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NAGATA CRITERION FOR SERRE’S
(Rn) AND (Sn)-CONDITIONS

RYO TAKAHASHI∗

1. Introduction

Throughout the present paper, we assume that all rings are noether-
ian commutative rings.

First of all, we recall Serre’s (Rn) and (Sn)-conditions for a ring A.
These are defined as follows. Let n be an integer.

(Rn) : If p ∈ Spec(A) and ht(p) 5 n, then Ap is regular.
(Sn) : depth(Ap) = inf (n, ht(p)) for all p ∈ Spec(A).

Let P be a property of local rings. For a ring A we put

P(A) = {p ∈ Spec(A) | P holds for Ap}
and call it the P-locus of A. The following statement is called the (ring-
theoretic) Nagata criterion for the property P, and we abbreviate it to
(NC).

(NC) : If A is a ring and if P(A/p) contains a non-empty open subset
of Spec(A/p) for every p ∈ Spec(A), then P(A) is open in Spec(A).

This statement was invented by Nagata in 1959. In algebraic ge-
ometry, there is a problem asking when the regular locus (that is, the
non-singular locus) of a ring is open. He proposed the above criterion to
consider this problem, and he proved that (NC) holds for P = regular ([6]).
There are some other properties P for which (NC) holds, for example, P =
Cohen-Macaulay ([3], [4]), Gorenstein ([2], [4]), and complete intersection
([2]). On the other hand, it is easy to see that (NC) holds for P = (in-
tegral) domain, coprimary (a ring A is called coprimary if ]Ass(A) = 1),
(R0), (S1), reduced, and normal. Moreover, as corollaries of these results,
we easily see that the following proposition is true for P = Cohen-Macaulay
([3], [4]), Gorenstein ([4]), domain, coprimary, (R0), (S1), and reduced.

Let P be a property for which (NC) holds. Then, for a ring A satis-
fying P, the P-locus of a homomorphic image of A is open.

. ∗The present paper contains part of the bachelor thesis of the author at Faculty of
Integrated Human Studies, Kyoto University.
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It is known that the properties “regular”, “Cohen-Macaulay”, “re-
duced”, and “normal”are described by using (Rn) and (Sn). Since (NC)
holds for each of these properties, we naturally expect that (NC) may hold
for (Rn) and (Sn) for every n = 0. This is in fact true, and the main
purpose of this paper is to give its complete proof.

Acknowledgement : The author should thank Professor Yuji Yoshino
who gave him a lot of valuable advices.

2. (NC) for (Sn)-condition

The following lemma should be referred to [3] §22.

Lemma 2.1. Let A be a domain, B an A-algebra of finite type, and
M a finite B-module. Then there exists f(6= 0) ∈ A such that Mf is Af -
free (where Af is the localization of A with respect to the multiplicatively
closed set {1, f, f2, · · · }).

Now we can prove the main result of this section.

Theorem 2.2. (NC) holds for P = (Sn).

Proof. We prove the theorem by induction on n. It is easy to see
that (NC) holds for P = (S0) and (S1) respectively, hence we assume n = 2
in the rest. Suppose that a ring A satisfies the assumption in (NC). We
want to prove that the locus Sn(A) is open in Spec(A). Since (Sn) implies
(Sn−1), the locus Sn−1(A) is open in Spec(A) by induction hypothesis.
Therefore we can write Sn−1(A) =

∪s
i=1 D(fi) with fi ∈ A, hence Sn(A) =∪s

i=1(Sn(A)∩D(fi)) =
∪s

i=1 Sn(Afi
). Since Sn−1(Afi

) = Sn−1(A)∩D(fi) =
D(fi) = Spec(Afi

), the condition (Sn−1) holds for Afi
. Thus, replacing A

by Afi
, to prove the openness of Sn(A) we may assume that

(∗) the condition (Sn−1) holds for A.

