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COMPACT ADMISSIBLE FUNCTIONAL CALCULI AND
DECOMPOSABILITY

R. DELAUBENFELS AND S. WANG

Abstract. We introduce a class of functional calculi that seem par-
ticularly appropriate for dealing with unbounded operators. We char-
acterize operators with this type of functional calculus that are decom-
posable, in terms of both global and local spectral mapping theorems
and analytic functional calculi, among other things.

0. INTRODUCTION AND PRELIMINARIES.

The most tractable class of decomposable operators is that with a
functional calculus f 7→ E(f), for f in an appropriate Banach algebra of
functions F . When such an operator is bounded and F is chosen to be
Cn[a, b], for some real numbers a, b, n a nonnegative integer, the operator is
sometimes called generalized scalar (see [13]); but more general algebras F ,
what are called admissible, or, for unbounded operators, quasi admissible,
are equally successful (see [6], [20]). One may explicitly construct the
desired invariant subspaces that decompose the spectrum, the local spectral
subspaces, in terms of the functional calculus.

Functional calculi are also essential in producing other objects of great
interest in operator theory and its applications, including semigroups of
operators, cosine families and fractional powers of operators.

When T is a bounded generalized scalar operator, it is easy to see
that T 2 is also generalized scalar. The following simple example shows
that the same is not true for unbounded operators.

Example 0.1. Let X ≡ BC1(R) and define

(Tg)(s) ≡ sg(s) (s ∈ R, g ∈ X),

with maximal domain.
Then T has a BC1(R) functional calculus f 7→ E(f), given by

E(f)g ≡ fg (f, g ∈ BC1(R)).
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A functional calculus for T 2, call it E2, must be given by

[E2(f)g] (s) ≡ f(s2)g(s) (g ∈ X, s ∈ R);

in order that E2(f) be bounded, it is necessary that s 7→ sf ′(s2) be in
BC(R).

Thus T 2 is not generalized scalar; that is, for any n ∈ N, T 2 fails to
have a BCn(R) functional calculus, despite the fact that T has a BC1(R)
functional calculus.

In this paper, we introduce a class of algebras, that we will call
compact admissible, that seem more appropriate for unbounded opera-
tors, in particular, for determining when an operator is decomposable.
This includes, but is not limited to, quasi-admissible algebras; for exam-
ple, C∞

c (R) is a compact admissible algebra that is not quasi admissible.
We characterize those operators with a compact-admissible functional cal-
culus that are decomposable, in terms of spectral mapping theorems and
in terms of an analytic functional calculus.

Section I gives the basic properties of operators with a compact ad-
missible functional calculus. Although they may not be decomposable,
their restriction to local spectral subspaces corresponding to compact sets
will be bounded and decomposable.

In Section II, we construct a much larger functional calculus, pro-
ducing closed but not necessarily bounded operators, for operators with a
compact admissible functional calculus.

Section III contains many characterizations of operators with a com-
pact admissible functional calculus that are decomposable.

In Section IV we consider the easiest unbounded multiplication oper-
ators that are not scalar, multiplication operators on BC1(R). We charac-
terize those operators that have a C1

c (R) functional calculus, and those that
are decomposable, using the results from Section III. For such an operator
to be decomposable, it is necessary but not sufficient that it have a C1

c (R)
functional calculus. Examples are given of multiplication operators that
do not have a C1

c (R) functional calculus, and of multiplication operators
that have a C1

c (R) functional calculus, but are not decomposable.
All operators are linear, on a Banach space X. We will denote by

L(X) the space of bounded operators from X to itself. The domain of an
operator T will be denoted by D(T ), its image by Im(T ), its null space by
N (T ), its spectrum by σ(T ), and its resolvent by ρ(T ).

Partly to standardize terminology, let us now list some preliminary
definitions and results that will be needed throughout the paper.

Definition 0.2 ([6], [11]). The closed operator T is said to have the single
valued extension property (SVEP) if, for every analytic function f : Ωf →
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D(T ) defined on an open subset of the complex plane Ωf , the identity

(λ − T )f(λ) ≡ 0

for λ ∈ Ωf , implies f(λ) ≡ 0.
Equivalently, for each x ∈ X, the analytic solution of

(∗) (λ − T )f(λ) = x (λ ∈ Ωf )

is unique. When this property holds, the union of the domains Ωf of all
D(T )-valued analytic functions f that satisfy (*) is called the local resolvent
set of T at x, and is denoted by ρT (x). The local spectrum σT (x) is define
to be the complement of ρT (x) in C. In addition, the SVEP of T implies
the existence of an analytic function λ 7→ f(λ) that satisfies (*) on ρT (x).

Definition 0.3 ([11], [12]). Suppose T is a closed operator and Y ⊆ X is
an invariant subspace of T ; that is, T (Y ∩D(T )) ⊆ Y . If, for any analytic
function f : Ωf → D(T ), the condition (λ − T )f(λ) ∈ Y implies that
f(λ) ∈ Y for all λ ∈ Ωf , then Y is called an analytically invariant subspace
for T .

Proposition 0.4 ([6], [11]) If T has the SVEP, then the following holds.
(a) σ(T ) =

∪
x∈X σT (x).

(b) If Y is analytically invariant for T then σT |Y (x) = σT (x), hence

σ(T |Y ) =
∪
x∈Y

σT (x).

Definition 0.5 ([6], [11]). Suppose T is closed and Y is invariant for T .
Y is called a spectral maximal space of T if for every Z which is invariant
for T , the condition σ(T |Z) ⊆ σ(T |Y ) implies Z ⊆ Y .

Suppose T has the SVEP. For F ⊆ C, denote

X(T, F ) = {x ∈ X |σT (x) ⊆ F}.

Proposition 0.6 ([6], [11]) Suppose T is closed and has the SVEP and
F ⊆ C is closed. If X(T, F ) is closed, then it is a spectral maximal space
of T and

σ(T |X(T,F )) ⊆ F ∩ σ(T ).

Definition 0.7 ([10], [11]). The closed operator T is said to have the spec-
tral decomposition property (SDP) if for every open cover {Gi}n

i=0 (n ∈ N)
of σ(T ) with Gi (i = 1, 2, ..., n) relatively compact and G0 a neighborhood
of ∞, there exists a system of invariant subspaces {Xi}n

i=0 of T such that
(1) Xi ⊆ D(T ), for i = 1, 2, ..., n;
(2) σ(T |Xi) ⊆ Gi, for i = 0, 1, ..., n; and
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(3) X =
∑n

i=0 Xi.
The operator T is said to be decomposable if it has SDP, and the

subspaces Xi in (1) may be chosen to be spectral maximal ([11, Definition
II.5.21]).

If T ∈ B(X), then T has SDP if and only if T is decomposable ([11,
Corollary II.6.5]). In general, T is decomposable if and only if T has SDP
and X(T, ∅) is trivial ([11, Theorem II.6.4]).

Proposition 0.8 ([1], [18], [11]) If T has the SDP, then T has the SVEP
and for every closed F ⊆ C, X(T, F ) is closed.

Definition 0.9 ([11], [15]). The closed operator T is said to have the
spectral decomposition property relative to the identity (SDI) if for every
open cover {Gi}n

i=0 (n ∈ N) of σ(T ) with Gi relatively compact for i =
1, 2, ..., n, and G0 a neighborhood of ∞, there exist invariant subspaces
{Xi}n

i=0 and {Pi}n
i=0 ⊆ L(X), that commute with T , such that

(1) σ(T |Xi) ⊆ Gi, for i = 0, 1, ..., n;
(2) Xi ⊆ D(T ), for i = 1, 2, ..., n;
(3)

∑n
i=0 Pi = I; and

(4) Im(Pi) ⊆ Xi, for i = 0, 1, ..., n.
In [15], a bounded T satisfying Definition 0.9 is called superdecom-

posable. In this paper, we shall use SDI.
It is clear that if T has SDI then it has SDP.

