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A NOTE ON OSOFSKY-SMITH THEOREM*

LIU ZHONGKUI

A famous result of B.Osofsky says that a ring R is semisimple artinian
if and only if every cyclic left R-module is injective. The crucial point of
her proof was to show that such a ring has finite uniform dimension. In [7],
B.Osofsky and P.F.Smith proved more generally that a cyclic module M
has finite uniform dimension if every cyclic subfactor of M is an extending
module. Extending modules have been studied extensively in recent years
and many generalizations have been considered by many authors (see, for
examples, [1-4, 6, 8, 9]). Lopez-Permouth, Oshiro and Tariq Rizvi in [6]
introduced the concepts of extending modules and (quasi-)continuous mod-
ules relative a given left R-module X. Let S be the class of all semisimple
left R-modules and all singular left R-modules. We say a left R-module
N is S-extending if N is X-extending for any X € §. Every extending
left R-module is S-extending but the converse is not true. Exploiting the
techniques of [7] we prove the following result: Let M be a cyclic left R-
module. Assume that all cyclic subfactors of M are S-extending. Then M
satisfies ACC on direct summands. As a corollary we show that if cyclic left
R-module M is extending and all cyclic subfactors of M are S-extending,
then M has finite uniform dimension.

Throughout this note we write A <. B (A|B) to denote that A is an
essential submodule (a direct summand) of B.

A left R-module M is called singular if, for every m € M, the anni-
hilator [(m) of m is an essential left ideal of R.

Lemma 1 ([4, 4.6]). The following are equivalent for a left R-module
M.

(1) M is singular.
(2) M 2 L/K for a left R-module L and K <. L.

Let M, X be left R-modules. Define the family
AX,M)={AC M|FY C X,3f € Hom(Y,M), f(Y) <. A}.

Consider the properties
A(X, M)-(C1): For all A € A(X, M), JA*|M, such that A <, A*.
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A(X, M)-(Cs): For all A € A(X, M), if B|M is such that A = B,
then A|M.

A(X, M)-(Cs): Forall A e A(X, M) and B|M, if A|]M and ANB =0
then A @ B|M.

According to [6], M is said to be X-extending, X-quasi-continuous
or X-continuous, respectively, if M satisfies A(X, M)-(C1), A(X, M)-(C1)
and A(X, M)-(Cs), A(X, M)-(Cy) and A(X, M)-(Cs).

According to [8, 1, 2], a left R-module M is called a CESS-module if
every complement with essential socle is a direct summand, equivalently,
every submodule with essential socle is essential in a direct summand of
M. Now the following result is clear.

Proposition 2. A left R-module M is a CESS-module if and only if
M is X-extending for any semisimple left R-module X .

Definition 3. Let S be the class of all semisimple left R-modules and
all singular left R-modules. A left R-module M is called S-extending if M
is X -extending for any X € S.

Note that every extending left R-module is clearly S-extending. But
the following example shows that the converse is not true.

Example 4. Let M be a free Z-module of infinite rank. Since M 1is
non-singular and has no socle, M is clearly S-extending. But M is not
extending by [5, Theorem 5].

Let S; and S5 be the classes of all semisimple left R-modules, of all
singular left R-modules, respectively. Then S; @ Ss is defined to be the
class of left R-modules M such that M = A® B is a direct sum of 4 € S
and B € Ss.

Proposition 5. A left R-module M is S-extending if and only if it
is X -extending for any X € 51 & So.

Proof. Tt follows from the fact that if 0 — X’ — X — X" — 0
is an exact sequence then M is X-extending if and only if it is both X’-
extending and X"-extending by [6, Proposition 2.7]. O

Proposition 6. Let M be a cyclic left R-module. Assume that all
cyclic subfactors of M are S-extending. Then M satisfies ACC on direct
summands.

Proof. We prove this by adapting the proof of [7, Theorem 1 and 4,
7.12]. Suppose that M does not satisfy ACC on direct summands and
that A1 € Ay C A3 C ...... is an infinite ascending chain of direct
summands A;(i > 1) of M. Then there exists a submodule By of M such
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that M = A1 ® By. Thus Ay = A3 N (A1 D Bl) =A1 & (AQ N Bl) so that
Ao N By is a direct summand of By. Let By be a submodule of B; such
that By = (A2 N By) @ By. Then M = Ay @ By. Repeating this argument
we can produce an infinite descending chain

BiD>DByD>B3D......

of direct summands B; of M such that M = A; ® B;. For each i > 1, there
exists a nonzero submodule Cj;1 of M such that B; = Bj+1 @ Cijy1. Put
C1 = A;. Then

M=CoCoo---dC,d B,
and ®2, ,1C; C By for all n > 1. Clearly C; is cyclic since M is cyclic,
and so C; contains a maximal submodule W;. Put

P=M/(&Z,Wi), Q= (821Ci)/(&Z,Wi).

