Math. J. Okayama Univ. 41 (1999), 37-43

NAGATA CRITERION FOR SERRE'S (\mathbf{R}_n) AND (\mathbf{S}_n) -CONDITIONS

RYO TAKAHASHI*

1. INTRODUCTION

Throughout the present paper, we assume that all rings are noetherian commutative rings.

First of all, we recall Serre's (\mathbf{R}_n) and (\mathbf{S}_n) -conditions for a ring A. These are defined as follows. Let n be an integer.

 (\mathbf{R}_n) : If $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\operatorname{ht}(\mathfrak{p}) \leq n$, then $A_{\mathfrak{p}}$ is regular.

 (S_n) : depth $(A_{\mathfrak{p}}) \ge \inf (n, \operatorname{ht}(\mathfrak{p}))$ for all $\mathfrak{p} \in \operatorname{Spec}(A)$.

Let \mathbb{P} be a property of local rings. For a ring A we put

 $\mathbb{P}(A) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathbb{P} \text{ holds for } A_{\mathfrak{p}} \}$

and call it the \mathbb{P} -locus of A. The following statement is called the (ring-theoretic) Nagata criterion for the property \mathbb{P} , and we abbreviate it to (NC).

(NC) : If A is a ring and if $\mathbb{P}(A/\mathfrak{p})$ contains a non-empty open subset of $\operatorname{Spec}(A/\mathfrak{p})$ for every $\mathfrak{p} \in \operatorname{Spec}(A)$, then $\mathbb{P}(A)$ is open in $\operatorname{Spec}(A)$.

This statement was invented by Nagata in 1959. In algebraic geometry, there is a problem asking when the regular locus (that is, the non-singular locus) of a ring is open. He proposed the above criterion to consider this problem, and he proved that (NC) holds for \mathbb{P} = regular ([6]). There are some other properties \mathbb{P} for which (NC) holds, for example, \mathbb{P} = Cohen-Macaulay ([3], [4]), Gorenstein ([2], [4]), and complete intersection ([2]). On the other hand, it is easy to see that (NC) holds for \mathbb{P} = (integral) domain, coprimary (a ring A is called coprimary if $\sharp Ass(A) = 1$), (R₀), (S₁), reduced, and normal. Moreover, as corollaries of these results, we easily see that the following proposition is true for \mathbb{P} = Cohen-Macaulay ([3], [4]), Gorenstein ([4]), domain, coprimary, (R₀), (S₁), and reduced.

Let \mathbb{P} be a property for which (NC) holds. Then, for a ring A satisfying \mathbb{P} , the \mathbb{P} -locus of a homomorphic image of A is open.

^{. *}The present paper contains part of the bachelor thesis of the author at Faculty of Integrated Human Studies, Kyoto University.

RYO TAKAHASHI

It is known that the properties "regular", "Cohen-Macaulay", "reduced", and "normal" are described by using (\mathbf{R}_n) and (\mathbf{S}_n) . Since (NC) holds for each of these properties, we naturally expect that (NC) may hold for (\mathbf{R}_n) and (\mathbf{S}_n) for every $n \geq 0$. This is in fact true, and the main purpose of this paper is to give its complete proof.

Acknowledgement : The author should thank Professor Yuji Yoshino who gave him a lot of valuable advices.

2. (NC) for (S_n) -condition

The following lemma should be referred to [3] §22.

Lemma 2.1. Let A be a domain, B an A-algebra of finite type, and M a finite B-module. Then there exists $f(\neq 0) \in A$ such that M_f is A_f free (where A_f is the localization of A with respect to the multiplicatively closed set $\{1, f, f^2, \dots\}$).

Now we can prove the main result of this section.

Theorem 2.2. (NC) holds for $\mathbb{P} = (S_n)$.