Put I = {I | I is an ideal of A and Sn(A)c j V(I)}, where Sn(A)c is the
complement set Spec(A) − Sn(A). We have I 6= ∅ because (0) ∈ I. Since
A is noetherian, I has maximal elements. Let I be one of them. If I = A
then Sn(A) = Spec(A) which is open in Spec(A). Therefore we assume
that I $ A. It is easy to see from the maximality that

√
I = I and that

Sn(A)c = V(I). It follows from this that I has a primary decomposition
of the form I = p1 ∩ · · · ∩ pt, where each pi is a prime ideal, and we
may assume that there are no inclusion relations between the pi’s and that
ht(p1) 5 ht(pi) for all i.

Now we claim that
(1) ht(I) = n,
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(2) pi ∈ Sn(A)c for all i,
(3) Sn(A)c = V(I).

It follows from (3) that Sn(A) = D(I), which shows that Sn(A) is open in
Spec(A), proving the theorem. We prove these in turn.

(1) It suffices to prove that ht(p1) = n. To prove this by contradiction,
suppose that l := ht(p1) 5 n − 1. By (∗) we get depth(Ap1) = inf (n −
1, ht(p1)) = ht(p1) = l, hence there exist ci ∈ p1 and f ∈ A − p1 such
that c1, · · · , cl is an Af -sequence in p1Af and that (c1, · · · , cl)Af is p1Af -
primary. Now we can take g ∈

∩t
i=2 pi − p1 such that IAg = p1Ag because

pi " p1 for all i = 2. Moreover, by the assumption in (NC), there exists
h ∈ A − p1 such that D(h) ∩ V(p1) j Sn(A/p1), hence the condition (Sn)
holds for Ah/p1Ah. Put x = fgh (∈ A − p1). Replacing A by Ax, we may
assume that

c1, · · · , cl is an A-sequence in p1,

(c1, · · · , cl) is p1-primary (hence pr
1 j (c) for some r ∈ N),

I = p1 (hence Sn(A)c = V(p1)),
(Sn) holds for A/p1.

Moreover, by Lemma 2.1, replacing A by Ay with some y ∈ A−p1, we may
assume that

pi
1/pi+1

1 + (c) ∩ pi
1 is A/p1-free (1 5 i < r).

Now note that Sn(A)c 6= ∅. In fact, if Sn(A)c = ∅ then V(p1) =
Sn(A)c = ∅ hence p1 = A, a contradiction. Therefore we have Sn(A)c 6=
∅. We would like to prove that Ap satisfies the condition (Sn) for any
p ∈ Sn(A)c. If this is true, then we have a contradiction since p /∈ Sn(A).
Therefore, we will have ht(p1) = n as desired. To prove that (Sn) holds
for Ap, take p′ ∈ Spec(A) with p′ j p, and p′′ ∈ V(p′ + p1) such that
ht(p′ + p1/p1) = ht(p′′/p1). (Since p′, p1 j p, we have V(p′ + p1) 6= ∅.) We
should divide the proof into two cases.
i) The case when ht(p′ + p1/p1) 5 n :
Since ht(p′′/p1) 5 n, Ap′′/p1Ap′′ = (A/p1)p′′/p1

is CM. Replacing A by
A/(c), we may assume that pr

1 = (0) and that pi
1/pi+1

1 is A/p1-free. There-
fore, depth(Ap′′) = depth(Ap′′/pr

1Ap′′) = depth(Ap′′/p1Ap′′) = ht(p′′/p1) =
ht(p′′), hence Ap′′ is CM. It follows that Ap′ = (Ap′′)p′Ap′′

is CM.

ii) The case when ht(p′ + p1/p1) = n :
Let q/p1 ∈ V(p′ +p1/p1).Then ht(q/p1) = n, hence depth((A/p1)q/p1

) = n.
Thus, depthp′+p1/p1

(A/p1) = n. Therefore there exist c′i ∈ p′ such that

c′1, · · · , c′n is an A/p1-sequence in p′ + p1/p1.
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Since pi
1/pi+1

1 + (c) ∩ pi
1 is A/p1-free, one can show that

c′1, · · · , c′n is an A/(c)-sequence in p′ + p1/p1.