Then clearly P is a cyclic subfactor of M and @ is a semisimple submodule
of P. By the hypothesis, P is X-extending for any X € §. Particularly P
is Q-extending. It is easy to see that @ € A(Q, P), and so there exists a
direct summand @Q* of P such that @ <. Q*.

Note that Q = @©72,5; is an infinite direct sum of simple left R-
modules S; (i > 1). Let {1,2,...} be a disjoint union of countable sets
Ll =1,2,... }. Set Qj = @ier,;Si, j = 1,2,.... Then Q; is a non-finitely
generated semisimple left R-module. Clearly Q* is a cyclic subfactor of M.
By the hypothesis, Q* is X-extending for any X € S§. Particularly Q* is
Qj-extending. It is easy to see that Q; € A(Q;,Q"), and so there exists
a direct summand Q;-‘ of @ such that Q; <. Q;-‘. Clearly Q;-‘ is finitely
generated, and thus Q; # Q.

Let D; = (QF + Q)/Q. Since QF N (©k£;Qx) = 0 and Q; # @5, it is
easy to see that D; # 0. Also Q; < QN Q;-‘ < Q;, so QN Q;-‘ <e Q;-‘. This
implies that D; ~ Q}/(Q; N Q) is singular by Lemma 1. Hence

(o)
D=) Dj=a%,D,
j=1
is a singular submodule of Q*/Q. Since Q*/Q is a cyclic subfactor of M,
it follows that Q*/@Q is X-extending for any X € S. Particularly Q*/Q is
D-extending. It is easy to see that D € A(D,Q*/Q), and so there exists a
direct summand D* of Q*/Q such that D <., D*.
Since D* is a cyclic submodule of Q* /@, there exists a cyclic submod-
ule H of Q* such that D* = (H+Q)/Q. It is easy to see that Q;NH #0.
Thus Q; N H = (Q;‘ NH)NQ; # 0. Hence there exists a non-zero simple
submodule Vj of Q; N H. Let V' = @72,V;. Then V' < H. Since H is a
cyclic subfactor of M, it follows that H is X-extending for any X € S.
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Particularly H is V-extending. Clearly V € A(V, H), and so there exists
a direct summand V* of H such that V <, V*. It is easy to see that
V' # V* since V* is cyclic. If (V*+ Q)/Q = 0, then V* < @, and thus
V* is semisimple. Hence V is a direct summand of V*. But V <, V*, it
follows that V' = V*, a contradiction. Thus (V* 4+ @Q)/Q # 0.

For any n > 1, we have (V*N&7_1Q7)NQ =V"N(87_,Q;NQ) =
VN (@7_1Q5) = (B52,V;) N(@7-1Q;) = B4 Vj. Since VN (D)1 Q;) is
semisimple, it follows that

(V*N®i1Q5) NQ = &1 Vj.
Clearly, ®"_,V; is a finitely generated submodule of Q. Thus there
J=1"2

exists a finitely generated submodule N of &2, C; such that (N +&52, W;)
[(©72,W;) = @}_,Vj. Suppose that N < &, C;. It is easy to see that

L= (0, Ci + 02, W) / (02, Wi)

is semisimple. Thus @&7_,Vj is a direct summand of L. It is easy to see that
L is a direct summand of P. Thus @®j—1Vj is a direct summand of P. Let
P = (&7_,V;) ® P1. By modularity, V* N (©}_,Q7) = (V* N (@}_,Q;) N
Q)®(V*N(®F_1QF)NP1). But it is easy to see that (V*N(®)_;Q7))NQ <¢
VEN(e7,Q5). Thus (VN (8],Q7))NAQ = V*N(&]_,Q;), which implies
that V* N (69?:1@;?) < Q. This holds for each n > 1, hence it follows that
VEN(852,QF) < Q. But Q < &52,Q7, it follows that

(@74(Q5 +Q)/Q) N (V' +@Q)/Q) = 0.

Now it follows that (V* + @)/Q = 0, which is a contradiction, because
D <. D*. This completes the proof of the proposition. O

Now we have the main result of this paper, which generalizes Osofsky-
Smith theorem ([7, Theorem 1]).

Theorem 7. Let M be a cyclic extending left R-module. Assume
that all cyclic subfactors of M are S-extending. Then M has finite uniform
dimension.

Proof. By Proposition 6, M is a finite direct sum of indecomposable
submodules. Since every direct summand of an extending module is ex-
tending, the result follows by the fact that each indecomposable extending
module is uniform. O
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