Definition 0.10 ([5], [11]). The closed operator T is said to have Property
B if, whenever fn : Ω → D(T ) is a sequence of analytic functions defined
on an open subset of the complex plane such that

(λ − T )fn(λ) → 0

as n → ∞, uniformly on compact subsets of Ω, then fn(λ) → 0 uniformly
on compact subsets of Ω.

I. COMPACT-ADMISSIBLE FUNCTIONAL CALCULI AND
BOUNDED DECOMPOSABLE RESTRICTIONS

We shall see that not all operators with a compact-admissible func-
tional calculus are decomposable (see Section III for characterizations of
those that are). However, their restriction to certain subspaces are bounded
decomposable operators (Theorem 1.7, Corollaries 1.9 and 1.25; see also
Corollaries 1.12 and 1.26).

When the intersections of the null spaces of E(φ), for E a U compact-
admissible functional calculus, φ ∈ U , is trivial, we will say that E is a quasi
distribution (Definition 1.17). When T has a U quasi distribution, we may
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characterize the local spectral subspaces of T corresponding to compact
sets, in terms of E (Proposition 1.23).

When U ≡ C∞
c (R), a U (quasi) distribution is introduced in [4] ([8]),

and is called a (quasi) spectral distribution.

Definition 1.1. An algebra U of complex-valued functions defined on a
subset Ω of the complex plane is compact admissible if it has the following
properties.
(1) For every φ ∈ U , φ has compact support.
(2) U is compact normal; that is, for any compact set F ⊆ Ω, open cover

{Gi}n
i=1 of F , there are φ1, ..., φn ∈ U such that 0 ≤ φi ≤ 1, for

1 ≤ i ≤ n,
∑n

i=1 φi ≡ 1 on F and supp(φi) ⊆ Gi, for 1 ≤ i ≤ n.
(3) If φ ∈ U , then z 7→ f1(z)φ(z) ≡ zφ(z) and φλ(z) ≡ (λ − z)−1φ(z) are

in U , for any λ /∈ supp(φ).

Example 1.2. Any admissible or quasi-admissible algebra ([20, Defini-
tions IV.7.2 and IV.9.2]) is compact admissible. For n a nonnegative in-
teger, Cn

c (R) is compact admissible, but not normal (see [20, Definition
IV.7.1]), hence not admissible or quasi admissible. If we define Cn

` (R) to
be the space of n-times continuously differentiable complex-valued func-
tions on the one-point compactification of the real line, that is, {f ∈
Cn(R) | lim|s|→∞ f (k)(s) exists, for 0 ≤ k ≤ n}, then Cn

` (R) is quasi ad-
missible, for any nonnegative integer n.

In Section IV, we will give simple examples of operators with compact-
admissible functional calculi that do not have quasi-admissible functional
calculi (see Remark 4.10).

Definition 1.3. Suppose T is a closed operator and U is compact admis-
sible as in Definition 1.1. We say that E is a U functional calculus for T if
E : U → L(X) is an algebra homomorphism such that, for all φ ∈ U ,

E(φ)T ⊆ TE(φ) = E(f1φ).

For the remainder of this section, U will be compact admissible as in
Definition 1.1 and E will be a U functional calculus for T .

On certain subspaces the restriction of T will be a bounded operator
with an admissible functional calculus; in [6, Chapter 3], these are known
as U scalar operators.

Definition 1.4. If F is a compact subset of the complex plane, define

XE(T, F ) ≡
{x ∈ X|E(φ)x = x, whenever φ ∈ U , φ = 1 on a neighborhood of F}.
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If F is a closed subset of the complex plane, define

XE1(T, F ) ≡
∩

{N (E(φ)) |φ ∈ U , supp(φ) ∩ F is empty }.

Note that XE(T, F ) and XE1(T, F ) are closed subspaces of X, since
E(φ) ∈ L(X), for all φ ∈ U .

Proposition 1.5. Suppose F is a compact subset of the complex plane.
Then

XE(T, F ) ⊆ XE1(T, F ).

Proof. Suppose x ∈ XE(T, F ), and let ψ ∈ U be such that supp(ψ) ∩ F is
empty. Choose φ ∈ U so that supp(φ) ∩ supp(ψ) is empty and φ ≡ 1 on a
neighborhood of F . Then

E(ψ)x = E(ψ)E(φ)x = E(ψφ)x = E(0)x = 0,

so that x ∈ XE1(T, F ).

Definition 1.6. If F is a compact subset of the complex plane, let TF ≡
T |XE(T,F ),

UF ≡
{ψ|φψ ∈ U , for some φ ∈ U such that φ = 1 on a neighborhood of F}.

Define a UF functional calculus for TF by

EF (ψ) ≡ E(ψφ),

for φ as in the definition of UF . Note that EF is well-defined, by Proposition
1.5: if ψφj ∈ U , and φj = 1 on a neighborhood of F , for j = 1, 2, then
(ψφ1 − ψφ2) = 0 on a neighborhood of F , so for x ∈ XE(T, F ),

E(ψφ1)x − E(ψφ2)x = E (ψφ1 − ψφ2) x = 0.

Theorem 1.7. If F is a compact subset of the complex plane, then TF is
in L(XE(T, F )), EF is a UF functional calculus for TF and σ(TF ) ⊆ F .

Proof. It’s clear that EF is an algebra homomorphism.
EF (1) = E(φ) = I, by definition of XE(T, F ), for φ ∈ U , φ = 1 on a

neighborhood of F .
Using the same φ, it becomes clear that f1 ∈ UF , and for x ∈

XE(T, F ), x = E(φ)x ∈ D(T ), with

TF x = TE(φ)x = E(f1φ)x = EF (f1)x.

To see that TF maps XE(T, F ) to itself, suppose x ∈ XE(T, F ). If
φ = 1 on a neighborhood of F , then E(φ)TF x = TFE(φ)x = TF x, so
TF x ∈ XE(T, F ).

Since T is closed, this implies that TF ∈ L(XE(T, F )).
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If λ /∈ F , then gλ ∈ UF (gλ(z) ≡ (λ − z)−1),

(λ − TF )EF (gλ) = E((λ − f1)φgλ) = E(φ) = I,

and
EF (gλ)(λ − TF ) = EF (gλφ)EF ((λ − f1)φ) = EF (φ2) = I,

where φ = 1 on a neighborhood of F . This shows that σ(TF ) ⊆ F .

Remark 1.8. The map EF : UF → L(X) is a well-defined algebra ho-
momorphism for T |XE1

(T,F ). All that it lacks to make it a functional
calculus for T |E1(T,F ) is that EF (1) might not be the identity, just some
projection on XE1(T,F ). In fact, XE(T, F ) is the image of that projection,
[EF (1)] (XE1(T, F )).

Corollary 1.9. If F is a compact subset of the complex plane, then TF

has the SDI.

Proof. Since UF is admissible, this follows from Theorem 1.7 and [14, The-
orem 1.4.2].

Definition 1.10. If F is compact, then we say that U is inverse closed on
F if every φ ∈ U is continuous on a neighborhood δφ of F , and, if for all
z ∈ δφ, φ(z) 6= 0, then there exists ψ ∈ U such that

ψ(z) =
1

φ(z)
∀z ∈ δφ.