Proof. We prove the theorem by induction on n. It is easy to see that (NC) holds for $\mathbb{P} = (S_0)$ and (S_1) respectively, hence we assume $n \geq 2$ in the rest. Suppose that a ring A satisfies the assumption in (NC). We want to prove that the locus $S_n(A)$ is open in Spec(A). Since (S_n) implies (S_{n-1}) , the locus $S_{n-1}(A)$ is open in Spec(A) by induction hypothesis. Therefore we can write $S_{n-1}(A) = \bigcup_{i=1}^{s} D(f_i)$ with $f_i \in A$, hence $S_n(A) = \bigcup_{i=1}^{s} (S_n(A) \cap D(f_i)) = \bigcup_{i=1}^{s} S_n(A_{f_i})$. Since $S_{n-1}(A_{f_i}) = S_{n-1}(A) \cap D(f_i) = D(f_i) = \text{Spec}(A_{f_i})$, the condition (S_{n-1}) holds for A_{f_i} . Thus, replacing A by A_{f_i} , to prove the openness of $S_n(A)$ we may assume that

(*) the condition (S_{n-1}) holds for A.

Put $\mathcal{I} = \{I \mid I \text{ is an ideal of } A \text{ and } S_n(A)^c \subseteq V(I)\}$, where $S_n(A)^c$ is the complement set $\operatorname{Spec}(A) - S_n(A)$. We have $\mathcal{I} \neq \emptyset$ because $(0) \in \mathcal{I}$. Since A is noetherian, \mathcal{I} has maximal elements. Let I be one of them. If I = A then $S_n(A) = \operatorname{Spec}(A)$ which is open in $\operatorname{Spec}(A)$. Therefore we assume that $I \subsetneq A$. It is easy to see from the maximality that $\sqrt{I} = I$ and that $\overline{S_n(A)^c} = V(I)$. It follows from this that I has a primary decomposition of the form $I = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t$, where each \mathfrak{p}_i is a prime ideal, and we may assume that there are no inclusion relations between the \mathfrak{p}_i 's and that $\operatorname{ht}(\mathfrak{p}_1) \leq \operatorname{ht}(\mathfrak{p}_i)$ for all i.

Now we claim that

(1) $\operatorname{ht}(I) \geq n$,

(2) $\mathfrak{p}_i \in S_n(A)^c$ for all i, (3) $S_n(A)^c = V(I)$.

It follows from (3) that $S_n(A) = D(I)$, which shows that $S_n(A)$ is open in Spec(A), proving the theorem. We prove these in turn.

(1) It suffices to prove that $\operatorname{ht}(\mathfrak{p}_1) \geq n$. To prove this by contradiction, suppose that $l := \operatorname{ht}(\mathfrak{p}_1) \leq n-1$. By (*) we get depth $(A_{\mathfrak{p}_1}) \geq \inf (n-1, \operatorname{ht}(\mathfrak{p}_1)) = \operatorname{ht}(\mathfrak{p}_1) = l$, hence there exist $c_i \in \mathfrak{p}_1$ and $f \in A - \mathfrak{p}_1$ such that c_1, \dots, c_l is an A_f -sequence in $\mathfrak{p}_1 A_f$ and that $(c_1, \dots, c_l) A_f$ is $\mathfrak{p}_1 A_f$ -primary. Now we can take $g \in \bigcap_{i=2}^t \mathfrak{p}_i - \mathfrak{p}_1$ such that $IA_g = \mathfrak{p}_1 A_g$ because $\mathfrak{p}_i \not\subseteq \mathfrak{p}_1$ for all $i \geq 2$. Moreover, by the assumption in (NC), there exists $h \in A - \mathfrak{p}_1$ such that $D(h) \cap V(\mathfrak{p}_1) \subseteq S_n(A/\mathfrak{p}_1)$, hence the condition (S_n) holds for $A_h/\mathfrak{p}_1 A_h$. Put $x = fgh \ (\in A - \mathfrak{p}_1)$. Replacing A by A_x , we may assume that

 $\begin{cases} c_1, \cdots, c_l \text{ is an } A\text{-sequence in } \mathfrak{p}_1, \\ (c_1, \cdots, c_l) \text{ is } \mathfrak{p}_1\text{-primary (hence } \mathfrak{p}_1^r \subseteq (\underline{c}) \text{ for some } r \in \mathbf{N}), \\ I = \mathfrak{p}_1 \text{ (hence } \overline{S_n(A)^c} = \mathcal{V}(\mathfrak{p}_1)), \\ (S_n) \text{ holds for } A/\mathfrak{p}_1. \end{cases}$

