9 (i) and Lemma 10 (ii) we have the following exponential law in $\mathcal{K}_{\mathcal{C}}$.

Corollary 11. Suppose that C satisfies Axiom. Then $map(X \times Y, Z) \rightarrow map(X, map(Y, Z))$ is a natural homeomorphism.

Suppose that $C = C_2, C_3$ then the assumptions of the following each classical exponential law are strong enough to deduce the first assumption of Theorem 9 (ii) and that the C-test-open topology coincides with the compact-open topology.

Corollary 12. (i) If X, Y are Hausdorff spaces and Y is locally compact then $C_{\omega}(X \times Y, Z) \to C_{\omega}(X, C_{\omega}(Y, Z))$ is a natural homeomorphism.

(ii) If X, Y are regular and Y is locally compact then $C_{\omega}(X \times Y, Z) \rightarrow C_{\omega}(X, C_{\omega}(Y, Z))$ is a natural homeomorphism.

References

- R. BROWN: Topology, Mathematics and its Applications, Chichester (Ellis Horwood), 1988.
- [2] S. MACLANE: Categories for the working mathematician, Graduate texts in Mathematics, Springer-Verlag, Berlin, 1971.
- [3] M. C. MCCORD: Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273-298.
- [4] H. OSHIMA: Topology of Function Spaces, unpublished, 1987.
- [5] R. M. VOGT: Convenient Categories of Topological Spaces for Homotopy Theory, Arch. Math. XXII, 545-555 (1971).

YASUMASA HIRASHIMA

YASUMASA HIRASHIMA DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING KANSAI UNIVERSITY SUITA, OSAKA 564-8680, JAPAN. (Received December 18, 2000)