If U is inverse closed on every compact F , then we say that U is inverse
closed.

Proposition 1.11. If U is inverse closed on a compact set F , then for
every φ ∈ U ,

φ(σ(TF )) = σ(E(φ)|XE (T,F )).

Proof. Note that E(φ)|XE (T,F ) = EF (φ). Since UF is admissible and inverse
closed, the proposition follows from [6, Theorem 3.2.1].

Corollary 1.12. If U is inverse closed on a compact set F , then for every
φ ∈ U , E(φ)|XE (T,F ) is decomposable.

Proof. As with the proof of Proposition 1.11, this follows from [6, Theorem
3.2.4].

Definition 1.13. Suppose G ⊆ C is open. We will say that E is zero on
G if E(φ) = 0 whenever φ ∈ U is supported in G. The support of E is

supp(E) ≡ C −
∪

{G | E is zero on G}.



130 R. DELAUBENFELS AND S. WANG

The following proposition is an analogue of [16, Lemma 2.3]. We offer
a proof for completeness.

Proposition 1.14. (1) For every φ ∈ U , λ 7→ E(φλ) is analytic on C −
supp(φ), where φλ is defined in Definition 1.1.

(2) limλ→∞ E(φλ) = 0 in L(X).

Proof. (1) Fix λ /∈ supp(φ). For any µ /∈ supp(φ), n ∈ N,

φµ(z) =
n∑

k=0

(λ − µ)k(λ − z)−(k+1)φ(z) + (λ − µ)n+1(λ − z)−(n+1)φµ(z),

so that

E(φµ) =
n∑

k=0

(λ − µ)kE(z 7→ (λ − z)−(k+1)φ) + (λ − µ)n+1E(z 7→ (λ − z)−(n+1)φµ).

Let ψ ∈ U such that ψ = 1 on the support of φ and λ /∈ supp(ψ). Then

(λ − z)−(n+1)φµ(z) = [ψλ(z)]n+1 φµ(z)

and
E(z 7→ (λ − z)−(n+1)φµ(z)) = [E(ψλ)]n+1 E(φµ).

This implies that

lim
n→∞

[
|λ − µ|n+1‖E(z 7→ (λ − z)−(n+1)φµ(z))‖

] 1
n

≤ lim
n→∞

[
|λ − µ|n+1‖E(ψλ)‖n+1‖E(φµ)‖

] 1
n

= |λ − µ|‖E(ψλ)‖ < 1

if |λ − µ| < 1
‖E(ψλ)‖ .

Thus, for |λ − µ| < 1
‖E(ψλ)‖ , we have

E(φµ) =
∞∑

k=0

(λ − µ)kE(z 7→ (λ − z)−(k+1)φ(z)).

This implies that λ 7→ E(φλ) is analytic on C − supp(φ).
(2) Choose ψ ∈ U such that ψ = 1 on a neighborhood of the support of φ.
Arguing as in the proof of (1), we have, for |λ| sufficiently large,

E(φλ) =
∞∑

n=0

(λ)−(n+1) [E(z 7→ zψ(z))]n E(φ).

This implies (2).
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Corollary 1.15. For any φ ∈ U , x ∈ X,

σT (E(φ)x) ⊆ supp(φ) ∩ σT (x).

Proof. Since E(φ)T ⊆ TE(φ),

σT (E(φ)x) ⊆ σT (x),

by [11, Proposition I.2.6(III)]. For λ /∈ supp(φ),

(λ − T )E(φλ)x = E(φ)x,

thus by Proposition 1.14,

σT (E(φ)x) ⊆ supp(φ).

Definition 1.16. For x ∈ X, E ⊗x is the following X-valued distribution:

(E ⊗ x)(φ) ≡ E(φ)x (φ ∈ U).

The support of E ⊗ x is

supp(E ⊗ x) ≡ C −
∪

{ open G ⊆ C | E ⊗ x is zero on G}.

Note that, if F is closed, XE1(T, F ) = {x | supp(E ⊗ x) ⊆ F}.

Definition 1.17. (a) The U functional calculus E is a U quasi distribu-
tion if

N(E) ≡
∩

{N (E(φ)) |φ ∈ U} = {~0}.
(b) The U functional calculus E is a U distribution if there exists a se-

quence of compact sets {4n}n∈N ⊆ C and a sequence of functions
{φn}n∈N ⊆ U such that ∪∞

n=14n = C, for each n ∈ N, φn = 1 on a
neighborhood of 4n, and

E(φn)x → x ∀x ∈ X,

as n → ∞.

Proposition 1.18. If E is a U distribution, then E is a U quasi distribu-
tion.

Proof. Suppose x ∈ N(E). Then, for φn as in Definition 1.17(b),

x = lim
n→∞

E(φn)x = 0.

Remark 1.19. Note that N(E) = XE1(T, ∅).

Lemma 1.20. Suppose E is a U functional calculus for T , x0 ∈ D(T ), and
(λ − T )x0 = 0.
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(1) supp(E ⊗ x0) = {λ}.
(2) If E is a U quasi distribution, and φ ∈ U equals 1 on a neighborhood

of λ, then
E(φ)x0 = x0.

Proof. (1) Suppose ψ ∈ U and λ is not in the support of ψ. Then

E(ψ)x0 = E(ψλ(λ − f1))x0 = E(ψλ)(λ − T )x0 = 0.

This shows that supp(E ⊗ x0) = {λ}.
(2) For any ψ ∈ U ,

E(ψ) (E(φ)x0 − x0) = E (ψφ − ψ) x0 = 0,

since (ψφ − ψ) = 0 on a neighborhood of λ.
This implies that E(φ)x0 − x0 = 0.

Proposition 1.21. If there exists a U quasi distribution for T , then T has
the SVEP.

Proof. Supppose G is an open subset of the complex plane and f : G →
D(T ) is analytic and satisfies

(λ − T )f(λ) = 0 (λ ∈ G).

Without loss of generality, we may assume G is connected. For the sake
of contradiction, suppose there exists λ0 ∈ G such that f(λ0) 6= 0. Then
there exists a relatively compact neighborhood δ of λ0 such that for all
λ ∈ δ, f(λ) 6= 0 and δ ⊆ G. Choose φ ∈ U such that

φ(λ) = 1 ∀λ ∈ δ1,

where δ1 is a neighborhood of δ, with G − δ1 nonempty, and

φ(λ) = 0 ∀λ ∈ G − δ1.

By Lemma 1.20,
E(φ)f(λ) = f(λ) ∀λ ∈ δ1,

and
E(φ)f(λ) = 0 ∀λ ∈ G − δ1.

Since λ 7→ E(φ)f(λ) is analytic, this implies that E(φ)f(λ) = 0 for all
λ ∈ G. Thus f(λ) = 0 for all λ ∈ G, as desired.

Lemma 1.22. If there exists a U quasi distribution for T , then
(a)

supp(E ⊗ x) ⊆ σT (x);
and

(b)
supp(E) ⊆ σ(T ).
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Proof. (a) This is equivalent to showing that x ∈ XE1(T, σT (x)). So sup-
pose φ ∈ U is zero in an open set containing σT (x). We must show that
E(φ)x = 0. Let x(λ) be the local resolvent of T at x. Then

(λ − T )E(φ)x(λ) = E(φ)x ∀λ /∈ σT (x);

and
(λ − T )E(φλ)x = E(φ)x ∀λ /∈ supp(φ).