Moreover, by Lemma 2.1, replacing A by A_y with some $y \in A - \mathfrak{p}_1$, we may assume that

$$\mathfrak{p}_1^i/\mathfrak{p}_1^{i+1} + (\underline{c}) \cap \mathfrak{p}_1^i \text{ is } A/\mathfrak{p}_1 \text{-free } (1 \leq i < r).$$

Now note that $S_n(A)^c \neq \emptyset$. In fact, if $S_n(A)^c = \emptyset$ then $V(\mathfrak{p}_1) = \overline{S_n(A)^c} = \emptyset$ hence $\mathfrak{p}_1 = A$, a contradiction. Therefore we have $S_n(A)^c \neq \emptyset$. We would like to prove that $A_\mathfrak{p}$ satisfies the condition (S_n) for any $\mathfrak{p} \in S_n(A)^c$. If this is true, then we have a contradiction since $\mathfrak{p} \notin S_n(A)$. Therefore, we will have $ht(\mathfrak{p}_1) \geq n$ as desired. To prove that (S_n) holds for $A_\mathfrak{p}$, take $\mathfrak{p}' \in \operatorname{Spec}(A)$ with $\mathfrak{p}' \subseteq \mathfrak{p}$, and $\mathfrak{p}'' \in V(\mathfrak{p}' + \mathfrak{p}_1)$ such that $ht(\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}_1) = ht(\mathfrak{p}''/\mathfrak{p}_1)$. (Since $\mathfrak{p}', \mathfrak{p}_1 \subseteq \mathfrak{p}$, we have $V(\mathfrak{p}' + \mathfrak{p}_1) \neq \emptyset$.) We should divide the proof into two cases.

i) The case when $\operatorname{ht}(\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}_1) \leq n$:

Since $\operatorname{ht}(\mathfrak{p}''/\mathfrak{p}_1) \leq n$, $A_{\mathfrak{p}''}/\mathfrak{p}_1 A_{\mathfrak{p}''} = (A/\mathfrak{p}_1)_{\mathfrak{p}''/\mathfrak{p}_1}$ is CM. Replacing A by $A/(\underline{c})$, we may assume that $\mathfrak{p}_1^r = (0)$ and that $\mathfrak{p}_1^i/\mathfrak{p}_1^{i+1}$ is A/\mathfrak{p}_1 -free. Therefore, $\operatorname{depth}(A_{\mathfrak{p}''}) = \operatorname{depth}(A_{\mathfrak{p}''}/\mathfrak{p}_1A_{\mathfrak{p}''}) = \operatorname{depth}(A_{\mathfrak{p}''}/\mathfrak{p}_1A_{\mathfrak{p}''}) = \operatorname{ht}(\mathfrak{p}''/\mathfrak{p}_1) = \operatorname{ht}(\mathfrak{p}'')$, hence $A_{\mathfrak{p}''}$ is CM. It follows that $A_{\mathfrak{p}'} = (A_{\mathfrak{p}''})_{\mathfrak{p}'A_{\mathfrak{p}''}}$ is CM.

ii) The case when $ht(\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}_1) \ge n$:

Let $\mathfrak{q}/\mathfrak{p}_1 \in \mathcal{V}(\mathfrak{p}'+\mathfrak{p}_1/\mathfrak{p}_1)$. Then $\operatorname{ht}(\mathfrak{q}/\mathfrak{p}_1) \geq n$, hence $\operatorname{depth}((A/\mathfrak{p}_1)_{\mathfrak{q}/\mathfrak{p}_1}) \geq n$. Thus, $\operatorname{depth}_{\mathfrak{p}'+\mathfrak{p}_1}(A/\mathfrak{p}_1) \geq n$. Therefore there exist $c'_i \in \mathfrak{p}'$ such that

 c'_1, \cdots, c'_n is an A/\mathfrak{p}_1 -sequence in $\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}_1$.

