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JORDAN DERIVATIONS OF A SKEW MATRIX RING

NAOKI HAMAGUCHI

Abstract. We determine the form of Jordan derivations of a skew
matrix ring M2(R; σ, q) over a ring R. Using this result, we also
show the properties of Jordan derivations of M2(R), and derivations
of M2(R; σ, q). Moreover, we refer to invariant ideals with respect to
these derivations.

1. Introduction

Let R be a ring. An additive mapping D : R → R is said to be a
derivation if D(xy) = D(x)y+xD(y) for all x, y ∈ R. An additive mapping
J : R → R is said to be a Jordan derivation if J(x2) = J(x)x + xJ(x) for
all x ∈ R. We can easily check that, for all x, y ∈ R, J(xy + yx) =
J(x)y + xJ(y) + J(y)x + yJ(x). We can also see that any derivation of R
is a Jordan derivation.

In [3], I. N. Herstein has shown that every Jordan derivation of a
prime ring not of characteristic 2 is a derivation. This result is extended
by J. M. Cusack in [2] to the case of a ring R where 2x = 0 implies x = 0
and R is semiprime or R contains a commutator which is not a zero divisor.

In this paper, we give a necessary and sufficient condition for a given
mapping J of a skew matrix ring M2(R; σ, q) into itself to be a Jordan
derivation. By using this result, we can show that there are many Jordan
derivations of M2(R; σ, q) which are not derivations. We also refer to the
properties of Jordan derivations of M2(R), and derivations of M2(R;σ, q).
Moreover, we consider invariant ideals with respect to these derivations.

2. Jordan derivations of M2(R; σ, q)

In this paper, we treat a skew matrix ring defined as follows (cf. [4]):
Let R be a ring, q an element in R and σ an endomorphism of R such that
σ(q) = q and σ(r)q = qr for all r ∈ R. Let M2(R; σ, q) be the set of 2 × 2
matrices over R with usual addition and the following multiplication:(

x1 x2

x3 x4

)(
y1 y2

y3 y4

)
=

(
x1y1 + x2y3q x1y2 + x2y4

x3σ(y1) + x4y3 x3σ(y2)q + x4y4

)
.
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We call M2(R; σ, q) a skew matrix ring over R. A matrix
(

a b
c d

)
is

denoted by e11(a) + e12(b) + e21(c) + e22(d).
Let J be a Jordan derivation of M2(R; σ, q). First, we set

J(e11(a)) =
(

f1(a) f2(a)
f3(a) f4(a)

)
, J(e12(b)) =

(
h1(b) h2(b)
h3(b) h4(b)

)
,

J(e21(c)) =
(

l1(c) l2(c)
l3(c) l4(c)

)
, J(e22(d)) =

(
g1(d) g2(d)
g3(d) g4(d)

)
,

where fi, hi, li, gi : R → R are additive mappings.
Since J(e11(a2)) = J(e11(a))e11(a)+e11(a)J(e11(a)) and J(e22(d2)) =

J(e22(d))e22(d) + e22(d)J(e22(d)), we get the following two lemmas:

Lemma 2.1. For any a ∈ R,
(1) f1 is a Jordan derivation of R.
(2) f2(a2) = af2(a).
(3) f3(a2) = f3(a)σ(a).
(4) f4(a2) = 0.

Lemma 2.2. For any d ∈ R,
(1) g1(d2) = 0.
(2) g2(d2) = g2(d)d.
(3) g3(d2) = dg3(d).
(4) g4 is a Jordan derivation of R.

Moreover, from J(e11(a)e22(d) + e22(d)e11(a)) = 0, we have the fol-
lowing relations:

ag1(d) + g1(d)a = 0,(2.1)
f2(a)d + ag2(d) = 0,(2.2)
g3(d)σ(a) + df3(a) = 0,(2.3)
f4(a)d + df4(a) = 0.(2.4)

On the other hand, by the facts that J(e12(ab)) = J(e11(a)e12(b) +
e12(b)e11(a)) and J(e21(dc)) = J(e22(d)e21(c) + e21(c)e22(d)), we have the
following:

Lemma 2.3. For any a, b ∈ R,
(1) h1(ab) = ah1(b) + h1(b)a + bf3(a)q.
(2) h2(ab) = f1(a)b + ah2(b) + bf4(a).
(3) h3(ab) = h3(b)σ(a).
(4) h4(ab) = f3(a)σ(b)q.



