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NONLINEAR SEMIGROUPS ANALYTIC ON SECTORS

GEN NAKAMURA, TOSHITAKA MATSUMOTO AND SHINNOSUKE OHARU

0. Introduction.

Of concern in this paper is a typical class of nonlinear evolution equa-
tions of the form

(EE) (d/dξ)u(ξ) = Au(ξ), ξ ∈ Σ ⊂ C

in a complex Banach space (X, |·|). Here the Banach space X stands for an
appropriate space of complex-valued functions and A represents a possibly
nonlinear differential operator in X. Also, Σ denotes an open sector in the
complex plain C

Σ = {seiφ + teiψ : s, t > 0},
where −π/2 < φ < 0 < ψ < π/2. The closure of Σ is denoted by Σ∗,
namely,

Σ∗ = {seiφ + teiψ : s, t ≥ 0}.
We here discuss the generation and characterization of a semigroup of the
solution operators to (EE) which provide solutions analytic in Σ.

In this paper the totality of admissible initial data is denoted by D and
is classified in terms of a lower semicontinuous functional Φ : X → [0, +∞]
in such a way that D ⊂ D(Φ) = {v ∈ X : Φ(v) < +∞} and D =

∪
α>0 Dα,

where
Dα = {v ∈ D : Φ(v) ≤ α}, α > 0.

Evolution equation (EE) is considered under the initial condition

(IC) lim
ξ∈Σ, ξ→0

u(ξ) = v ∈ D

and the solution u(ξ; v) to the evolution problem (EE)-(IC) is sought as an
analytic function in Σ. Now the growth of the analytic solution u(ξ; v) is
restricted by means of the nonnegative-valued function Φ(u(ξ; v)) on Σ∗.
Also, the solution operators W (ξ), ξ ∈ Σ∗, are constructed on D in such
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a way that to each α > 0 and each τ > 0 there corresponds a constant
M(α, τ) > 0 such that

(LL) |S(ξ)v − S(ξ)w| ≤ M(α, τ)|v − w|
for v, w ∈ Dα and ξ ∈ Σ∗ with |ξ| ≤ τ .

The closed sector Σ∗ is an additive semigroup in the sense that 0 is
the apex of Σ∗ and η, ξ ∈ Σ∗ imply η + ξ ∈ Σ∗. Therefore the solution
operators {W (ξ) : ξ ∈ Σ∗} forms a nonlinear operator semigroup on D
such that u(ξ; v) = W (ξ)v is a solution of (EE)-(IC) and analytic in Σ.

Nonlinear semigroups analytic on sectors as mentioned above was
first discussed by Hayden and Massey III [3]. Our results are concerned
with solutions analytic on sectors. These results can be extended to the
case of solutions analytic in neighborhoods of the real half line. Early work
in this direction was done in Massey III [5], Ōuchi [8] and Promislow [9].
An extension in this direction and generation of real analytic semigroups
will be treated in the forthcoming paper [6].

This paper is organized as follows: Section 1 is devoted to the study
of semigroups analytic in Σ. In this section a class of analytic semigroups
on Σ is introduced and the characterization of those analytic semigroups is
discussed in terms of three different types of conditions. Section 2 is con-
cerned with the proof of the above characterization theorem. A characteris-
tic feature of this argument is to apply Morera’s theorem for vector-valued
analytic functions. Application of Morera’s theorem to nonlinear analytic
semigroups was first made by K. Furuya [1]. It should be noted that the
class D of initial-data is subdivided by means of the lower semicontinuous
functional Φ, and that our analytic semigroup is Lipschitz continuous on
each Dα.

1. Analytic semigroups on sectors.

In this section we introduce the notion of nonlinear semigroup on a
subset D of X which provides analytic solutions of the evolution problem
(EE)-(IC) and discuss the analyticity in time of the semigroups. Here A is a
possibly nonlinear operator in a complex Banach space (X, | · |), D ≡ D(A)
stands for a given class of initial data in X, and φ, ψ are an arbitrary but
fixed pair of angles satisfying

−π/2 < φ < 0 < ψ < π/2.(1)

The union of Σ and its boundary lines

Γφ ≡ {seiφ : s ≥ 0} and Γψ ≡ {teiψ : t ≥ 0}
is its closure Σ∗. In what follows, the space of continuous functions from a
subset ∆ of C into D is denoted by C(∆; D).
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In order to introduce a class of operators which are Lipschitz contin-
uous in a local sense on D, we employ a lower semicontinuous functional
Φ : X → [0,+∞] such that D ⊂ {v ∈ X : Φ(v) < +∞}. For each α > 0
we put

Dα = {v ∈ D : Φ(v) ≤ α}(2)

and the class D of initial data is subdivided in the sense that D =
∪

α>0 Dα.
Throughout this paper we assume that for each α > 0 there exists β > 0
such that Dα ⊂ D(A) ∩ Dβ .