RYO TAKAHASHI

Since $\mathfrak{p}_1^i/\mathfrak{p}_1^{i+1} + (\underline{c}) \cap \mathfrak{p}_1^i$ is A/\mathfrak{p}_1 -free, one can show that

$$c'_1, \cdots, c'_n$$
 is an $A/(\underline{c})$ -sequence in $\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}_1$.

Hence $c_1, \dots, c_l, c'_1, \dots, c'_n$ is an A-sequence in \mathfrak{p}'' , so an $A_{\mathfrak{p}''}$ -sequence in $\mathfrak{p}''A_{\mathfrak{p}''}$. Therefore,

$$c'_1, \cdots, c'_n, c_1, \cdots, c_l$$
 is an $A_{\mathfrak{p}''}$ -sequence in $\mathfrak{p}''A_{\mathfrak{p}''}$.

Hence c'_1, \dots, c'_n is an $A_{\mathfrak{p}''}$ -sequence in $\mathfrak{p}'A_{\mathfrak{p}''}$, so an $A_{\mathfrak{p}'} = (A_{\mathfrak{p}''})_{\mathfrak{p}'A_{\mathfrak{p}''}}$ sequence in $\mathfrak{p}'A_{\mathfrak{p}'} = \mathfrak{p}'(A_{\mathfrak{p}''})_{\mathfrak{p}'A_{\mathfrak{p}''}}$. It follows that $\operatorname{depth}(A_{\mathfrak{p}'}) \ge n$.

As we have remarked above, it follows from i), ii) that $ht(\mathfrak{p}_1) \geq n$.

(2) To prove it by contradiction, suppose that $\mathfrak{p}_k \in S_n(A)$ for some k. Since $I \subseteq \mathfrak{p}_k$, we have $\operatorname{ht}(\mathfrak{p}_k) \geq n$, hence $\operatorname{depth}(A_{\mathfrak{p}_k}) \geq \inf(n, \operatorname{ht}(\mathfrak{p}_k)) = n$. Therefore, there exist $c_i \in \mathfrak{p}_k$ and $f \in A - \mathfrak{p}_k$ such that c_1, \dots, c_n is an A_f -sequence in $\mathfrak{p}_k A_f$ and that $IA_f = \mathfrak{p}_k A_f$. Since $\mathfrak{p}_k \in V(I) = \overline{S_n(A)^c}$, we have $D(f) \cap S_n(A)^c \neq \emptyset$. Let \mathfrak{p} be a minimal element of this set. Since $\mathfrak{p} \in S_n(A)^c \subseteq V(I)$, we have $I \subseteq \mathfrak{p}$, hence $\mathfrak{p}A_f \supseteq IA_f = \mathfrak{p}_k A_f$. Therefore c_1, \dots, c_n is an A_f -sequence in $\mathfrak{p}A_f$, hence is an $A_\mathfrak{p} = (A_f)\mathfrak{p}_{A_f}$ -sequence in $\mathfrak{p}A_\mathfrak{p}$. It follows that $\operatorname{depth}(A_\mathfrak{p}) \geq n = \inf(n, \operatorname{ht}(\mathfrak{p}))$. On the other hand, if $\mathfrak{p}' \in \operatorname{Spec}(A)$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$, then we have $\mathfrak{p}' \notin D(f) \cap S_n(A)^c$ by the minimality of \mathfrak{p} . Since $\mathfrak{p} \in D(f)$, we have $\mathfrak{p}' \in D(f)$. Therefore we have $\mathfrak{p}' \notin S_n(A)^c$, hence (S_n) holds for $A_{\mathfrak{p}'}$. Thus, we see that (S_n) holds for $A_\mathfrak{p}$, contrary to the choice of \mathfrak{p} .

(3) We have $S_n(A)^c \subseteq \overline{S_n(A)^c} = V(I)$. Suppose that $S_n(A)^c \subsetneq V(I)$. Then there exists $\mathfrak{p} \in V(I)$ such that $\mathfrak{p} \notin S_n(A)^c$. Hence we have $\mathfrak{p}_k \subseteq \mathfrak{p}$ for some k and $\mathfrak{p} \in S_n(A)$. Therefore (S_n) holds for $(A_{\mathfrak{p}})_{\mathfrak{p}_k A_{\mathfrak{p}}} = A_{\mathfrak{p}_k}$. It follows that $\mathfrak{p}_k \in S_n(A)$, contrary to (2).

