
Math. J. Okayama Univ. 41 (1999), 121–136

SOME RESULTS ON LITTLEWOOD’S PROBLEM AND
ORLICZ’S PROBLEM

KAZUO GOTO

Abstract. We give a concrete example to the known problem of Lit-
tlewood by applying the stationary phase ( or saddle point ) method.
We also give a trigonometric series which is not Borel summable and
not a Fourier series. The result is an affirmative answer to Orlicz’s
problem.

1. Introduction

In [12] Littlewood asked to prove the following [cf.14(Appendix 5)] :
There exist complex numbers a1, a2, . . . , aN with |an| = 1, n =
1, 2, . . . , N, such that (1) holds for all real x and for all suffi-
ciently large N,

A1

√
N ≤

∣∣∣∣∣
N∑

n=1

ane2πinx

∣∣∣∣∣ ≤ A2

√
N,(1)

where A1 and A2 are some absolute positive constants.
Kahane[8] proved the existence of the complex numbers a1, a2, . . . , aN

and the real numbers A1 = 1 − εN , A2 = 1 + εN , and εN → 0 as N → ∞
stated above. Körner[9] (see [15]) proved the problem stated above. How-
ever Körner’s method of proof is not effective and cannot supply any con-
crete example to Orlicz’s problem[1]. Our answer to Littlewood’s problem
is that we give a concrete example and give numerical values of A1 and A2

by applying the stationary phase method.
Hardy and Littlewood [6] or [20] announced that they had showed

that
N∑

n=1

exp(2πi(αn + βn log n)) ¿
√

N(2)

uniformly in α and β .
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It is known that

fN =
N∑

n=1

exp(iβn log n) exp(nθi), β 6= 0 is real, θ ∈ [0, 2π]

satisfies |fN | ≤ A(β)
√

N, where A(β) is a positive constant depending only
on β ( see [10] ).

They considered in [6] the possibility of the convergence and Cesàro
summability of the series

∞∑
n=1

nρ− 1
2 e2πi(αn+βn log n), ρ ≥ 0.(3)

But they announced in [7] that they did not prove the possibility of the
convergence and Cesàro summability of (3) by using their method when
ρ = 0. In the case of ρ = 0, we can show as a consequence of Theorem 4.2
that the series (3) is not Borel summable and not a Fourier series.

For more related results, we give references [3, 12, 19].

Orlicz[13:No.121] proposed the following :

Give an example of a trigonometric series
∞∑

n=1

(an cos nx+bn sin nx)

everywhere divergent and such that
∞∑

n=1

(|an|2+ε + |bn|2+ε) < ∞

for every ε > 0 .

In Proposition 2.4 we estimate
∫ b
a eith(x)dx for some function h(x).

Then, in Theorem 3.1, we obtain both an upper bound and a lower bound

of the exponential sum
N∑

n=1

exp(2πi(αn + βn log n)). In Theorem 3.2, we

give an affirmative and concrete example to the problem of Littlewood.
In Theorem 4.2, we obtain a concrete trigonometric series, which is not
Borel summable and not a Fourier series everywhere in R. The proof of
Theorem 4.2 is more directly shown by using another estimation than that
of Theorem 3.1. The trigonometric series also gives an example to Orlicz’s
problem.

2. Stationary phase method

We prepare Proposition 2.1 and Proposition 2.4, by using station-
ary phase method, for proving Theorem 3.1 in the next section.
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Proposition 2.1 ([18, Lemma 4.7]). Let f(x) be a real function on
[a, b] with a continuous steadily decreasing f ′ . Let H1 = f ′(b) and H2 =
f ′(a). Set H = H2 − H1 + 2. Then we have∑

a<n≤b

e2πif(n) =
∑

H1−ε<m<H2+ε

∫ b

a
e2πi(f(x)−mx)dx + O(log H),

where ε is a positive constant less than 1 and the constant implied by the
O is absolute.