JORDAN DERIVATIONS OF A SKEW MATRIX RING 21

Lemma 2.4. For any c, d ∈ R,
(1) l1(dc) = g2(d)cq.
(2) l2(dc) = l2(c)d.
(3) l3(dc) = g4(d)c + dl3(c) + cσ(g1(d)).
(4) l4(dc) = dl4(c) + l4(c)d + cσ(g2(d))q.

Moreover, from J(e12(b)2) = 0 and J(e21(c)2) = 0, we have the fol-
lowing relations:

bh3(b)q = h3(b)σ(b)q = 0,(2.5)
h1(b)b + bh4(b) = 0,(2.6)
l2(c)cq = cσ(l2(c))q = 0,(2.7)
l4(c)c + cσ(l1(c)) = 0.(2.8)

Now we assume that R has identity. Then a Jordan derivation J has
the following properties:

Lemma 2.5. Let R be a ring with identity, and J a Jordan derivation of
M2(R; σ, q). Then there exist additive mappings f1, f4, g1, g4 : R → R
and elements α, β, γ, δ, ε, ζ in R such that, for all a, b, c, d ∈ R,

J(e11(a)) =
(

f1(a) aα
βσ(a) f4(a)

)
,(2.9)

J(e12(b)) =
(

−bβq (f1 + f4)(b) + bγ
δσ(b) βqb

)
,(2.10)

J(e21(c)) =
(

−αcq εc
σ(g1(c)) + g4(c) + cζ cqα

)
,(2.11)

J(e22(d)) =
(

g1(d) −αd
−dβ g4(d)

)
.(2.12)

Proof. By Lemma 2.1 (2), (3), we have f2(ab + ba) = af2(b) + bf2(a) and
f3(ab + ba) = f3(a)σ(b) + f3(b)σ(a) for all a, b ∈ R. Putting b = 1, we get
f2(a) = af2(1) and f3(a) = f3(1)σ(a). Put α = f2(1) and β = f3(1). From
(2.2) and (2.3), we have g2(d) = −f2(1)d = −αd and g3(d) = −df3(1) =
−dβ.

By Lemma 2.3, we have h1(b) = −bβq, h2(a) = f1(a) + f4(a) +
ah2(1), h3(a) = h3(1)σ(a) and h4(b) = βσ(b)q = βqb. Put γ = h2(1)
and δ = h3(1). By Lemma 2.4, we have l1(c) = −αcq, l2(d) = l2(1)d,
l3(d) = σ(g1(d)) + g4(d) + dl3(1) and l4(c) = cσ(α)q = cqα. Putting
ε = l2(1) and ζ = l3(1), we have completed the proof of the lemma.

An additive mapping F : R → R is said to be central if F (R) is
contained in C, the center of R.
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Theorem 2.6. Let R be a ring with identity, and J : M2(R; σ, q) →
M2(R; σ, q) an additive mapping. Then J is a Jordan derivation if and only
if there exist additive mappings f1, f4, g1, g4 and elements α, β, γ, δ, ε, ζ
of R satisfying (2.9), (2.10), (2.11) and (2.12) with the following conditions:
for all a, b, c, d ∈ R,

(i) f1 and g4 are Jordan derivations of R.
(ii) f4 and g1 are central Jordan derivations of R such that f4(a2) =

g1(a2) = 0.
(iii) δq = εc2q = 0.
(iv) f1(ab) + f4(ab) = f1(a)b + af1(b) + f4(a)b + af4(b).
(v) f1(d) + f4(d) + dγ = g1(d) + g4(d) + γd.
(vi) dδσ(b) = δσ(b)σ(d).
(vii) σ(g1(dc)) + g4(dc) = cσ(g1(d)) + dσ(g1(c)) + g4(d)c + dg4(c).
(viii) σ(g1(σ(a))) + g4(σ(a)) + σ(a)ζ = σ(f1(a)) + f4(a) + ζσ(a).
(ix) εcd = εdc.
(x) εcσ(a) = aεc.
(xi) f1(bcq)+g1(cqb) = f1(b)cq +f4(b)cq + bg1(c)q + bg4(c)q + bγcq + bcζq.
(xii) f4(bcq)+g4(cqb) = cqf1(b)+ cqf4(b)+g1(c)qb+g4(c)qb+ cqbγ + cζqb.
Particularly, a Jordan derivation J of M2(R; σ, q) is given by