3. (NC) FOR (\mathbf{R}_n) -CONDITION

Consider the following condition. Let n be an integer and let A be a local ring.

 (\mathbf{R}'_n) : If $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\operatorname{codim}(\mathfrak{p}) \leq n$, then $A_{\mathfrak{p}}$ is regular.

Here the codimension of an ideal I of A is defined as follows.

$$\operatorname{codim}(I) = \dim(A) - \dim(A/I).$$

Lemma 3.1. Let A be a local ring. Then (\mathbf{R}_n) holds for A if and only if (\mathbf{R}'_n) holds for $A_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec}(A)$.

NAGATA CRITERION

Proof. Suppose that (\mathbf{R}_n) holds for A. Let $\mathfrak{p} \in \operatorname{Spec}(A)$, and let $\mathfrak{p}' \in \operatorname{Spec}(A)$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$ and that $\operatorname{codim}(\mathfrak{p}'A_{\mathfrak{p}}) \leq n$. Then we have $\operatorname{ht}(\mathfrak{p}'A_{\mathfrak{p}}) \leq \operatorname{codim}(\mathfrak{p}'A_{\mathfrak{p}}) \leq n$, hence $(A_{\mathfrak{p}})_{\mathfrak{p}'A_{\mathfrak{p}}}$ is regular since (\mathbf{R}_n) holds for $A_{\mathfrak{p}}$. It follows that (\mathbf{R}'_n) holds for $A_{\mathfrak{p}}$. Conversely, suppose that (\mathbf{R}'_n) holds for $A_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec}(A)$. Let $\mathfrak{p} \in \operatorname{Spec}(A)$, and let $\mathfrak{p}' \in \operatorname{Spec}(A)$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$ and that $\operatorname{ht}(\mathfrak{p}'A_{\mathfrak{p}}) \leq n$. Then we have $\operatorname{codim}(\mathfrak{p}'A_{\mathfrak{p}'}) = \operatorname{ht}(\mathfrak{p}') = \operatorname{ht}(\mathfrak{p}'A_{\mathfrak{p}}) \leq n$, hence $(A_{\mathfrak{p}})_{\mathfrak{p}'A_{\mathfrak{p}}} = A_{\mathfrak{p}'} = (A_{\mathfrak{p}'})_{\mathfrak{p}'A_{\mathfrak{p}'}}$ is regular. It follows that (\mathbf{R}_n) holds for $A_{\mathfrak{p}}$. Therefore, (\mathbf{R}_n) holds for A.

The following theorem is the main result of this section.

Theorem 3.2. (NC) holds for $\mathbb{P} = (\mathbb{R}_n)$.

Proof. We prove this theorem by induction on n. It is easy to see that (NC) holds for $\mathbb{P} = (\mathbb{R}_0)$, hence we assume $n \geq 1$ in the rest. We discuss in the same way as the proof of Theorem 2.2. Suppose that a ring A satisfies the assumption in (NC). Let I be one of the maximal elements of the set $\{I \mid I \text{ is an ideal of } A \text{ and } \mathbb{R}_n(A)^c \subseteq V(I)\}$. We may assume that

$$\begin{cases} (\mathbf{R}_{n-1}) \text{ holds for } A \cdots (*), \\ I \subsetneqq A, \\ \sqrt{I} = I, \\ \overline{\mathbf{R}_n(A)^c} = \mathbf{V}(I), \\ I = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t \text{ (with some } \mathfrak{p}_i \in \operatorname{Spec}(A)), \\ \text{there are no inclusion relations between the } \mathfrak{p}_i\text{'s ht}(\mathfrak{p}_1) \leq \operatorname{ht}(\mathfrak{p}_i) \text{ for all } i. \end{cases}$$