Lemma 2.2 ([4, Chap. IV]). Let a and c 6= 0 be real numbers. Then
we have for all b > 0,∫ b

0
eit(a+cx2)dx = A

eiat

2(|c|t)1/2
− i

2bct
ei(a+cb2)t + O

(
1

b3(ct)2

)
,

as t → ∞, where

A =
∫ ∞

0
u−1/2eiu sgn(c)du = e

1
4
πi sgn(c)√π

and the constant implied by the O is absolute.

Proof. The proof runs along the same lines as [4, Chap. IV], except
that we have to pay attentions to the dependency of parameters in the
O terms. The constants implied by the O’s are absolute in this proof.
Without loss of generality, we may assume c > 0. If we put u = ctx2 for
t > 0, then we have∫ b

0
eit(a+cx2)dx =

eiat

2(ct)1/2

∫ cb2t

0
u−1/2eiudu.

We prove that the integral
∫ ∞
0 u− 1

2 eiudu converges. Integrating by
parts, we have∫ ∞

N
u− 1

2 eiudu = −1
i
N− 1

2 eiN +
1
2i

∫ ∞

N
u− 3

2 eiudu,

where N = cb2t. The function u− 3
2 is monotone decreasing. Applying the

second mean value theorem to the real and imaginary parts of the second
integral, we obtain∫ ∞

N
u− 1

2 eiudu = −1
i
N− 1

2 eiN + O(N− 3
2 ),

as N → ∞. Then we obtain
eiat

2(ct)1/2

∫ ∞

N
u−1/2eiudu =

eiat

2(ct)1/2

−1
i

(cb2t)−
1
2 eiN + O

(
1

b3(ct)2

)
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=
−1

2bcti
eiateiN + O

(
1

b3(ct)2

)
.

Therefore∫ b

0
eit(a+cx2)dx =

eiat

2(ct)1/2

∫ cb2t

0
u−1/2eiudu

=
eiat

2(ct)1/2

{∫ ∞

0
u−1/2eiudu −

∫ ∞

N
u−1/2eiudu

}
=A

eiat

2(ct)1/2
− i

2bct
ei(a+cb2)t + O

(
1

b3(ct)2

)
,

which completes the proof.

Lemma 2.3 ([4, Chap. IV]). Suppose that a real function h(x) on
[0, b] satisfies the following conditions:

(i) h(x) is of class C3 , h′(0) = 0, h′′(0) 6= 0, and h′(x) 6= 0
on (0, b].

(ii) h′′(x) > 0, or h′′(x) < 0, throughout (0, b].
Under these conditions, for any real number δ with 0 < δ < b, we

have∫ b

0
eith(x)dx =

√
πeih(0)t+ 1

4
πi sgn(h′′(0))√

2t|h′′(0)|

+ O

(
1

t2|h(δ) − h(0)|3/2
√

|h′′(0)|

)
+ O

(
1
t

)

+ O

(
1

t|h(δ) − h(0)|1/2
√

|h′′(0)|

)
+ O

((∣∣∣∣ 1
h′(b−)

∣∣∣∣ +
∣∣∣∣ 1
h′(δ)

∣∣∣∣) 1
t

)
,

as t → ∞, where the constants implied by the O’s are absolute.
If we choose δ ≥ b, then∫ b

0
eith(x)dx =

√
πeih(0)t+ 1

4
πi sgn(h′′(0))√

2t|h′′(0)|
+ O

(
1

t2|h(b) − h(0)|3/2
√

|h′′(0)|

)

+O

(
1

t|h(b) − h(0)|1/2
√

|h′′(0)|

)
,

as t → ∞, where the constants implied by the O’s are absolute.

Proof. The proof runs along the same lines as [4, Chap. IV]. Since
h(x) is of class C3, we have

h(x) = a + dx2 + o(x2),



SOME RESULTS ON LITTLEWOOD’S PROBLEM AND ORLICZ’S PROBLEM 125

by Taylor’s theorem, where a = h(0), d = h′′(0)/2, and o′s are Landau’s
small o.

Without loss of generality, we may suppose that h′′(x) > 0 on (0, b].
Consider the function ϕ(x) =

√
h(x) − a, which is differentiable on [0, b].