J

(
a b
c d

)
=

 f1(a) + g1(d) − bβq − αcq
(f1 + f4)(b) + aα
+bγ + εc − αd

σ(g1(c)) + g4(c) + βσ(a)
+δσ(b) + cζ − dβ

f4(a) + g4(d) + βqb + cqα


with the conditions above.

Proof. (⇒) : Assume that J is a Jordan derivation of M2(R;σ, q). Then
J satisfies (2.9), (2.10), (2.11) and (2.12) for some additive mappings
f1, f4, g1, g4 and elements α, β, γ, δ, ε, ζ of R by Lemma 2.5.

For the conditions, first, we have (i) by Lemma 2.1 (1) and 2.2 (4).
From Lemma 2.1 (4) and (2.4), we get f4(a2) = f4(a)a + af4(a) = 0

and 2f4(a) = 0 by f4((a + 1)2) = 0. Since 2df4(a) = 0, we also have
f4(a)d = df4(a). Hence, f4 is a central Jordan derivation of R. By Lemma
2.2 (1) and (2.1), we can show that g1 is also a central Jordan derivation,
hence, we get (ii).

From (2.5), we have δq = 0, and from (2.7), we get εc2q = 0. Hence,
we have (iii).

By Lemma 2.3 (2) and (2.10), we get (iv), and since J(e12(bd)) =
J(e12(b)e22(d) + e22(d)e12(b)), we have (v) and (vi). (Note that, from (vi),
we have dδ = δσ(d), and hence, δσ(b)σ(a) = bδσ(a) = δσ(a)σ(b).)

By Lemma 2.4 (2), (3) and (2.11), we have (vii) and (ix), and since
J(e21(cσ(a))) = J(e21(c)e11(a) + e11(a)e21(c)), we get (viii) and (x).
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Finally, from J(e11(bcq))+J(e22(cqb)) = J(e12(b)e21(c)+e21(c)e12(b)),
we have (xi) and (xii).

(⇐) : If mappings f1, f4, g1, g4 of R and elements α, β, γ, δ, ε, ζ∈
R satisfy the conditions above, then we can show that, for any A =(

a b
c d

)
∈ M2(R; σ, q),

J(A2) = J(A)A + AJ(A)

by direct calculation.

When a Jordan derivation J of M2(R; σ, q) is determined by Jordan
derivations f1, f4, g1, g4 : R → R and elements α, β, γ, δ, ε, ζ ∈ R as
in Theorem 2.6, we denote this J by (f1, f4, g1, g4, α, β, γ, δ, ε, ζ).

Now we give the properties of Jordan derivations of M2(R), deriva-
tions of M2(R; σ, q) and derivations of M2(R), which are easily proved by
Theorem 2.6.

Corollary 2.7. Let R be a ring with identity, and J : M2(R) → M2(R) an
additive mapping. Then J is a Jordan derivation if and only if there exist
additive mappings f1, f4 : R → R and elements α, β, γ in R such that,
for all a, b, c, d ∈ R,

J(e11(a)) =
(

f1(a) aα
βa f4(a)

)
,(2.13)

J(e12(b)) =
(

−bβ (f1 + f4)(b) + bγ
0 βb

)
,(2.14)

J(e21(c)) =
(

−αc 0
(f1 + f4)(c) − γc cα

)
,(2.15)

J(e22(d)) =
(

f4(d) −αd
−dβ f1(d) + dγ − γd

)
(2.16)

with the following conditions: for all a, b ∈ R,
(i) f1 is a Jordan derivation of R.
(ii) f4 is a central Jordan derivation of R such that f4(a2) = 0.
(iii) f1(ab) + f4(ab) = f1(a)b + af1(b) + f4(a)b + af4(b).