Hence c1, · · · , cl, c
′
1, · · · , c′n is an A-sequence in p′′, so an Ap′′-sequence in

p′′Ap′′ . Therefore,

c′1, · · · , c′n, c1, · · · , cl is an Ap′′-sequence in p′′Ap′′ .

Hence c′1, · · · , c′n is an Ap′′-sequence in p′Ap′′ , so an Ap′ = (Ap′′)p′Ap′′
-

sequence in p′Ap′ = p′(Ap′′)p′Ap′′
. It follows that depth(Ap′) = n.

As we have remarked above, it follows from i), ii) that ht(p1) = n.

(2) To prove it by contradiction, suppose that pk ∈ Sn(A) for some k.
Since I j pk, we have ht(pk) = n, hence depth(Apk

) = inf (n, ht(pk)) = n.
Therefore, there exist ci ∈ pk and f ∈ A − pk such that c1, · · · , cn is an
Af -sequence in pkAf and that IAf = pkAf . Since pk ∈ V(I) = Sn(A)c, we
have D(f) ∩ Sn(A)c 6= ∅. Let p be a minimal element of this set. Since
p ∈ Sn(A)c j V(I), we have I j p, hence pAf k IAf = pkAf . Therefore
c1, · · · , cn is an Af -sequence in pAf , hence is an Ap = (Af )pAf

-sequence in
pAp. It follows that depth(Ap) = n = inf (n, ht(p)). On the other hand,
if p′ ∈ Spec(A) such that p′ $ p, then we have p′ /∈ D(f) ∩ Sn(A)c by the
minimality of p. Since p ∈ D(f), we have p′ ∈ D(f). Therefore we have
p′ /∈ Sn(A)c, hence (Sn) holds for Ap′ . Thus, we see that (Sn) holds for Ap,
contrary to the choice of p.

(3) We have Sn(A)c j Sn(A)c = V(I). Suppose that Sn(A)c $ V(I).
Then there exists p ∈ V(I) such that p /∈ Sn(A)c. Hence we have pk j p
for some k and p ∈ Sn(A). Therefore (Sn) holds for (Ap)pkAp = Apk

. It
follows that pk ∈ Sn(A), contrary to (2).

3. (NC) for (Rn)-condition

Consider the following condition. Let n be an integer and let A be a
local ring.

(R′
n) : If p ∈ Spec(A) and codim(p) 5 n, then Ap is regular.

Here the codimension of an ideal I of A is defined as follows.

codim(I) = dim(A) − dim(A/I).

Lemma 3.1. Let A be a local ring. Then (Rn) holds for A if and
only if (R′

n) holds for Ap for every p ∈ Spec(A).
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Proof. Suppose that (Rn) holds for A. Let p ∈ Spec(A), and let
p′ ∈ Spec(A) such that p′ j p and that codim(p′Ap) 5 n. Then we have
ht(p′Ap) 5 codim(p′Ap) 5 n, hence (Ap)p′Ap is regular since (Rn) holds for
Ap. It follows that (R′

n) holds for Ap. Conversely, suppose that (R′
n) holds

for Ap for every p ∈ Spec(A). Let p ∈ Spec(A), and let p′ ∈ Spec(A) such
that p′ j p and that ht(p′Ap) 5 n. Then we have codim(p′Ap′) = ht(p′) =
ht(p′Ap) 5 n, hence (Ap)p′Ap = Ap′ = (Ap′)p′Ap′

is regular. It follows that
(Rn) holds for Ap. Therefore, (Rn) holds for A.

The following theorem is the main result of this section.

Theorem 3.2. (NC) holds for P = (Rn).

Proof. We prove this theorem by induction on n. It is easy to see that
(NC) holds for P = (R0), hence we assume n = 1 in the rest. We discuss in
the same way as the proof of Theorem 2.2. Suppose that a ring A satisfies
the assumption in (NC). Let I be one of the maximal elements of the set
{I | I is an ideal of A and Rn(A)c j V(I)}. We may assume that

(Rn−1) holds for A · · · (∗),
I $ A,√

I = I,

Rn(A)c = V(I),
I = p1 ∩ · · · ∩ pt (with some pi ∈ Spec(A)),
there are no inclusion relations between the pi’s,
ht(p1) 5 ht(pi) for all i.