The function h(x) is strictly increasing. There exists Ψ(u) the inverse
function of ϕ(x) on (0, b]. Then Ψ(u) is three times continuously differen-
tiable and strictly increasing on the interval [0, ϕ(δ)] with Ψ(0) = 0 and
Ψ′(0) = d1/2. We choose any δ ∈ [0, b).

Divide the interval [0, b] into [0, δ] and [δ, b] . In the first interval, by
changing the variable u = ϕ(x) , we have∫ δ

0
eith(x)dx =

∫ ϕ(δ)

0
eith(Ψ(u))Ψ′(u)du

= d−1/2

∫ ϕ(δ)

0
eit(a+u2)du +

∫ ϕ(δ)

0

(
Ψ′(u) − Ψ′(0)

)
eith1(u)du,

where h1(u) = a + u2. We have as u → +0

Ψ′(u) − Ψ′(0)
h′

1(u)
→ 1

2
Ψ′′(0).(4)

Thus ∫ b

0
eith(x)dx =

∫ δ

0
eith(x)dx +

∫ b

δ
eith(x)dx(5)

= d−1/2

∫ ϕ(δ)

0
eit(a+u2)du +

∫ ϕ(δ)

0
(Ψ′(u) − Ψ′(0))eith1(u)du +

∫ b

δ
eith(x)dx.

We consider the above three integrals, respectively. By Lemma 2.2,
we have∫ ϕ(δ)

0
eit(a+u2)du =

eiat

2t1/2
A − i

2ϕ(δ)t
ei(a+ϕ(δ)2)t + O

(
1

ϕ(δ)3t2

)
(6)

=
eiat

2t1/2
A + O

(
1

ϕ(δ)3
1
t2

)
+ O

(
1

ϕ(δ)
1
t

)
.
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Since h′(x) 6= 0 on [δ, b] and h′′(x) has a constant sign, we have, as
t → ∞,

∫ b−

δ
eith(x)dx =

1
it

∫ b−

δ

1
h′(x)

d

dx
eith(x)dx

=
1
it

[
1

h′(b−)
eith(b−) − 1

h′(δ)
eith(δ)

]
− 1

it

∫ b−

δ
eith(x) d

dx

(
1

h′(x)

)
dx

=O

((
1

|h′(b−)|
+

1
|h′(δ)|

)
1
t

)
.

By virtue of (4), we have, for sufficiently small ε > 0,

∣∣∣∣∣
∫ ϕ(δ)

ε

(
Ψ′(u) − Ψ′(0)

)
eith1(u)du

∣∣∣∣∣=
∣∣∣∣∣ 1
it

∫ ϕ(δ)

ε

Ψ′(u) − Ψ′(0)
h′

1(u)
d

du
eith1(u)du

∣∣∣∣∣
=

∣∣∣∣∣ 1
it

[
Ψ′(u) − Ψ′(0)

h′
1(u)

eith1(u)

]ϕ(δ)

ε

− 1
it

∫ ϕ(δ)

ε
eith1(x) d

dx

(
Ψ′(x) − Ψ′(0)

h′
1(x)

)
dx

∣∣∣∣∣
=

1
t

{
O(1) +

∫ ϕ(δ)

ε

∣∣∣∣ d

dx

(
Ψ′(x) − Ψ′(0)

2x

)∣∣∣∣ dx

}
= O

(
1
t

)
,

since Ψ(u) is of class C3 and Ψ′′′(0) exists. Thus we have, as t → ∞,

∫ ϕ(δ)

0
(Ψ′(u) − Ψ′(0))eith1(u)du = O

(
1
t

)
.