Particularly, a Jordan derivation J of M2(R) is given by

J

(
a b
c d

)
=

(
f1(a) + f4(d) − bβ − αc (f1 + f4)(b) + aα + bγ − αd

(f1 + f4)(c) + βa − γc − dβ f1(d) + f4(a) + cα + βb + dγ − γd

)
with the conditions above.
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Proof. (⇒) : Assume that J is a Jordan derivation of M2(R). Under the
notation in Theorem 2.6, put σ = idR and q = 1. Then we have δ = ε = 0
and ζ = −γ by putting b = c = 1 in Theorem 2.6 (iii) and (xi). Moreover,
by putting c = 1 in Theorem 2.6 (xi), we get g1(a) = f4(a) and, hence,
g4(a) = f1(a)+aγ−γa from Theorem 2.6 (v). The conditions immediately
follows from Theorem 2.6 (i), (ii) and (iv).

(⇐) : Assume that there exist additive mappings f1, f4 of R and
elements α, β, γ ∈ R satisfying the conditions, and consider a Jordan
derivation J1 = (f1, f4, g1, g4, α, β, γ, δ, ε, ζ) of M2(R) = M2(R; idR, 1),
where g1 = f4, g4(a) = f1(a) + aγ − γa (for all a ∈ R), δ = ε = 0 and
ζ = −γ. Then we can see that J = J1, hence, J is a Jordan derivation of
M2(R).

Corollary 2.8. Let R be a ring with identity, and D : M2(R;σ, q) →
M2(R; σ, q) an additive mapping. Then D is a derivation if and only if
there exists a derivation f of R and elements α, β, γ, ζ in R such that,
for all a, b, c, d ∈ R,

D(e11(a)) =
(

f(a) aα
βσ(a) 0

)
,(2.17)

D(e12(b)) =
(

−bβq f(b) + bγ
0 βqb

)
,(2.18)

D(e21(c)) =
(

−αcq 0
f(c) + cγ − γc + cζ cqα

)
,(2.19)

D(e22(d)) =
(

0 −αd
−dβ f(d) + dγ − γd

)
(2.20)

with the relations σ(f(a))− f(σ(a)) = σ(a)γ − γσ(a) + σ(a)ζ − ζσ(a), and
f(q) = γq + ζq.

Particularly, a derivation D of M2(R;σ, q) is given by

D

(
a b
c d

)
=

(
f(a) − bβq − αcq f(b) + aα + bγ − αd

f(c) + βσ(a) + cγ − γc + cζ − dβ f(d) + βqb + cqα + dγ − γd

)
with the relations above.

Proof. (⇒) : First, note that any derivation is a Jordan derivation. Un-
der the notation in Theorem 2.6, since D(e11(ab)) = D(e11(a))e11(b) +
e11(a)D(e11(b)) and D(e22(cd)) = D(e22(c))e22(d) + e22(c)D(e22(d)), we
have that f = f1 is a derivation and f4 = g1 = 0, and hence, g4(d) =
f(d) + dγ − γd from Theorem 2.6 (v).
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Moreover, since D(e12(1)) = D(e11(1))e12(1) + e11(1)D(e12(1)) and
D(e21(1)) = D(e22(1))e21(1) + e22(1)D(e21(1)), we have δ = ε = 0.

(⇐) : If a mapping f and elements α, β, γ, ζ∈ R satisfy the condi-
tions above, then we can show that, for any A, B ∈ M2(R;σ, q),

D(AB) = D(A)B + AD(B)

by direct calculation.

Corollary 2.9. (cf. [1]) Let R be a ring with identity, and D : M2(R) →
M2(R) an additive mapping. Then D is a derivation if and only if there
exist a derivation f of R and elements α, β, γ in R such that, for all
a, b, c, d ∈ R,

D(e11(a)) =
(

f(a) aα
βa 0

)
,(2.21)

D(e12(b)) =
(

−bβ f(b) + bγ
0 βb

)
,(2.22)

D(e21(c)) =
(

−αc 0
f(c) − γc cα

)
,(2.23)

D(e22(d)) =
(

0 −αd
−dβ f(d) + dγ − γd

)
.(2.24)

Particularly, a derivation D of M2(R) is given by

D

(
a b
c d

)
=

(
f(a) − bβ − αc f(b) + aα + bγ − αd

f(c) + βa − γc − dβ f(d) + βb + cα + dγ − γd

)
.