Since T has the SVEP, this implies that the local resolvent h(λ) for E(φ)x
is entire, and for λ /∈ supp(φ),

h(λ) = E(φλ)x.

By Proposition 1.14(2), h(λ) → 0 as λ → ∞. Thus h(λ) ≡ 0, so that, for
λ /∈ σT (x),

E(φ)x = (λ − T )h(λ) = 0.

(b) follows from (a) and the fact that

supp(E) =
∪

x∈X

supp(E ⊗ x) and σ(T ) =
∪

x∈X

σT (x).

Proposition 1.23. Suppose E is a U functional calculus for T , and F ⊆ C
is compact; then

XE(T, F ) ⊆ X(T, F ).
If E is a U quasi distribution, then

X(T, F ) = XE1(T, F ) = XE(T, F ).

Proof. Suppose x ∈ XE(T, F ), and φ ∈ U equals one on a neighborhood of
F . Then for λ /∈ supp(φ),

(λ − T )E(φλ)x = E(φ)x = x.

Thus σT (x) ⊆ supp(φ). Since φ was arbitrary, this implies that σT (x) ⊆ F ,
so that XE(T, F ) ⊆ X(T, F ).

Now suppose E is a U quasi distribution. We will show that

X(T, F ) ⊆ XE1(T, F ) ⊆ XE(T, F ).

Lemma 1.22(a) implies that X(T, F ) ⊆ XE1(T, F ).
Now suppose x ∈ XE1(T, F ), and φ = 1 on a neighborhood of F . For

any ψ ∈ U ,
E(ψ) (E(φ)x − x) = E(ψφ − ψ)x = 0,

since (ψφ−ψ) = 0 on a neighborhood of F . Since E is a quasi distribution,
this implies that E(φ)x = x, so that x ∈ XE(T, F ).
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Corollary 1.24. If E is a U quasi distribution for T , then X(T, ∅) is
trivial.

Proof. This follows from Proposition 1.23; see Remark 1.19.

Corollary 1.25. If there exists a U quasi distribution for T , then for any
compact F ⊆ C, T |X(T,F ) has the SDI.

Proof. By Proposition 1.23, X(T, F ) = XE(T, F ), so that TF = T |X(T,F ),
thus this follows from Corollary 1.9.

Proposition 1.26. If there exists a U quasi distribution for T and U is
inverse closed on a compact set F , then for every φ ∈ U ,

φ(σ(TF )) = σ(E(φ)|X(T,F )).

Proof. Propositions 1.23 and 1.11.

Corollary 1.27. If there exists a U quasi distribution for T and U is
inverse closed on a compact set F , then for every φ ∈ U , E(φ)|X(T,F ) is
decomposable.

Proof. Proposition 1.23 and Corollary 1.12.

II. AUTOMATIC EXTENSIONS OF COMPACT-ADMISSIBLE
FUNCTIONAL CALCULI

Throughout this section, assume that U is compact admissible as in
Definition 1.1 and E is a U quasi distribution for the closed operator T as in
Definition 1.17. We shall construct, in three different ways (Ej , j = 0, 1, 2),
a functional calculus for T defined for a much larger class of functions.
Theorem 2.3 summarizes in what sense the map f 7→ E1(f) is a functional
calculus for T . For U = C∞

c (R), Theorem 2.3 is in [8]; in that case, the
enlarged class of functions M(U) equals C∞(R). See [7] for some other
methods of extending functional calculi.

Theorem 2.10 expresses our extended functional calculus E1(f)x as
a Dunford-Taylor-type Cauchy integral formula, for f analytic in a neigh-
borhood of infinity and the local spectrum of T at x.

Definition 2.1. As in [17], denote by M(U) the set of all functions f such
that φf ∈ U , for all φ ∈ U . In [17], U was assumed to be admissible; here
we only assume that U is compact admissible.

We define three maps from M(U) into the space of (possibly un-
bounded) linear operators on X.

For f ∈ M(U), define Ej(f), j = 0, 1, 2, as follows.
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D(E0(f)) ≡
∪
φ∈U

Im(E(φ)),

E0(f)(E(φ)x) ≡ E(φf)x (φ ∈ U , x ∈ X).

D(E1(f)) ≡ {x | there exists y such that E(φ)y = E(φf)x,∀φ ∈ U};
E1(f)x ≡ y.

Note that the definition of a quasi distribution guarantees that y is
unique.

Finally, D(E2(f)) is defined to be the set of all x ∈ X for which there
exists φn ∈ U , y ∈ X such that

E(φn)x → x, E(φnf)x → y as n → ∞,

with
E2(f)x ≡ y.

Proposition 2.2. For all f ∈ M(U), ψ ∈ U ,
(1)

E(ψ)Ej(f) ⊆ Ej(f)E(ψ) = E(ψf),
for j = 0, 1, 2;

(2) E1(f) is closed;
(3) E1 is an extension of E; and
(4)

E0(f) ⊆ E2(f) ⊆ E0(f) ⊆ E1(f).
If E is a U distribution, then

E2(f) = E0(f) = E1(f).

Proof. (1) For j = 0, note that, for any x ∈ X, φ ∈ U ,

E(ψ)E0(f)(E(φ)x) ≡ E(ψ)E(fφ)x = E(ψfφ)x

≡ E0(f)E(ψ)(E(φ)x) = E(ψf)(E(φ)x).

For j = 1, suppose x ∈ D(E1(f)). Then by definition of D(E1(f)),

E(ψ)E1(f)x = E(ψf)x,

so E(ψ)E1(f) ⊆ E(ψf).
Now suppose x ∈ X. For any φ ∈ U ,

E(φ) (E(ψf)x) = E(φψf)x = E(φf) (E(ψ)x) ,

thus E(ψ)x ∈ D(E1(f)), and

E1(f) (E(ψ)x) = E(ψf)x,
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so that E1(f)E(ψ) = E(ψf), as desired.
For j = 2, suppose x ∈ D(E2(f)), with φn as in the definition of

D(E2(f)). Then

E(φn)E(ψ)x = E(ψ)E(φn)x → E(ψ)x

and
E(φnf)E(ψ)x = E(ψ)E(φnf)x → E(ψ)y,

as n → ∞, since E(ψ) ∈ L(X). This shows that E(ψ)E2(f) ⊆ E2(f)E(ψ).
Now suppose x ∈ X. Let z ≡ E(ψ)x, y ≡ E(ψf)x. To show that

z ∈ D(E2(f)), choose δ ∈ U such that δ ≡ 1 on the support of ψ. By
Corollary 1.15, both z and y are in X(T, supp(ψ)), thus by Proposition
1.23, E(δ)z = z and E(δ)y = y. Thus, choosing φn ≡ δ, for any n, we see
that z ∈ D(E2(f)), and E2(f)z = y, so that E2(f)E(ψ) = E(ψf), as desired.
(2) Suppose {xn}n∈N ⊆ D(E1(f)), E1(f)xn → y and xn → x as n → ∞.
For any φ ∈ U , since E(φf) and E(φ) are in L(X), we have

E(φf)xn → E(φf)x and E(φf)xn = E(φ)E(f)xn → E(φ)y.

Thus E(φ)y = E(φf)x, for all φ ∈ U , so that x ∈ D(E1(f)), and E1(f)x = y,
as desired.
(3) It is clear that

E(φ)E(ψ)x = E(φψ)x ∀φ ∈ U , x ∈ X.

Thus X ⊆ D(E1(ψ)), and E1(ψ)x = E(ψ)x, for all x ∈ X; that is, E1(ψ) =
E(ψ), for all ψ ∈ U , so that E1 is an extension of E .
(4) It is clear, from the definition of closure of an operator, that E2(f) ⊆
E0(f).