Therefore

∫ b

0
eith(x)dx

=d−1/2

∫ ϕ(δ)

0
eit(a+u2)du + O

(
1
t

)
+ O

((∣∣∣∣ 1
h′(b−)

∣∣∣∣ +
∣∣∣∣ 1
h′(δ)

∣∣∣∣) 1
t

)
=d−1/2

{
eiat

2
√

t
A + O

(
1

|h(δ) − h(0)|3/2

1
t2

)
+ O

(
1

|h(δ) − h(0)|
1
t

)}
+ O

(
1
t

)
+ O

((∣∣∣∣ 1
h′(b−)

∣∣∣∣ +
∣∣∣∣ 1
h′(δ)

∣∣∣∣) 1
t

)
.
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Thus we have, as t → ∞,∫ b

0
eith(x)dx

=A
eiat

2
√

dt
+ O

(
1

|h(δ) − h(0)|3/2

1
t2
√

d

)
+ O

(
1

|h(δ) − h(0)|
1

t
√

d

)
+ O

(
1
t

)
+ O

((
1

|h′(b−)|
+

1
|h′(δ)|

)
1
t

)
.

On the other hand, by (5) and (6),∫ b

0
eith(x)dx = d−1/2

∫ ϕ(b)

0
eit(a+u2)du +

∫ ϕ(b)

0
(Ψ′(u) − Ψ′(0))eith1(u)du

=
√

πeith(0)+ 1
4
πisign(h′′(0)√

2t|h′′(0)|
+O

(
1

ϕ(b)3
1
t2

1√
|h′′(0)|

)
+ O

(
1

ϕ(b)
1
t

1√
|h′′(0)|

)
,

which completes the proof.

The following Proposition 2.4 is an immediate consequence of Lemma
2.3.

Proposition 2.4. Suppose that a real function h(x) is of class C3

on [a, b], h′(c) = 0 at just one point c with a < c < b , and h′′(c) 6= 0.
Moreover, h′′(x) > 0, or h′′(x) < 0, throughout [a, b]. Then, for any real
number δ,∫ b

a

eith(x)dx =

√
2π

t|h′′(c)|
exp

(
ith(c) +

1
4
iπ sgn(h′′(c))

)

+O

((
1

t2|h(min(c + δ, b)) − h(c)|3/2
+

1
t|h(min(b, c + δ)) − h(c)|1/2

)
1√

|h′′(c)|

)

+O

(
χ(b − (c + δ))

1
t

(
1 +

1
|h′(b−)|

+
1

|h′(min(c + δ, b))|

))

+O

((
1

t2|h(max(a, c − δ)) − h(c)|3/2
+

1
t|h(max(a, c − δ)) − h(c)|1/2

)
1√

|h′′(c)|

)

+O

(
χ((c − δ) − a)

1
t

(
1 +

1
|h′(a+)|

+
1

|h′(max(a, c − δ))|

))
,

as t → ∞, where χ(x) is the charactor function with χ(x) = 0 if x ≥ 0,
otherwise χ(x) = 1.
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3. Littlewood’s problem

Theorem 3.1. (i) Let β > 0. We have, for any 0 < ε < 1,∣∣∣∣∣
N∑

n=1

e2πi(αn+βn log n)

∣∣∣∣∣ ≤ 1√
β

e
ε+1−{α+β(log N+1)+ε}

2β

e
1
2β − 1

√
N

+ O

(
e(1+ε)/2β

√
β(e1/2β − 1)

)
+ O(log N),

where the constants implied by the O’s are absolute and {x} is the fractional
part of x.

(ii) Let 0 < β ≤ 1/(2 log 2) = 0.7213 · · · . For any 0 < ε < 1, we have∣∣∣∣∣
N∑

n=1

e2πi(αn+βn log n)

∣∣∣∣∣
≥ 1√

β
e
− 1+{α+β(log N+1)+ε}

2β
√

N ·

{
e

1
2β − 1 − 1

e
1
2β − 1

}

+ O

(
1

ε3/2
√

β

)
+ O(log N)

≥ 1√
β

e
− 1

β
√

N ·

{
e

1
2β − 1 − 1

e
1
2β − 1

}
+ O

(
1√
β

)
+ O(log N),

where the constants implied by the O’s are absolute.

Remark 3.1. e
1
2β − 1 − 1

e
1
2β −1

> 0 holds for 0 < β < 1/2 log 2.

Proof. The constants implied by the O ’s are absolute in this proof.
Without loss of generality, we may assume 0 ≤ α < 1. We write e(x) =
e2πix. We set f(x) = αx + βx log x.