Now we prove that $ht(\mathfrak{p}_1) \geq n$. To prove this by contradiction, suppose that $l := ht(\mathfrak{p}_1) \leq n-1$. By (*) we see that $A_{\mathfrak{p}_1}$ is regular. Hence replacing A by A_x for some $x \in A - \mathfrak{p}_1$, we may assume that

$$\begin{cases} c_1, \cdots, c_l \text{ is an } A\text{-sequence in } \mathfrak{p}_1 \text{ (with some } c_i \in \mathfrak{p}_1), \\ (c_1, \cdots, c_l) = \mathfrak{p}_1, \\ I = \mathfrak{p}_1 \text{ (hence } \overline{\mathrm{R}_n(A)^c} = \mathrm{V}(\mathfrak{p}_1)), \\ (\mathrm{R}_n) \text{ holds for } A/\mathfrak{p}_1 \cdots (**). \end{cases}$$

Since $R_n(A)^c \neq \emptyset$, one can take $\mathfrak{p} \in R_n(A)^c$. Then we have $\mathfrak{p}_1 \subseteq \mathfrak{p}$. To show that $A_\mathfrak{p}$ satisfies (R'_n) , we take $\mathfrak{p}' \in \operatorname{Spec}(A)$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$ and that $\operatorname{codim}(\mathfrak{p}'A_\mathfrak{p}) \leq n$. There exists $\mathfrak{p}'' \in V(\mathfrak{p}' + \mathfrak{p}_1)$ such that $\operatorname{codim}((\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}_1)A_\mathfrak{p}) = \operatorname{codim}((\mathfrak{p}''/\mathfrak{p}_1)A_\mathfrak{p})$ (= $\operatorname{codim}(\mathfrak{p}''A_\mathfrak{p}/\mathfrak{p}_1A_\mathfrak{p})$). We have

$$\begin{cases} \operatorname{codim}((\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}_1)A_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p}/\mathfrak{p}_1) - \operatorname{ht}(\mathfrak{p}/\mathfrak{p}' + \mathfrak{p}_1) \\ = \operatorname{ht}(\mathfrak{p}) - l - \operatorname{ht}(\mathfrak{p}/\mathfrak{p}' + \mathfrak{p}_1), \\ \operatorname{codim}((\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}')A_{\mathfrak{p}}) = \operatorname{codim}((c_1, \cdots, c_l)(A/\mathfrak{p}')_{\mathfrak{p}/\mathfrak{p}'}) \leq l, \\ \operatorname{codim}((\mathfrak{p}' + \mathfrak{p}_1/\mathfrak{p}')A_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p}/\mathfrak{p}') - \operatorname{ht}(\mathfrak{p}/\mathfrak{p}' + \mathfrak{p}_1). \end{cases}$$

It follows that

$$\operatorname{codim}(\mathfrak{p}''A_{\mathfrak{p}}/\mathfrak{p}_{1}A_{\mathfrak{p}}) = \operatorname{codim}((\mathfrak{p}' + \mathfrak{p}_{1}/\mathfrak{p}_{1})A_{\mathfrak{p}})$$
$$\leq \operatorname{ht}(\mathfrak{p}) - \operatorname{ht}(\mathfrak{p}/\mathfrak{p}')$$
$$= \operatorname{codim}(\mathfrak{p}'A_{\mathfrak{p}}) \leq n.$$

By (**) we see that (\mathbf{R}_n) holds for $(A/\mathfrak{p}_1)_{\mathfrak{p}/\mathfrak{p}_1} = A_\mathfrak{p}/\mathfrak{p}_1A_\mathfrak{p}$. By Lemma 3.1, we see that $A_{\mathfrak{p}''}/\mathfrak{p}_1A_{\mathfrak{p}''} = (A_\mathfrak{p}/\mathfrak{p}_1A_\mathfrak{p})_{\mathfrak{p}''A_\mathfrak{p}/\mathfrak{p}_1A_\mathfrak{p}}$ is regular, which shows that $A_{\mathfrak{p}''}$ is regular. It follows that $(A_\mathfrak{p})_{\mathfrak{p}'A_\mathfrak{p}} = (A_{\mathfrak{p}''})_{\mathfrak{p}'A_{\mathfrak{p}''}}$ is regular. Therefore we see that $A_\mathfrak{p}$ satisfies (\mathbf{R}'_n) . Let $\mathfrak{q} \in \operatorname{Spec}(A)$ such that $\mathfrak{q} \subseteq \mathfrak{p}$. If $\mathfrak{q} \in \mathbf{R}_n(A)$, then (\mathbf{R}_n) holds for $A_\mathfrak{q}$, hence (\mathbf{R}'_n) holds for $A_\mathfrak{q}$. If $\mathfrak{q} \in \mathbf{R}_n(A)^c$, then we see that (\mathbf{R}'_n) holds for $A_\mathfrak{q}$, discussing in the same way as above. Thus, it follows from Lemma 3.1 that (\mathbf{R}_n) holds for $A_\mathfrak{p}$. Since $\mathfrak{p} \in \mathbf{R}_n(A)^c$, we have a contradiction. Thus we have shown that $\operatorname{ht}(\mathfrak{p}_1) \geq n$, hence $\operatorname{ht}(I) \geq n$.

