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A NOTE ON OSOFSKY-SMITH THEOREM∗

LIU ZHONGKUI

A famous result of B.Osofsky says that a ring R is semisimple artinian
if and only if every cyclic left R-module is injective. The crucial point of
her proof was to show that such a ring has finite uniform dimension. In [7],
B.Osofsky and P.F.Smith proved more generally that a cyclic module M
has finite uniform dimension if every cyclic subfactor of M is an extending
module. Extending modules have been studied extensively in recent years
and many generalizations have been considered by many authors (see, for
examples, [1-4, 6, 8, 9]). Lopez-Permouth, Oshiro and Tariq Rizvi in [6]
introduced the concepts of extending modules and (quasi-)continuous mod-
ules relative a given left R-module X. Let S be the class of all semisimple
left R-modules and all singular left R-modules. We say a left R-module
N is S-extending if N is X-extending for any X ∈ S. Every extending
left R-module is S-extending but the converse is not true. Exploiting the
techniques of [7] we prove the following result: Let M be a cyclic left R-
module. Assume that all cyclic subfactors of M are S-extending. Then M
satisfies ACC on direct summands. As a corollary we show that if cyclic left
R-module M is extending and all cyclic subfactors of M are S-extending,
then M has finite uniform dimension.

Throughout this note we write A ≤e B (A|B) to denote that A is an
essential submodule (a direct summand) of B.

A left R-module M is called singular if, for every m ∈ M , the anni-
hilator l(m) of m is an essential left ideal of R.

Lemma 1 ([4, 4.6]). The following are equivalent for a left R-module
M .
(1) M is singular.
(2) M ∼= L/K for a left R-module L and K ≤e L.

Let M,X be left R-modules. Define the family

A(X,M) = {A ⊆ M |∃Y ⊆ X, ∃f ∈ Hom(Y,M), f(Y ) ≤e A}.

Consider the properties
A(X,M)-(C1): For all A ∈ A(X,M), ∃A∗|M , such that A ≤e A∗.
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A(X,M)-(C2): For all A ∈ A(X,M), if B|M is such that A ∼= B,
then A|M .

A(X,M)-(C3): For all A ∈ A(X,M) and B|M , if A|M and A∩B = 0
then A ⊕ B|M .

According to [6], M is said to be X-extending, X-quasi-continuous
or X-continuous, respectively, if M satisfies A(X,M)-(C1), A(X,M)-(C1)
and A(X,M)-(C3), A(X,M)-(C1) and A(X,M)-(C2).

According to [8, 1, 2], a left R-module M is called a CESS-module if
every complement with essential socle is a direct summand, equivalently,
every submodule with essential socle is essential in a direct summand of
M . Now the following result is clear.

Proposition 2. A left R-module M is a CESS-module if and only if
M is X-extending for any semisimple left R-module X.

Definition 3. Let S be the class of all semisimple left R-modules and
all singular left R-modules. A left R-module M is called S-extending if M
is X-extending for any X ∈ S.

Note that every extending left R-module is clearly S-extending. But
the following example shows that the converse is not true.

Example 4. Let M be a free Z-module of infinite rank. Since M is
non-singular and has no socle, M is clearly S-extending. But M is not
extending by [5, Theorem 5].

Let S1 and S2 be the classes of all semisimple left R-modules, of all
singular left R-modules, respectively. Then S1 ⊕ S2 is defined to be the
class of left R-modules M such that M = A⊕B is a direct sum of A ∈ S1

and B ∈ S2.

Proposition 5. A left R-module M is S-extending if and only if it
is X-extending for any X ∈ S1 ⊕ S2.

Proof. It follows from the fact that if 0 −→ X ′ −→ X −→ X ′′ −→ 0
is an exact sequence then M is X-extending if and only if it is both X ′-
extending and X ′′-extending by [6, Proposition 2.7].

Proposition 6. Let M be a cyclic left R-module. Assume that all
cyclic subfactors of M are S-extending. Then M satisfies ACC on direct
summands.

Proof. We prove this by adapting the proof of [7, Theorem 1 and 4,
7.12]. Suppose that M does not satisfy ACC on direct summands and
that A1 ⊂ A2 ⊂ A3 ⊂ . . . . . . is an infinite ascending chain of direct
summands Ai(i ≥ 1) of M . Then there exists a submodule B1 of M such
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that M = A1 ⊕ B1. Thus A2 = A2 ∩ (A1 ⊕ B1) = A1 ⊕ (A2 ∩ B1) so that
A2 ∩ B1 is a direct summand of B1. Let B2 be a submodule of B1 such
that B1 = (A2 ∩ B1) ⊕ B2. Then M = A2 ⊕ B2. Repeating this argument
we can produce an infinite descending chain

B1 ⊃ B2 ⊃ B3 ⊃ . . . . . .

of direct summands Bi of M such that M = Ai ⊕Bi. For each i ≥ 1, there
exists a nonzero submodule Ci+1 of M such that Bi = Bi+1 ⊕ Ci+1. Put
C1 = A1. Then

M = C1 ⊕ C2 ⊕ · · · ⊕ Cn ⊕ Bn

and ⊕∞
i=n+1Ci ⊂ Bn for all n ≥ 1. Clearly Ci is cyclic since M is cyclic,

and so Ci contains a maximal submodule Wi. Put

P = M/(⊕∞
i=1Wi), Q = (⊕∞

i=1Ci)/(⊕∞
i=1Wi).

Then clearly P is a cyclic subfactor of M and Q is a semisimple submodule
of P . By the hypothesis, P is X-extending for any X ∈ S. Particularly P
is Q-extending. It is easy to see that Q ∈ A(Q,P ), and so there exists a
direct summand Q∗ of P such that Q ≤e Q∗.