By Proposition 2.1, we have

IN =
N∑

n=1

e2πi(αn+βn log n) =
∑

H1−ε<h<H2+ε

∫ N

1
e(f(x) − hx)dx + O(log H),

where H1 = α+β, H2 = α+β(log N+1), and H = H2−H1+2 = β log N+2
for an arbitrary positive number ε < 1.

Set h(x) = αx+βx log Nx−hx as in Proposition 2.4, M = dα+β−εe,
and K = [α + β(log N + 1) + ε], where dxe denotes the smallest integer
≥ x, and [x] denotes the largest integer ≤ x.
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The real number ch satisfies the equation h′(ch) = 0, i.e., α +

β(log Nch + 1) − h = 0, log Nch =
h − α

β
− 1. For c = ch − δ or ch + δ, we

have ∣∣∣∣ 1
h′(c)

∣∣∣∣ =
∣∣∣∣ 1
α + β log Nc + β − h

∣∣∣∣ =
∣∣∣∣ 1
β(log c − log ch)

∣∣∣∣ ≤ ch + δ

βδ
,

by the mean value theorem.
Thus

IN =
K∑

h=M

∫ N

0
e(f(x) − hx)dx + O(log N)

= N

K∑
h=M

∫ 1

0
e2πiN(αx+βx log(Nx)−hx)dx + O(log N).

Therefore, since ch satisfies h′(ch) = 0, h′′(x) > 0 for x > 0, we obtain

IN = N

K∑
h=M

{
2
√

πch

2 · 2πN · β
e

(
Nh(ch) +

1
8

)
+ O

(
1

δ3/2

√
ch

β
· 1
N2

)

+O

(
1

δ1/2

√
ch

β
· 1
N

)
+ O

(
e

h−α
β

−1

N2βδ

)}
+ O(log N)(7)

We have

|h(0) − h(ch)| = |h(ch)| = chβ,

|h(1) − h(ch)| = α + β log N − h − chβ → ∞ as N → ∞.

For any small δ > 0, if ch − δ ≤ 0, or ch + δ ≥ 1, then the term of

Jh = O

(
1

δ3/2

√
ch

β
· 1
N2

)
+ O

(
1

δ1/2

√
ch

β
· 1
N

)
is replaced by

O

(
1

(chβ)3/2

√
ch

β
· 1
N2

)
+ O

(
1

(chβ)1/2

√
ch

β
· 1
N

)
,
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by Proposition 2.4. Thus
∑K

h=M Jh = O( 1
β log N). Therefore, for any small

δ > 0,

IN =
√

N

K∑
h=M

{√
ch

β
e(N(αch + βch log Nch − hch) +

1
8
)

+ O

(
1

δ3/2N2
√

N

√
ch

β

)
+ O

(
1

δ1/2N
√

N

√
ch

β

)
+ O

(
e

h−α
β

−1

N2β

)}
+ O(log N).

Thus

|IN | ≤ 1√
β

K∑
h=M

e
1
2
(h−α

β
−1) + O

(
1√

N
√

β

K∑
h=M

e
1
2
(h−α

β
−1)

)
+ O(log N)

≤ 1√
β

A(α, β)e
1
2β

(K−M+1)

exp( 1
2β ) − 1

+ O

(
1√

N
√

β

A(α, β)e
1
2β

(K−M+1)

e
1
2β − 1

)
+ O(log N),

(8)

where A(α, β) = e
1
2β

(M−α−β)
. Therefore

|IN | ≤
√

N√
β

e
ε+1−{α+β(log N+1)+ε}

2β

e
1
2β − 1

+ O

e
ε+1−{α+β(log N+1)+ε}

2β

√
β(e

1
2β − 1)

 + O(log N),

which completes the proof of (i).
Next we show (ii). From (7) and (8) with K := K − 2, we have

|IN | ≥

∣∣∣∣∣√N

K∑
h=M

{√
ch

β
e−2πiNβch+ i

4
π + O

(
1√
N

√
ch

β

)}∣∣∣∣∣ + O(log N)