For j = 1, 2, the inclusion E0(f) ⊆ Ej(f) follows from the fact that
Ej(f)E(φ) = E(φf), for all φ ∈ U (see (1)).

Since E1(f) is closed, this also implies that E0(f) ⊆ E1(f). This
concludes the proof of (4).

Now suppose E is a U distribution. All that remains is to show that
E1(f) ⊆ E2(f). Suppose x ∈ D(E1(f)). Choose φn as in Definition 1.17(b).
Then by (1),

E(fφn)x = E(φn)E1(f)x → E1(f)x
as n → ∞, thus x ∈ D(E2(f)) and E2(f)x = E1(f)x, as desired.

We will be particularly interested in the largest extension E1.

Theorem 2.3. (1) E1(f0) = I (f0(z) ≡ 1).
(2) For any f, g ∈ M(U),

E1(f) + E1(g) ⊆ E1(f + g).
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(3) M(U) is an algebra, and for any f, g ∈ M(U), we have E1(f)E1(g) ⊆
E1(fg), with

D(E1(f)E1(g)) = D(E1(g)) ∩ D(E1(fg)).

(4) For any g ∈ M(U), complex λ, if z 7→ (λ − g(z))−1 ∈ M(U), then
(λ − E1(g)) is injective, and

(λ − E1(g))−1 = E1(z 7→ (λ − g(z))−1).

(5) E0(f1) ⊆ T ⊆ E1(f1).
If E is a U distribution, then T = E1(f1).

Proof. (1) is clear from the definition of E1.
(2) Suppose x ∈ D(E1(f)) ∩ D(E1(g)). Then for any φ ∈ U ,

E(φ)[(E1(f))x + (E1(g))x] = E(φf)x + E(φg)x = E(φ(f + g))x,

so that x ∈ D(E1(f + g)) and

(E1(f + g))x = (E1(f))x + (E1(g))x.

(3) It is clear from the definition of M(U) that it is an algebra.
Suppose x ∈ D((E1(f))(E1(g))). Then for any φ ∈ U ,

E(φ)[(E1(f))(E1(g))x] = E(φf)(E1(g))x = E((φf)g)x = E(φ(fg))x,

so that x ∈ D(E1(fg)), with

(E1(fg))x = (E1(f))(E1(g))x.

Thus (E1(f))(E1(g)) ⊆ E1(fg). Now suppose x ∈ D(E1(fg))∩D(E1(g)). To
see that x ∈ D((E1(f))(E1(g))), we again consider arbitrary φ ∈ U :

E(φ)[E1(fg)x] = E(φ(fg))x = E((φf)g)x = E(φf)((E1(g))x),

so that (E1(g))x ∈ D(E1(f)), as desired.
(4) Let h(s) ≡ (λ − g(s))−1. By (1) and (3),

(E1(h))(λ − E1(g)) = I|D(E1(g)), and (λ − E1(g))(E1(h)) = I|D(E1(h));

this proves (4).
(5) The fact that E0(f1) ⊆ T is in the definition of a U functional calculus
for T . To show that T ⊆ E1(f1), suppose x ∈ D(T ). By Definition 1.2, for
any φ ∈ U ,

E(φ)Tx = E(φf1)x,

so that x ∈ D(E1(f1)), and (E1(f1))x = Tx, as desired.
When E is a U distribution, then Proposition 2.2, (5) of this theorem

and the fact that T is closed imply that T = E1(f1).
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Corollary 2.4. E1(f1) is the maximal T for which E is a U quasi distri-
bution and the closure of E0(f1) is the minimal T .

If E is a U distribution, then T is unique, and equals

E2(f1) = E0(f1) = E1(f1).

To guarantee that our U functional calculus is consistent with the
Dunford-Taylor functional calculus, we will need the following continuity
hypothesis on E .

Definition 2.5. We will say that a U functional calculus E is analytic if,
whenever φ ∈ U , and {fn}n∈N is a sequence of functions holomorphic on a
neighborhood Ωφ of the support of φ, such that fnφ ∈ U for each n, and
fn → 0 uniformly on Ωφ, then

E(fnφ)x → 0 as n → ∞, ∀x ∈ X.

For the remainder of this section, we will use the terminology

λ 7→ R(x, λ, T ) (λ ∈ ρT (x))

for the local resolvent of T at x.

Lemma 2.6. If w ∈ ρT (x) is outside the support of φ ∈ U , then

E(φ)R(x,w, T ) = E(φw)x.

Proof.
(w − T )E(φw)x = E((w − f1)φw)x = E(φ)x,

thus
E(φw)x = R(E(φ)x,w, T ).

Also

(w − T )E(φ)R(x, w, T ) = E(φ)(w − T )R(x,w, T ) = E(φ)x,

thus
R(E(φ)x, w, T ) = E(φ)R(x,w, T ).

Proposition 2.7. Suppose E is an analytic U functional calculus for T ,
φ ∈ U , x ∈ X, f is holomorphic in a neighborhood G of the support of
φ, and fφ ∈ U . Then, choosing Γ to be a contour in G that surrounds
supp(φ),
(1)

E(φf)x =
∫

Γ
f(w)E(φw)x

dw

2πi
;

and
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(2) if Γ ⊆ ρT (x), then

E(φf)x = E(φ)
[∫

Γ
f(w)R(x,w, T )

dw

2πi

]
.

Proof. (1) For each n, let Pn ≡ {wj,n}kn
j=0 be a partition of Γ. Suppose

that the norm of Pn goes to zero, as n → ∞, so that, letting fn be the
Riemann sum

fn(z) ≡ 1
2πi

 kn∑
j=0

f(wj,n)(wj,n − z)−1 ∆wj,n

 (z ∈ G),

we have

f(z) =
∫

Γ
f(w)(w − z)−1 dw

2πi
= lim

n→∞
fn(z),

uniformly for z in an open neighborhood, Ω, of the support of φ. Since E
is analytic, this implies that

∫
Γ

f(w)E(φw)x
dw

2πi
= lim

n→∞

1
2πi

kn∑
j=0

f(wj,n)E(z 7→ φ(z)(wj,n − z)−1)x∆wj,n

= lim
n→∞

E(φfn)x = E(φf)x.

(2) Since E(φ) ∈ L(X),

E(φ)
[∫

Γ
f(w)R(x,w, T )

dw

2πi

]
=

∫
Γ

f(w)E(φ)R(x,w, T )
dw

2πi

=
∫

Γ
f(w)E(φw)x

dw

2πi

= E(φf)x,

by (1) and Lemma 2.6.

Proposition 2.8. If f ∈ M(U) is analytic in a neighborhood, δ, of σT (x)∪
{∞}, and

y ≡ f(∞)x +
∫

Γ
f(w)R(x,w, T )

dw

2πi
,

where Γ is a contour contained in δ that surrounds σT (x) ∪ {∞}, φ ∈ U
and supp(φ) is contained in δ and disjoint from Γ, then

E(fφ)x = E(φ)y = f(∞)E(φ)x + E(φ)
∫

Γ
f(w)R(x, w, T )

dw

2πi
.
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Proof. This is the same as the proof of Proposition 2.7, after writing

f(z) = f(∞) +
∫

Γ
f(w)(w − z)−1 dw

2πi
,

for z in a neighborhood of σT (x) ∪ {∞}.

Lemma 2.9. If y is as in Proposition 2.8, then σT (y) ⊆ σT (x).