Our aim in this section is twofold. First, we introduce a class of
operator semigroups W = {W (ξ)} on D such that given an initial-value
v ∈ D, u(ξ; v) ≡ W (ξ)v is a unique analytic solution of (EE)-(IC) on Σ.
Secondly, we discuss the characterization of such semigroup on D by means
of the boundary semigroups defined as below.

Our class of nonlinear analytic semigroups is formulated as follows:

Definition. A one-parameter family W ≡ {W (ξ) : ξ ∈ Σ∗} of
nonlinear operators from D into itself is called a semigroup in the class
H (D,Σ∗), if the following conditions hold:

(W1) For v ∈ D, W (0)v = v, W (·)v ∈ C(Σ∗, D), and W (·)v is analytic
in Σ.

(W2) For v ∈ D and η, ξ ∈ Σ∗,

W (η + ξ)v = W (η)W (ξ)v.

(W3) For α, τ > 0 there exist Mα,τ > 0 and β > 0 such that

|W (ξ)v − W (ξ)w| ≤ Mα,τ |v − w| and Φ(W (ξ)v) ≤ β

for v, w ∈ Dα and ξ ∈ Σ∗ with |ξ| ≤ τ .

Let W be a semigroup in the class H (D,Σ∗). The operators on the
boundary lines Γφ and Γψ defined by

S(s) ≡ W (seiφ) and T (t) ≡ W (teiψ) for s, t ≥ 0(3)

play an important role in this paper. The one-parameter families S ≡
{S(s) : s ≥ 0} and T ≡ {T (t) : t ≥ 0} form semigroups of possibly
nonlinear operators on D satisfying the three conditions below:

(L1) For each v ∈ D, S(0)v = T (0)v = v and S(·)v, T (·)v ∈ C([0,∞);D).

(L2) For v ∈ D and s, t ≥ 0, S(s + t)v = S(t)S(s)v, and T (s + t)v =
T (t)T (s)v.
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(L3) For α, τ > 0 there exist Lα,τ > 0 and β > 0 such that both S(s) and
T (t) map D into itself and

|S(s)v − S(s)w| ∨ |T (t)v − T (t)w| ≤ Lα,τ |v − w|

Φ(S(s)v) ∨ Φ(T (t)v) ≤ β

for v, w ∈ Dα and s, t ∈ [0, τ ], where a ∨ b = max{a, b}.

Definition. Given a semigroup W in the class H (D,Σ∗), two non-
linear semigroups S and T are defined by (3). These semigroups are called
the boundary semigroups of W.

We then define an operator by

A+v = lim
r∈R,r↓0

r−1(W (r)v − v),(4)

whenever the limit exists in X. Hence the domain D(A+) is the set of all
elements v ∈ X for which the limits (4) exist. Since W (·)v is analytic in
Σ for each v ∈ D, the complex derivative exists at each ξ ∈ Σ and the
identity

(d/dξ)W (ξ)v = A+W (ξ)v(5)

holds for ξ ∈ Σ and v ∈ D. This means that D◦ ≡ {W (ξ)v : ξ ∈ Σ, v ∈
D} ⊂ D(A+). Now the set D◦ is dense in D by (W1) and hence A+ is
densely defined in D. In this sense the limit operator A+ may be called
the infinitesimal generator of W. Likewise, the infinitesimal generators of
the boundary semigroups S and T are defined by

Aφv = e−iφ lim
r↓0

r−1(S(r)v − v),

Aψv = e−iψ lim
r↓0

r−1(T (r)v − v),
(6)

respectively. In view of the definitions of S and T and equation (5), we
make the following assumption:

(A) D(A) = D(Aφ) = D(Aψ) 6= ∅ and

A = Aφ = Aψ in X,

where A is the possibly nonlinear operator in (EE).
Condition (A) is essential in the subsequent discussions. In order to

characterize the structure of analytic semigroups in the class H (D,Σ∗) in
terms of their boundary semigroups, we impose the following regularity
assumptions on the boundary semigroups:
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(D) For v ∈ D(A), S(·)v and T (·)v are strongly absolutely continuous on
bounded closed subintervals of [0,∞),

S(s)v ∈ D(A), (d/ds)+S(s)v = eiφAS(s)v for a.e. s,

T (t)v ∈ D(A), (d/dt)+T (t)v = eiψAT (t)v for a.e. t,

where (d/ds)+S(s)v and (d/dt)+T (t)v stand for the right-hand side strong
derivatives of S(·)v at s and T (·)v at t, respectively.

Our characterization problem may be reformulated as follows: we first
consider two evolution problems:

(EP;φ)+
(d/ds)+u(s) = eiφAu(s), s > 0,

lim
s↓0

u(s) = y ∈ D(A),

(EP;ψ)+
(d/dt)+v(t) = eiψAv(t), t > 0,

lim
t↓0

v(t) = z ∈ D(A).

By condition (D) and (6), D-valued functions u(·) ≡ S(·)y and v(·) ≡ T (·)z
provide solutions to the problems (EP;φ)+ and (EP;ψ)+, respectively. Us-
ing the semigroups S and T and applying conditions (L1) through (L3),
(A) and (D), we seek necessary and sufficient conditions under which the
problem (EE)-(IC) admits solutions analytic in Σ and the solutions depend
continuously upon initial-data. Although the relation between the operator
A and the infinitesimal generator A+ of W can not be explicitly obtained
in general, it is shown in the next section that given a pair of semigroups S
and T on D satisfying (A) and (D), an analytic semigroup W in the class
H (D,Σ∗) can be constructed in such a way that A ⊂ A+. In this case the
analytic semigroup W is nothing but the family of a solution operators to
(EE)-(IC).

We here need a lemma concerning weak-star derivatives of strongly
absolutely continuous functions.

Lemma. Let u : [a, b] → X be strongly absolutely continuous. Then:

(a) There exists an X∗∗-valued, weakly-star integrable function ν(·) on
[a, b] such that

〈u(t) − u(s), f〉 =
∫ t

s
〈ν(r), f〉 dr

for a ≤ s ≤ t ≤ b and f ∈ X∗.
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(b) |ν(·)| is integrable over [a, b] and the total variation of u is given by
TV [u] =

∫ b
a |ν(r)| dr.

(c) If in particular, u has a strong right-hand side derivative (d+/dt)u(t)
at a.e. t ∈ [a, b], then |(d+/dt)u(t)| = |ν(t)| for a.e. t ∈ [a, b] and TV [u] =∫ b
a |(d+/dt)u(t)| dt.

This result is obtained in a more general setting, as shown in Hashimoto
and Oharu [4]. The main point here is that for a strongly absolutely con-
tinuous function u, the strong right-derivative is integrable over [a, b] and
its L1-norm gives the total variation of u. We are now in a position to
state the main theorem of this paper.

Theorem. Let S and T satisfy (L1) through (L3), (A) and (D).
Then the following three conditions are equivalent:

(I) There is an analytic semigroup W such that its boundary semigroups
are S and T.

(II) For v ∈ D(A), the function T (t)S(s)v is continuously differentiable
with respect to s, t > 0, and T (t)S(s)v = S(s)T (t)v for s, t ≥ 0.

(III) For v ∈ D(A) there exists a null set N ⊂ [0,∞) such that for each
pair of numbers s0, t0 ∈ (0,∞) \ N and for each pair of functions g, h :
[0, 1] → Dγ for some γ > 0 satisfying

g(η) = T (t0)v + eiψηAT (t0)v + o(η) as η ↓ 0,

h(µ) = S(s0)v + eiφµAS(s0)v + o(µ) as µ ↓ 0,

we have

S(s)g(η) = S(s)T (t0)v + eiψηAS(s)T (t0)v + o(η) for s > 0,

and

T (t)h(µ) = T (t)S(s0)v + eiφµAT (t)S(s0)v + o(µ) for t > 0.