Note that Q = ⊕∞
i=1Si is an infinite direct sum of simple left R-

modules Si (i ≥ 1). Let {1, 2, . . . } be a disjoint union of countable sets
{Ij |j = 1, 2, . . . }. Set Qj = ⊕i∈IjSi, j = 1, 2, . . . . Then Qj is a non-finitely
generated semisimple left R-module. Clearly Q∗ is a cyclic subfactor of M .
By the hypothesis, Q∗ is X-extending for any X ∈ S. Particularly Q∗ is
Qj-extending. It is easy to see that Qj ∈ A(Qj , Q

∗), and so there exists
a direct summand Q∗

j of Q∗ such that Qj ≤e Q∗
j . Clearly Q∗

j is finitely
generated, and thus Qj 6= Q∗

j .
Let Dj = (Q∗

j + Q)/Q. Since Q∗
j ∩ (⊕k 6=jQk) = 0 and Qj 6= Q∗

j , it is
easy to see that Dj 6= 0. Also Qj ≤ Q ∩ Q∗

j ≤ Q∗
j , so Q ∩ Q∗

j ≤e Q∗
j . This

implies that Dj ' Q∗
j/(Q∗

j ∩ Q) is singular by Lemma 1. Hence

D =
∞∑

j=1

Dj = ⊕∞
j=1Dj

is a singular submodule of Q∗/Q. Since Q∗/Q is a cyclic subfactor of M ,
it follows that Q∗/Q is X-extending for any X ∈ S. Particularly Q∗/Q is
D-extending. It is easy to see that D ∈ A(D,Q∗/Q), and so there exists a
direct summand D∗ of Q∗/Q such that D ≤e D∗.

Since D∗ is a cyclic submodule of Q∗/Q, there exists a cyclic submod-
ule H of Q∗ such that D∗ = (H +Q)/Q. It is easy to see that Q∗

j ∩H 6= 0.
Thus Qj ∩ H = (Q∗

j ∩ H) ∩ Qj 6= 0. Hence there exists a non-zero simple
submodule Vj of Qj ∩ H. Let V = ⊕∞

j=1Vj . Then V ≤ H. Since H is a
cyclic subfactor of M , it follows that H is X-extending for any X ∈ S.
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Particularly H is V -extending. Clearly V ∈ A(V,H), and so there exists
a direct summand V ∗ of H such that V ≤e V ∗. It is easy to see that
V 6= V ∗ since V ∗ is cyclic. If (V ∗ + Q)/Q = 0, then V ∗ ≤ Q, and thus
V ∗ is semisimple. Hence V is a direct summand of V ∗. But V ≤e V ∗, it
follows that V = V ∗, a contradiction. Thus (V ∗ + Q)/Q 6= 0.

For any n ≥ 1, we have (V ∗ ∩ ⊕n
j=1Q

∗
j ) ∩ Q = V ∗ ∩ (⊕n

j=1Q
∗
j ∩ Q) =

V ∗ ∩ (⊕n
j=1Qj) ≥ (⊕∞

j=1Vj) ∩ (⊕n
j=1Qj) = ⊕n

j=1Vj . Since V ∗ ∩ (⊕n
j=1Qj) is

semisimple, it follows that

(V ∗ ∩ ⊕n
j=1Q

∗
j ) ∩ Q = ⊕n

j=1Vj .

Clearly, ⊕n
j=1Vj is a finitely generated submodule of Q. Thus there

exists a finitely generated submodule N of ⊕∞
i=1Ci such that (N +⊕∞

i=1Wi)
/(⊕∞

i=1Wi) = ⊕n
j=1Vj . Suppose that N ≤ ⊕m

i=1Ci. It is easy to see that

L = (⊕m
i=1Ci + ⊕∞

i=1Wi)/(⊕∞
i=1Wi)

is semisimple. Thus ⊕n
j=1Vj is a direct summand of L. It is easy to see that

L is a direct summand of P . Thus ⊕n
j=1Vj is a direct summand of P . Let

P = (⊕n
j=1Vj) ⊕ P1. By modularity, V ∗ ∩ (⊕n

j=1Q
∗
j ) = (V ∗ ∩ (⊕n

j=1Q
∗
j ) ∩

Q)⊕(V ∗∩(⊕n
j=1Q

∗
j )∩P1). But it is easy to see that (V ∗∩(⊕n

j=1Q
∗
j ))∩Q ≤e

V ∗∩(⊕n
j=1Q

∗
j ). Thus (V ∗∩(⊕n

j=1Q
∗
j ))∩Q = V ∗∩(⊕n

j=1Q
∗
j ), which implies

that V ∗ ∩ (⊕n
j=1Q

∗
j ) ≤ Q. This holds for each n ≥ 1, hence it follows that

V ∗ ∩ (⊕∞
j=1Q

∗
j ) ≤ Q. But Q ≤ ⊕∞

j=1Q
∗
j , it follows that

(⊕∞
j=1(Q

∗
j + Q)/Q) ∩ ((V ∗ + Q)/Q) = 0.

Now it follows that (V ∗ + Q)/Q = 0, which is a contradiction, because
D ≤e D∗. This completes the proof of the proposition.

Now we have the main result of this paper, which generalizes Osofsky-
Smith theorem ([7, Theorem 1]).

Theorem 7. Let M be a cyclic extending left R-module. Assume
that all cyclic subfactors of M are S-extending. Then M has finite uniform
dimension.

Proof. By Proposition 6, M is a finite direct sum of indecomposable
submodules. Since every direct summand of an extending module is ex-
tending, the result follows by the fact that each indecomposable extending
module is uniform.
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