Proof. For z, w ∈ ρT (x), define

− x′(w), if z = w,

g(z, w) ≡
(w − z)−1(x(z) − x(w)) if z 6= w,

where x(z) ≡ R(x, z, T ), so that (z − T )g(z, w) = R(x,w, T ).
Define, for z /∈ σT (x),

R(y, z, T ) ≡ f(∞)R(x, z, T ) +
∫

Γ
f(w)g(z, w) dw.

Then
(z − T )R(y, z, T ) = y,

for z /∈ σT (x), as desired.

Theorem 2.10. If f ∈ M(U) is analytic in a neighborhood, δ, of σT (x)∪
{∞}, then x ∈ D(E1(f)), and

E1(f)x = f(∞)x +
∫

Γ
f(w)R(x,w, T )

dw

2πi
,

where Γ is a contour contained in δ that surrounds σT (x) ∪ {∞}.

Proof. Let y be as in Proposition 2.8. Suppose φ ∈ U . We may write

φ = φ1 + φ2,

where φj ∈ U , j = 1, 2, supp(φ1) is disjoint from σT (x) and supp(φ2) is
contained in δ and disjoint from Γ.

By Lemmas 1.22a and 2.9, E(φ1f)x = E(φ1)y = 0, since supp(φ1) is
disjoint from supp(E ⊗ x) and supp(E ⊗ y).

By Proposition 2.8, E(φ2f)x = E(φ2)y. Thus,

E(φf)x = E(φ2f)x = E(φ2)y = E(φ)y,

so that x ∈ D(E1(f)) and E1(f)x = y, as desired.

Remark 2.11. Theorem 2.10 shows that, for f ∈ M(U), E1 is an extension
of the Dunford-Taylor functional calculus for f analytic in a neighborhood
of σ(T ) ∪ {∞}.
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III. CHARACTERIZATIONS OF DECOMPOSABILITY

Throughout this section, assume U is compact admissible and E is a
U quasi distribution for T .

For U inverse closed (Definition 1.10), we characterize decomposabil-
ity (Theorem 3.7) in terms of spectral mapping theorems, the support of E
and the extended functional calculus E1 of the previous section. Theorem
3.4 asserts that the spectral mapping theorem for E holds if and only if
σ(T ) = supp(E) (Definition 1.13). Theorem 3.7 asserts that T is decom-
posable if and only if an analogous local spectral mapping theorem holds;
that is, σT (x) = supp(E ⊗ x), for all x ∈ X (see Definition 1.16). This is
also equivalent to the spectral mapping theorem holding for E restricted to
local spectral subspaces X(T, F ), for any closed F ⊆ C. Decomposability
is also equivalent to E1(f) being in L(X), whenever f ∈ M(U) (Definition
2.1) and f is analytic in a neighborhood of ∞.

Definition 3.1. If for every φ ∈ U ,

φ(σ(T )) = σ(E(φ)),

then we say that the spectral mapping theorem holds for T .

Lemma 3.2. If F ⊆ C is compact, then

σ(T |X(T,F )) = supp(E) ∩ F.

Proof. By Theorem 1.7 and Proposition 1.23, σ(T |X(T,F )) ⊆ F .
By Theorem 1.7, Proposition 1.23 and [6, Theorem 3.1.6],

σ(T |X(T,F )) = supp(EF ),

which equals supp(E) ∩ F .

Lemma 3.3. Suppose S ∈ L(X) has the SVEP, X1 and X2 are invariant
subspaces for S and (λ − S)−1, for all λ ∈ ρ(S), and X = X1 + X2. Then

σ(S) = σ(S|X1) ∪ σ(S|X2).

Proof. The invariance conditions imply that

σ(S|X1) ∪ σ(S|X2) ⊆ σ(S).

For the opposite inclusion, suppose λ ∈ ρ(S|X1)∩ ρ(S|X2). For any x ∈ X,
we may write x = x1 + x2, with xj ∈ Xj , j = 1, 2, thus there exist yj so
that

(λ − S)yj = xj , yj ∈ Xj , j = 1, 2.

Thus (λ − S)(y1 + y2) = x. This shows that (λ − S) is surjective. By the
SVEP, λ ∈ ρ(S), as desired.
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Theorem 3.4. If U is inverse closed, then the spectral mapping theorem
holds for T if and only if

supp(E) = σ(T ).

Proof. By Lemma 1.22(b), supp(E) ⊆ σ(T ).
Suppose the spectral mapping theorem holds. To show that σ(T ) ⊆

supp(E), suppose, for the sake of contradiction, there exists λ0 ∈ σ(T ) −
supp(E). Choose φ ∈ U such that φ(λ0) = 1 and φ is zero in a neighborhood
of supp(E). Since E(φ) = 0, σ(E(φ)) = {0}. But by hypothesis, 1 ∈
φ(σ(T )) = σ(E(φ)). Thus the desired inclusion holds.

Conversely, suppose supp(E) = σ(T ). Fix φ ∈ U . Choose compact
F ⊆ C whose interior F 0 contains the support of φ, and let {F 0, G} be an
open cover of the complex plane, so that supp(φ) ∩ G is trivial.

If X(T, G) is trivial, then X = X(T, F ), so that the spectral mapping
theorem follows from Proposition 1.26. Thus we may assume X(T, G) is
nontrivial.

By Lemma 3.3,

σ(E(φ)) = σ(E(φ)|X(T,F )) ∪ σ(E(φ)|X(T,G)).

By Corollary 1.15, E(φ)|X(T,G) = 0, so by Proposition 1.26 and Lemma 3.2,

σ(E(φ)) = σ(E(φ)|X(T,F )) ∪ {0} = φ(σ(T |X(T,F )) ∪ {0}
= φ(supp(E) ∩ F ) ∪ {0} = φ(σ(T ) ∩ F ) ∪ {0}
= φ(σ(T )) ∪ {0},

since φ ≡ 0 outside F . All that remains is to show that 0 ∈ φ(σ(T )). To see
this, note first that, since X(T, G) is nontrivial, σ(T |X(T,G)) is nonempty.
Since supp(φ)∩σ(T |X(T,G)) ⊆ supp(φ)∩G, which is empty, it follows that

0 ∈ φ(σ(T |X(T,G))) ⊆ φ(σ(T )),

as desired.

Definition 3.5. If for every closed F ⊆ C, the spectral mapping theorem
for T |X(T,F ) holds, that is,

φ(σ(T |X(T,F ))) = σ(E(φ)|X(T,F )),

then we say that the strong spectral mapping theorem holds for T .

Definition 3.6. We will denote by A those functions in M(U) that are
analytic in a neighborhood of ∞.

Theorem 3.7. Suppose U is inverse closed and E is a U quasi distribution
for T . Then the following are equivalent.
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(a) The strong spectral mapping theorem holds for T .
(b) T has the SDP.
(c) T has the SDI.
(d) For every x ∈ X, supp(E ⊗ x) = σT (x).
(e) T is decomposable.

If E is an analytic U quasi distribution and T = E1(f1), then (a)–(e) are
equivalent to

(f) E1 maps A into L(X).
If E is an analytic U distribution, then (a)–(f) are equivalent to
(g) T has property B.

Proof. (a) → (c). Let {G0, G1} be an open cover of the complex plane,
with G0 a neighborhood of ∞, and G1 relatively compact. Choose φ ∈ U
such that supp(φ) ⊆ G1 and φ = 1 on a neighborhood of C − G0. Let F0

be the closure of the complement of {λ ∈ C |φ(λ) = 1}, F1 ≡ supp(φ).
Apply Theorem 3.4 to T |X(T,Fi), i = 0, 1, to obtain

σ(T |X(T,F0)) = supp(E|X(T,F0)) ⊆ G0;

σ(T |X(T,F1)) = supp(E|X(T,F1)) ⊆ G1.