Remark. (a) For linear analytic semigroups, the corresponding
result is found in a recent book Engel and Nagel [1], Theorem 4.6 on page
101.
(b) If D is convex, and if S(s) and T (t) are complex Fréchet differentiable
at v ∈ D(A) for s, t ∈ [0,∞), then condition (III) holds. See also Oharu [7].
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2. Morera’s theorem and analyticity.

A proof of the main theorem is given in five steps.

Step 1. We first demonstrate that for α > 0 the functions (s, v) 7→
S(s)v and (t, v) 7→ T (t)v are continuous from [0,∞)×Dα into D. In fact,
let τ > 0 and v ∈ Dα. Then, by (L1), S(·)v is strongly continuous on
[0,∞). Hence

|S(s)v − S(ŝ)v̂| ≤ |S(s)v − S(ŝ)v| + |S(ŝ)v − S(ŝ)v̂|

≤ Lα,τ |v − v̂| + |S(ŝ)v − S(s)v|

so far as v, v̂ ∈ Dα, s, ŝ ∈ [0, τ ].

Step 2. Implication (III) ⇒ (I): Set W (ξ)v = T (t)S(s)v for v ∈ D
and ξ = seiφ + teiψ ∈ Σ∗. Then W (·)v is strongly continuous in ξ ∈ Σ∗.
Now it is seen from Step 1 that (W1) and (W3) follow from conditions (L1)
and (L3). Let v be an arbitrary element of D(A). Then, by condition (D),
there exists a null set N1 such that

S(s + r)v = S(s)v + eiφrAS(s)v + o(r)(7)

for s ∈ (0,∞) \ N1 and r ≥ 0. For each s ∈ (0,∞) \ N1 there exists a null
set N2(s) such that

∂+
t T (t)S(s)v = eiψAT (t)S(s)v(8)

for t ∈ [0,∞) \ N2(s). By (III) and (7) we have

T (t)S(s + r)v = T (t)S(s)v + eiφrAT (t)S(s)v + o(r)

for t > 0. Hence

e−iφ∂+
s T (t)S(s)v = AT (t)S(s)v(9)

for (s, t) ∈ ((0,∞) \ N1) × (0,∞) and AT (t)S(s)v is strongly measurable
with respect to (s, t) ∈ (0,∞) × (0,∞).

Let 0 < a < b and 0 < c < d. We wish to show the identity

eiφ

[∫ b

a
T (d)S(s)v ds −

∫ b

a
T (c)S(s)v ds

]
= eiψ

[∫ d

c
T (t)S(b)v dt −

∫ d

c
T (t)S(a)v dt

]
.

(10)

Let a ≤ s ≤ b and c ≤ t ≤ d. It follows from the Lemma that ∂+
s T (t)S(s)v

is integrable with respect to (s, t) ∈ [a, b]× [c, d]. We infer from (8) and (9)
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that

T (t)S(b)v − T (t)S(a)v =
∫ b

a
∂+

s T (t)S(s)v ds

= eiφ

∫ b

a
AT (t)S(s)v ds,

(11)

T (d)S(s)v − T (c)S(s)v =
∫ d

c
∂+

t T (t)S(s)v dt

= eiψ

∫ d

c
AT (t)S(s)v dt.

(12)

By (L3) and the assertion of Step 1, T (t)S(s)v is strongly continuous over
[0,∞) × [0,∞). The relations (11) and (12) then imply the identities∫ d

c
T (t)S(b)v dt −

∫ d

c
T (t)S(a)v dt = eiφ

∫ d

c

∫ b

a
AT (t)S(s)v ds dt,∫ b

a
T (d)S(s)v ds −

∫ b

a
T (c)S(s)v ds = eiψ

∫ b

a

∫ d

c
AT (t)S(s)v dt ds.

Using Fubini’s theorem and combining the above relations, we get the
desired identity (10). This implies∫ b

a

[
W (seiφ + deiψ)v − W (seiφ + ceiψ)v

]
d(seiφ)

=
∫ d

c

[
W (beiφ + teiψ)v − W (aeiφ + teiψ)v

]
d(teiψ).