Therefore we can arrange the order of $\mathfrak{p}_1, \cdots, \mathfrak{p}_t$ to satisfy the following conditions.

$$\operatorname{ht}(\mathfrak{p}_i) \begin{cases} = n \ (1 \leq i \leq s), \\ > n \ (s < i \leq t), \end{cases}$$
$$A_{\mathfrak{p}_i} \text{ is } \begin{cases} \operatorname{non-regular} \ (1 \leq i \leq r), \\ \operatorname{regular} \ (r < i \leq s). \end{cases}$$

Put $J = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r$. Let $\mathfrak{p} \in \mathcal{R}_n(A)^c$. Then there exists $\mathfrak{p}' \in \operatorname{Spec}(A)$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$, $\operatorname{ht}(\mathfrak{p}') \leq n$, and that $A_{\mathfrak{p}'}$ is non-regular. By (*) we get $\operatorname{ht}(\mathfrak{p}') = n$. Replacing \mathfrak{p} by \mathfrak{p}' , we may assume that $\operatorname{ht}(\mathfrak{p}) = n$. Since $\mathcal{R}_n(A)^c \subseteq \mathcal{V}(I)$, we have $I \subseteq \mathfrak{p}$, hence $\mathfrak{p}_k \subseteq \mathfrak{p}$ for some k. Since $\operatorname{ht}(\mathfrak{p}) = n$, we have $\mathfrak{p}_k = \mathfrak{p}$ and $1 \leq k \leq s$, and since $A_{\mathfrak{p}}$ is non-regular, we have $1 \leq k \leq r$. It follows that $J \subseteq \mathfrak{p}_k = \mathfrak{p}$, i.e. $\mathfrak{p} \in \mathcal{V}(J)$. Therefore, we have $\mathcal{R}_n(A)^c \subseteq \mathcal{V}(J)$. Since the opposite inclusion is obvious by the choice of \mathfrak{p}_i , we have $\mathcal{R}_n(A)^c = \mathcal{V}(J)$. Thus, we get $\mathcal{R}_n(A) = \mathcal{D}(J)$, which shows that $\mathcal{R}_n(A)$ is open in $\operatorname{Spec}(A)$.

42

NAGATA CRITERION

Added in **Proof:** The author was informed that the results similar to the present paper had been reported in the following paper :

C.Massaza e P.Valabrega, Sull'apertura di luoghi in uno schema localmente noetheriano, Boll. U.M.I. 14 (1977),564-574.

References

- [1] W. BRUNS and J. HERZOG, Cohen-Macaulay rings, Cambridge Univ. Press, 1993.
- [2] S. GRECO and M. MARINARI, Nagata's criterion and openness of loci for Gorenstein and complete intersections, *Math*, Z. 160 (1978), 207-16.
- [3] H. MATSUMURA, Commutative algebra, second edition, Benjamin, 1980.
- [4] H. MATSUMURA, Commutative ring theory, Cambridge Univ. Press, 1980.
- [5] M. NAGATA, Local rings, Interscience, 1962
- [6] M. NAGATA, On the closedness of singular loci, Publ. Math. IHES 2 (1959), 29-36.

Ryo Takahashi Graduate School of Natural Science and Technology Okayama University Okayama 700-8530, Japan

(Received April 6, 2000)