Let P ≡ E(φ). For any x ∈ X, by Corollary 1.15, Px ∈ X(T, F1). Since
for every ψ ∈ U with supp(ψ) ∩ F0 empty, one has

E(ψ)(I − P )x = E(ψ)x − E(ψ)Px = E(ψ)x − E(ψφ)x = 0,

it follows by Proposition 1.23 that (I − P )x ∈ X(T, F0). Thus

X = X(T, F0) + X(T, F1),

Im(P ) ⊆ X(T, F0), Im(I − P ) ⊆ X(T, F1) and X(T, F1) ⊆ D(T ). This
proves (c).
(c) → (b) is clear.
(b) → (d). By Lemma 1.22, it is sufficient to prove that σT (x) ⊆ supp(E ⊗
x) ≡ F .

If F is bounded, then this inclusion follows from Proposition 1.23.
Thus we may assume F is unbounded.

Let {G0, G1} be an open cover of the complex plane, with G0 a neigh-
borhood of ∞, G1 relatively compact and F ⊆ G0, F ∩ G1 empty. By (b),
we have the decomposition

x = x0 + x1, σT (xi) ⊆ Gi, i = 0, 1.

Since F ⊆ G0 and σT (x0) ⊆ G0, we have

E(φ)x = 0 = E(φ)x0
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whenever φ ∈ U and supp(φ)∩G0 is empty. Thus E(φ)x1 = 0. This implies
that x1 ∈ XE1(T, G0). By Proposition 1.23, we therefore have

σT (x1) = supp(E ⊗ x1) ⊆ G0.

Thus we have
σT (x) ⊆ σT (x0) ∪ σT (x1) ⊆ G0.

Since G0 is an arbitrary open set containing F , it follows that σT (x) ⊆ F ,
as desired.
(d) → (a). Let F ⊆ C be closed, S ≡ T |X(T,F ). By Theorem 3.4, it is
sufficient to show that σ(S) = supp(E|X(T,F )). This follows from the fact
that

σ(S) =
∪

x∈X(T,F )

σT (x) and supp(E|X(T,F )) =
∪

x∈X(T,F )

supp(E ⊗ x);

the former equality is from Proposition 0.4(b).
The equivalence of (b) and (e) follows from Corollary 1.24.
Now suppose E is analytic and T = E1(f1).

(d) → (f). By Proposition 2.2(2), it is sufficient to show that X ⊆ D(E1(f)),
for f ∈ A.

Given f ∈ A, analytic in the neighborhood, δ, of ∞, x ∈ X, decom-
pose x as follows. Choose φ ∈ U such that φ = 1 on a neighborhood of
C − δ, and define

y ≡ x − E(φ)x.

By Proposition 2.2, E(φ)x ∈ D(E1(f)).
It remains to show that y ∈ D(E1(f)). If ψ ∈ U has support outside

δ, then

E(ψ)y = E(ψ)x − E(ψ)E(φ)x = E(ψ − ψφ)x = E(0)x = 0.

Thus supp(E ⊗y) ⊆ δ. By (d), σT (y) ⊆ δ. By Theorem 2.10, y ∈ D(E1(f)),
as desired.
(f) → (a). By Theorem 3.4 and Lemma 1.22(b), it is sufficient to show
that

σ(T |X(T,F )) ⊆ supp(E|X(T,F )),
for any closed F ⊆ C.

For fixed closed F ⊆ C, let S ≡ T |X(T,F ), F ≡ E|X(T,F ). Suppose
λ0 /∈ supp(F). Choose φ ∈ U such that φ = 1 on a neighborhood of λ0 and
supp(φ) ∩ supp(F) is empty. Define

ψ(λ) ≡ φ(λ0) − φ(λ)
λ0 − λ

, if λ 6= λ0,

ψ(λ0) ≡ 0.
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Then ψ ∈ A and ψ(∞) = 0. By Theorem 2.3(3), Im(F1(ψ)) ⊆ D(F1(f1)) =
D(S), since g(z) ≡ zψ(z) ∈ A. Moreover

I = I −F(φ) = φ(λ0)I −F1(φ)

= F1(φ(λ0) − φ) = (λ0 − S)F1(ψ).

Thus (λ0 − S) is surjective. By the SVEP, λ0 ∈ ρ(S), as desired.

Now suppose E is an analytic U distribution.
(b) → (g) is well-known.
(g) → (f). By Proposition 2.2(2), to show that E1(f) ∈ L(X), it is sufficient
to show that X ⊆ D(E1(f)).

Let {φn}n∈N be as in Definition 1.17(b). If E(f(φn − φm))x → 0, it
follows that x ∈ D(E2(f)) = D(E1(f)) by Proposition 2.2.

So fix x ∈ X, and let δ be a neighborhood of ∞ in which f is analytic,
Γ = ∂δ such that

f(z) = f(∞) +
∫

Γ
f(w)(w − z)−1 dw

2πi
, ∀z ∈ δ.

Thus by Proposition 2.8,

E(f(φn − φm))x = f(∞)E(φn − φm)x

+
∫

Γ
f(w)E(z 7→ (φn(z) − φm(z))(w − z)−1)x

dw

2πi
.

Let

xn,m(w) ≡ E(z 7→ (φn(z) − φm(z))(w − z)−1)x.

Then

(w − T )xn,m(w) = E(φn − φm)x, ∀w ∈ Γ,

thus (w − T )xn,m(w) → 0, as n,m → ∞, uniformly on Γ. By Property B,
xn,m(w) → 0 uniformly on Γ, which implies that

E(f(φn − φm))x = f(∞)E(φn − φm)x +
∫

Γ
f(w)xn,m(w)

dw

2πi
→ 0,

as desired.
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IV. A CLASS OF EXAMPLES

Throughout this section, X will be BC1(R), h ∈ C1(R) and T ≡ Mh,
that is,

Tf ≡ hf (f ∈ X),

with maximal domain D(T ) ≡ {f ∈ X |hf ∈ X}.
Using the results of Section III, we will characterize those h for which

T is decomposable and those h for which T has a C1
c (C) quasi distribution.

Both may be characterized in terms of the rate of growth of h′. If we define,
for any n ∈ N,

(4.1) Dn,h ≡ sup{|h′(x)| |x ∈ R, |h(x)| ≤ n},

then T has a C1
c (C) quasi distribution if and only if Dn,h is finite, for

all n ∈ N (Corollary 4.3), while T is decomposable if and only if the
sequence {Dn,h

n2 }n∈N is bounded (Theorem 4.7(a) ⇐⇒ (b)). Thus, in
order that T be decomposable, it is necessary, but not sufficient, that T
have a C1

c (C) functional calculus. We also characterize decomposability of
T in terms of both local and global spectra (Theorem 4.7); for example, T
is decomposable if and only if ρ(T ) is nonempty.

Examples 4.9 give an example of an h for which T does not have a
compact-admissible functional calculus, and an example of an h for which
T has a C1

c (C) quasi distribution, but is not decomposable.
Let’s consider the maximal compact-admissible algebra for T ,

Uh ≡ {g ∈ C1
c (C) | g ◦ h ∈ BC1(R)}.

Clearly T has a Uh functional calculus, given by

[E(g)] f ≡ (g ◦ h)f (f ∈ X, g ∈ Uh).