Now one can apply Morera’s theorem to the continuous function W (·)v
on Σ∗ to conclude that W (·)v is analytic on the connected domain Σ.
Next, let α > 0 and v ∈ Dα. Then, there exist β > 0 and a sequence
{vn} ⊂ D(A) ∩ Dβ such that vn → v as n → ∞. Hence (W3) implies
that for any τ > 0 W (ξ)vn converges to W (ξ)v uniformly for ξ ∈ Σ∗ with
|ξ| ≤ τ . Hence W (·)v is analytic in Σ and S and T are its boundary
semigroups. It now remains to show that W ≡ {W (ξ) : ξ ∈ Σ∗} forms
a D-valued semigroup on Σ∗. To this end, we set V (ξ)v = S(s)T (t)v for
ξ = seiφ + teiψ ∈ Σ∗. Then it is seen in the same way as above that V (·)v
is continuous on Σ∗ and analytic on Σ. Moreover,

W (seiφ)v = V (seiφ)v = S(s)v for s ≥ 0 and v ∈ D.

Put U(ξ)v = W (ξ)v − V (ξ)v for ξ ∈ Σ∗. Then U(seiφ)v = 0 for s ≥ 0.
By the reflection principle and f(U(seiφ)v) = 0 for s ≥ 0 and f ∈ X∗, X∗

being the dual space of X, we have U(ξ)v = 0 for ξ ∈ Σ∗. This means
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that S(s)T (t)v = T (t)S(s)v for s, t ≥ 0 and v ∈ D. Hence W satisfies
(W2).

Step 3. Implication (I) ⇒ (II): (II) follows directly from (W2) and
the definition of the boundary semigroups.

Step 4. Implication (I) ⇒ (III): By (W2) and the definition of
boundary semigroups, we have

W (ξ)v = T (t)S(s)v = S(s)T (t)v

for ξ = seiφ + teiψ ∈ Σ∗ and v ∈ D. Let v ∈ D(A). Then, by (D),
there exists a null set N3 such that T (t)v is differentiable at any point
t = t0 ∈ (0,∞) \ N3. Let t0 ∈ (0,∞) \ N3 and let g : [0, 1] → Dγ be such
that g(t) = T (t0)v + eiψtAT (t0)v + o(t) as t → 0. Since T (t + t0)v =
T (t0)v + eiψtAT (t0)v + o(t) as t ↓ 0, (L3) implies that

S(s)g(t) − S(s)T (t + t0)v = o(t) as t ↓ 0.(13)

Since (I) implies that S(s)T (t + t0)v = T (t + t0)S(s)v and that it is con-
tinuously differentiable with respect to t, we have

∂+
t S(s)T (t + t0)v|t=0 = ∂tT (t + t0)S(s)v|t=0

= eiψAT (t0)S(s)v

= eiψAS(s)T (t0)v,

and so

S(s)T (t + t0)v = S(s)T (t0)v + teiψAS(s)T (t0)v + o(t) as t ↓ 0.(14)

Combining (13) with (14) gives

S(s)g(t) = S(s)T (t0)v + teiψAS(s)T (t0)v + o(t) as t ↓ 0.

Thus the property of S in (III) is obtained. The corresponding property of
T is obtained in the same way.

Step 5. Implication (II) ⇒ (I): We define

W (ξ)v = T (t)S(s)v for ξ = seiφ + teiψ ∈ Σ∗ and v ∈ D.(15)

By definition, (II) implies (W2). (W1) follows from (L1) and the assertion
of Step 1. (W3) follows from (15) and (L3). Thus W = {W (ξ) : ξ ∈ Σ∗}
forms a D-valued semigroup. Next, let v ∈ D(A) and s, t > 0. Then, by



146 GEN NAKAMURA, TOSHITAKA MATSUMOTO AND SHINNOSUKE OHARU

(II), we have ∂tT (t)S(s)v = eiψAT (t)S(s)v and

∂sT (t)S(s)v = ∂sS(s)T (t)v

= eiφAS(s)Tα(t)v

= eiφAT (t)S(s)v.

Therefore we have

e−iφ∂sT (t)S(s)v = e−iψ∂tT (t)S(s)v = AT (t)S(s)v.

Once this is obtained, one can show in the same way as in Step 2 that W is
an analytic semigroup with the boundary semigroups S and T. The proof
of the main theorem is now complete.
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