Now we prove that ht(p1) = n. To prove this by contradiction, suppose
that l := ht(p1) 5 n−1. By (∗) we see that Ap1 is regular. Hence replacing
A by Ax for some x ∈ A − p1, we may assume that

c1, · · · , cl is an A-sequence in p1 (with some ci ∈ p1),
(c1, · · · , cl) = p1,

I = p1 (hence Rn(A)c = V(p1)),
(Rn) holds for A/p1 · · · (∗∗).

Since Rn(A)c 6= ∅, one can take p ∈ Rn(A)c. Then we have p1 j p.
To show that Ap satisfies (R′

n), we take p′ ∈ Spec(A) such that p′ j
p and that codim(p′Ap) 5 n. There exists p′′ ∈ V(p′ + p1) such that
codim((p′ + p1/p1)Ap) = codim((p′′/p1)Ap) (= codim(p′′Ap/p1Ap)). We
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have 
codim((p′ + p1/p1)Ap) = ht(p/p1) − ht(p/p′ + p1)

= ht(p) − l − ht(p/p′ + p1),
codim((p′ + p1/p′)Ap) = codim((c1, · · · , cl)(A/p′)p/p′) 5 l,

codim((p′ + p1/p′)Ap) = ht(p/p′) − ht(p/p′ + p1).

It follows that

codim(p′′Ap/p1Ap) =codim((p′ + p1/p1)Ap)

5ht(p) − ht(p/p′)

=codim(p′Ap) 5 n.

By (∗∗) we see that (Rn) holds for (A/p1)p/p1
= Ap/p1Ap. By Lemma 3.1,

we see that Ap′′/p1Ap′′ = (Ap/p1Ap)p′′Ap/p1Ap
is regular, which shows that

Ap′′ is regular. It follows that (Ap)p′Ap = (Ap′′)p′Ap′′
is regular. Therefore

we see that Ap satisfies (R′
n). Let q ∈ Spec(A) such that q j p. If

q ∈ Rn(A), then (Rn) holds for Aq, hence (R′
n) holds for Aq. If q ∈ Rn(A)c,

then we see that (R′
n) holds for Aq, discussing in the same way as above.

Thus, it follows from Lemma 3.1 that (Rn) holds for Ap. Since p ∈ Rn(A)c,
we have a contradiction. Thus we have shown that ht(p1) = n, hence
ht(I) = n.

Therefore we can arrange the order of p1, · · · , pt to satisfy the follow-
ing conditions.

ht(pi)

{
= n (1 5 i 5 s),
> n (s < i 5 t),

Api is

{
non-regular (1 5 i 5 r),

regular (r < i 5 s).

Put J = p1 ∩ · · · ∩ pr. Let p ∈ Rn(A)c. Then there exists p′ ∈ Spec(A)
such that p′ j p, ht(p′) 5 n, and that Ap′ is non-regular. By (∗) we get
ht(p′) = n. Replacing p by p′, we may assume that ht(p) = n. Since
Rn(A)c j V(I), we have I j p, hence pk j p for some k. Since ht(p) = n,
we have pk = p and 1 5 k 5 s, and since Ap is non-regular, we have
1 5 k 5 r. It follows that J j pk = p, i.e. p ∈ V(J). Therefore, we have
Rn(A)c j V(J). Since the opposite inclusion is obvious by the choice of
pi,we have Rn(A)c = V(J). Thus, we get Rn(A) = D(J), which shows that
Rn(A) is open in Spec(A).
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Added in Proof: The author was informed that the results similar
to the present paper had been reported in the following paper :
C.Massaza e P.Valabrega, Sull’apertura di luoghi in uno schema localmente
noetheriano, Boll. U.M.I. 14 (1977),564-574.
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