Proof. Put σ = idR and q = 1 in Corollary 2.8.

Now we give an example of a Jordan derivation of M2(R; σ, q) which
is not a derivation.

Example 1. Let K[X] be a polynomial ring in one variable X over a field
K not of characteristic 2, and put R = K[X]/(X2) and x = X +(X2) ∈ R.
Let f : R → R be a K-derivation defined by f(x) = 2x. We consider a
skew matrix ring M2(R; idR, x).

Let J = (f1, f4, g1, g4, α, β, γ, δ, ε, ζ) be a Jordan derivation of
M2(R; idR, x) such that

f1 = g4 = f, f4 = g1 = 0, α = β = γ = ζ = 1, δ = ε = x.
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(Note that J satisfies the conditions of Theorem 2.6.) However, since δ 6= 0,
J is not a derivation. In fact,

J(e11(1)e12(1)) − J(e11(1))e12(1) − e11(1)J(e12(1))

=
(

−x 1
x x

)
−

(
0 1
1 0

) (
0 1
0 0

)
−

(
1 0
0 0

)(
−x 1
x x

)
=

(
−x 1
x x

)
−

(
0 0
0 x

)
−

(
−x 1
0 0

)
=

(
0 0
x 0

)
6= 0.

3. Invariant ideals with respect to derivations

Let R be a ring, and F : R → R an additive mapping. An ideal I of
R is said to be F -invariant or invariant with respect to F if F (I) ⊆ I.

Let I1, I2, I3, I4 be ideals of R and put I =
(

I1 I2

I3 I4

)
⊆ M2(R; σ, q).

If I is an ideal of M2(R; σ, q) then we have the following conditions:

(3.1) I3q ⊆ I1, σ(I1) ⊆ I3, qI2 ⊆ I4 ⊆ I2, I2q ⊆ I1 ⊆ I2, I3q ⊆ I4 ⊆ I3.

Theorem 3.1. Let R be a ring with identity, I1, I2, I3, I4 ideals of R
satisfying (3.1), and J = (f1, f4, g1, g4, α, β, γ, δ, ε, ζ) a Jordan

derivation of M2(R; σ, q). Then the ideal I =
(

I1 I2

I3 I4

)
of M2(R;σ, q) is

J-invariant if and only if I1, I2, I3 and I4 satisfy the following conditions:
(1) I1 is f1-invariant, and g1(I4) ⊆ I1.
(2) I2 is (f1 + f4)-invariant, and ε ∈ I2.
(3) I3 is (σ ◦ g1 + g4)-invariant, and δ ∈ I3.
(4) I4 is g4-invariant, and f4(I1) ⊆ I4.

Proof. By Theorem 2.6 and the relations (3.1), the result immediately fol-
lows. (Note that δσ(b) = bδ.)

For derivations of M2(R; σ, q), we have the following:

Corollary 3.2. Let R be a ring with identity, I1, I2, I3, I4 ideals of R
satisfying (3.1), and D a derivation of M2(R;σ, q) defined by f , α, β, γ, ζ

as in Corollary 2.8. Then the ideal I =
(

I1 I2

I3 I4

)
of M2(R; σ, q) is D-

invariant if and only if I1, I2, I3 and I4 are f-invariant.

Next, we consider ideals of M2(R). In this case, an ideal I is in the

form of
(

I I
I I

)
, where I is an ideal of R. Hence, we have the following:
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Corollary 3.3. Let R be a ring with identity, I an ideal of R, and J a
Jordan derivation of M2(R) defined by f1, f4, α, β, γ as in Corollary 2.7.

Then the ideal I =
(

I I
I I

)
of M2(R) is J-invariant if and only if I is

invariant with respect to f1 and f4.

Corollary 3.4. Let R be a ring with identity, I an ideal of R, and D a
derivation of M2(R) defined by f , α, β, γ as in Corollary 2.9. Then the

ideal I =
(

I I
I I

)
of M2(R) is D-invariant if and only if I is f -invariant.
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