Lemma 4.2. For any n ∈ N, Dn,h is finite if and only if

{g ∈ C1(C) | support of g ⊆ {z ∈ C | |z| ≤ n}} ⊆ Uh.

Proof. This is clear from (g ◦ h)′(x) = h′(x)g′(h(x)).

Corollary 4.3. The following are equivalent.

(a) T has a C1
c (C) quasi distribution.

(b) Dn,h < ∞, for all n ∈ N.

Before considering decomposability, we need some lemmas.

Lemma 4.4. (1) supp(E) = h(R).
(2) supp(E ⊗ f) = h(supp(f)), for any f ∈ X.
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Proof. (1) E = 0 on the open set G if and only if φ◦h = 0 whenever φ ∈ Uh

is supported in G if and only if h(R)∩G is empty. The union over all such
G is the complement of h(R).
(2) As with the proof of (1), E ⊗ f = 0 on the open set G if and only if
h(supp(f)) ∩ G is empty.

Lemma 4.5. Suppose f ∈ X and λ ∈ ρT (f). Then λ /∈ h(supp(f)), and
the local resolvent for f is given by

[R(λ, f)] (x) =
f(x)

(λ − h(x))
if f(x) 6= 0,

[R(λ, f)] (x) = 0 if f(x) = 0.

Proof. We have, for λ ∈ ρT (f), x ∈ R,

(∗) (λ − h(x)) [R(λ, f)] (x) = f(x).

If f(x) 6= 0, then λ − h(x) 6= 0. Thus λ /∈ h({x ∈ R | f(x) 6= 0}); since
ρT (f) is open, it follows that λ /∈ h(supp(f)), and (*) implies that

[R(λ, f)] (x) =
f(x)

(λ − h(x))
if f(x) 6= 0.

Assertion (*) now also implies that, when f(x) = 0, [R(λ, f)] (x) = 0.

Now we obtain an interesting characterization of the local spectrum.
It is either what one would expect, for a multiplication operator, or the
entire complex plane.

Proposition 4.6. If f ∈ X, then the following are equivalent.
(a) σT (f) = h(supp(f)).
(b) { |f(x)h′(x)|

1+|h(x)|2 }x∈R is bounded.

(c) For any λ /∈ h(supp(f)),

x 7→ f(x)
(λ − h(x))

∈ BC1(R).

Otherwise, σT (f) = C.

Proof. A small calculation shows that (b) and (c) are equivalent. The
equivalence of (c) and (a), and the fact that the alternative is σT (f) = C,
follows from Lemma 4.5.

Theorem 4.7. The following are equivalent.
(a) T is decomposable.
(b) {Dn,h

n2 }∞n=1 is bounded.
(c) { |h′(x)|

1+|h(x)|2 }x∈R is bounded.
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(d) For any f ∈ BC1(R), λ /∈ h(supp(f)),

x 7→ f(x)
(λ − h(x))

∈ BC1(R).

(e) T has a C1
c (C) quasi distribution and the spectral mapping theorem

holds; that is,

σ(E(g)) = g(σ(T )), ∀g ∈ C1
c (C).

(f) σ(T ) = h(R)
(g) σ(T ) 6= C.
(h) T has a C1

c (C) quasi distribution and

σT (f) = h(supp(f)),

for all f ∈ X.
(i) T has a C1

c (C) quasi distribution and

σT (f) 6= C,

for all f ∈ X.
(j) There exists g such that both g and 1

g are in X, and σT (g) 6= C.

Proof. A little calculation shows that (b), (c) and (d) are equivalent.
(d) → (f). Letting f be the constant function in (d) implies that x 7→
(λ − h(x))−1 ∈ BC1(R), for λ /∈ h(R), thus λ ∈ ρ(T ), with

(λ − T )−1f ≡ f

λ − h
(f ∈ X).

This shows that σ(T ) ⊆ h(R). The converse inclusion follows as in
the proof of Lemma 4.5.
(f) → (g) is clear, since h ∈ C1(R).
(g) → (c). By Proposition 4.6, if (c) fails, then C = σT (1) ⊆ σ(T ).
(a) → (h). Fix n ∈ N. We will show that Dn,h < ∞.

Let

G1 ≡ {z ∈ C | |z| < n + 2}, G2 ≡ {z ∈ C | |z| > n + 1}.
Since T is decomposable, there exist f1, f2 ∈ X such that f1 + f2 = 1, and
σT (fi) ⊆ Gi, for i = 1, 2. By Lemma 4.5, h(supp(f2)) ⊆ σT (f2) ⊆ G2, thus
supp(f2) ⊆ h−1(G2). This implies that

f1(x) = 1 ∀x ∈ h−1 ({z ∈ C | |z| ≤ n}) .

By Proposition 4.6, the map

x 7→ f1(x)h′(x)
1 + |h(x)|2

, hence x 7→ h′(x)
1 + |h(x)|2

,
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is bounded on

h−1 ({z ∈ C | |z| ≤ n}) = {x ∈ R | |h(x)| ≤ n}.

This implies that h′(x) is bounded on that set, which is saying that Dn,h <
∞.

By Corollary 4.3, T has a C1
c (R) quasi distribution. Theorem 3.7 and

Lemma 4.4(2) now imply (h).
(e) → (f). By Theorem 3.4, σ(T ) = supp(E), which, by Lemma 4.4(1),
equals h(R).
(d) → (a). Since (d) is equivalent to (b), T has a C1

c (C) quasi distribution,
by Corollary 4.3. For any f ∈ X, by Proposition 4.6,

σT (f) = h(supp(f)),

thus by Lemma 4.4(2),

supp(E ⊗ f) = σT (f).

By Theorem 3.7, T is decomposable.
(h) → (e). By Lemma 4.4(2), σT (f) = supp(E ⊗ f), for any f ∈ X, thus
(e) follows from Theorem 3.7.
(h) ↔ (i) follows from Proposition 4.6 and the fact that h ∈ C1(R).
(j) → (c). If (c) fails, then by Proposition 4.6, σT (1) = C. Suppose both
g and 1

g are in BC1(R). Define B ∈ L(X) by

(Bf) ≡ f

g
.

Then σT (1) = σT (Bg) ⊆ σT (g), thus σT (g) = C, so that (j) fails.
(c) → (j). If (j) fails, then σT (1) = C, thus by Proposition 4.6, (c) fails.

Corollary 4.8. If h is a polynomial, then T is decomposable.

Proof. This follows from (a) ⇐⇒ (c) of Theorem 4.7.

Example 4.9. (1) Let h(x) ≡ sin(x2). Then by Lemma 4.2, Uh is trivial;
in particular, T does not have a compact-admissible functional calculus.
(2) Let h(x) ≡ x(2+sin(x3)). Then by Corollary 4.3, T has a C1

c (C) quasi
distribution, while by Theorem 4.7(a) ⇐⇒ (c), T is not decomposable.

Remark 4.10. If T had a quasi-admissible functional calculus, then T
would be decomposable ([20, Corollary IV.9.8]). Thus Example 4.9(2) is
an example of an operator with a compact-admissible functional calculus
(in fact, a C1

c (C) quasi distribution) that does not have a quasi-admissible
functional calculus.
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Remark 4.11. On another space Ak, where “weighted derivatives”

(1 + |x|)|m|Dmf(x) (x ∈ R2, |m| ≤ k)

are bounded, it is shown in [2, Lemma 1.3] that the bounded operator Mh,
for h ∈ Ak, is generalized scalar. See also [2, Lemmas 1.4 and 1.5], and [3].
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