=

∣∣∣∣∣√N

K∑
h=K−1

√
ch

β
e−2πiNβch+ i

4
π +

√
N

K−2∑
h=M

√
ch

β
e−2πiNβch+ i

4
π

∣∣∣∣∣
+ O

(√
1
β

)
+ O(log N)

≥
√

N√
β

∣∣∣∣√cKe(−NβcK +
1
8
) +

√
cK−1e(−NβcK−1 +

1
8
)
∣∣∣∣(9)

−

∣∣∣∣∣A(α, β)e
1
2β

(K−2−M+1)

√
β(e

1
2β − 1)

∣∣∣∣∣ + O

(√
1
β

)
+ O(log N).
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Using |reiθ + r′eiθ′ | = r′
∣∣∣ r

r′
ei(θ−θ′) + 1

∣∣∣ , we obtain

|IN | ≥ 1√
β

e
1
2β

(K−1−α)− 1
2

{∣∣∣∣∣
√

e
1
β e

(
−βe

−1−α
β e

1
β

(K−1)(e
1
β − 1)

)
+ 1

∣∣∣∣∣
− 1

e
1
2β − 1

}
+ O

(√
1
β

)
+ O(log N)(10)

≥ 1√
β

e
− 1

2β e
− 1

2β
{α+β(log N+1)+ε}√

N ·

{
e

1
2β − 1 − 1

e
1
2β − 1

}

+ O

(√
1
β

)
+ O(log N)

≥ 1√
β

e
− 1

β
√

N ·

{
e

1
2β − 1 − 1

e
1
2β − 1

}
+ O

(√
1
β

)
+ O(log N).

Thus we have∣∣∣∣∣
N∑

n=2

exp(2πi(αn + βn log n))

∣∣∣∣∣ = |IN |(11)

≥ 1√
β

e
− 1

β
√

N ·

{
e

1
2β − 1 − 1

e
1
2β − 1

}
+ O

(√
1
β

)
+ O(log N) > 0,

which completes the proof of Theorem 3.1.

Now, as an immediate consequence of Theorem 3.1, we can give an
answer to Littlewood’s problem.

Theorem 3.2. Let an = exp(2πiβn log n), n = 1, 2, . . . , where β
is any constant with 0 < β ≤ 1/(2 log 2). Then (1) holds for all real x and
all sufficiently large N, where both constants A1 and A2 depend only on β.

4. Orlicz’s problem

In this section, the proof of Orlicz’s problem is directly shown by
using another estimation than that of Theorem 3.1,which does not need
the condition such that the coefficient in main term of (11) is positive.

Lemma 4.1 ([cf.18, 4.12, 4.9 ]). Let f(x) be a real function on [a, b]
with a continuous steadily decreasing f ′. Let α = f ′(b) and β = f ′(a). Let
g(x) be a real positive monotone function with a continuous derivative, and
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let |g′(x)| be steadily decreasing. Then∑
a<n≤b

g(n)e2πif(n) =e−πi/4
∑

α<k≤β

e2πi(f(xk)−kxk)√
|f ′′(xk)|

g(xk)

+ O (max(g(a), g(b)) log(|β − α| + 2)) + O
(
|g′(a)|

)
,

where xk is the number satisfying f ′(xk) = k.

Proof. It comes from directly from [18].

Next, we give a concrete trigonometric series which is not a Fourier
series. Moreover it is proved that the series is nowhere Borel summable.

Theorem 4.2. Let β 6= 0 and{
an = n−1/2 cos(2πβn log n)
bn = −n−1/2 sin(2πβn log n).

Then though
∞∑

n=1

(
|an|2+ε + |bn|2+ε

)
< ∞ holds for every ε > 0,

the trigonometric series
∞∑

n=1

(an cos 2πnx + bn sin 2πnx) is not a Fourier

series .

Moreover the series is nowhere Borel summable.

Remark 4.1. By [16,pp.54-55], the trigonometric series given in
Theorem 4.2 is nowhere Euler-Knopp summable, Taylor summable, and
Meyer-König’s summable.

Theorem 4.2 shows that the trigonometric series is an example to
Orlicz’s problem. Moreover, since

∑∞
n=1(an cos 2πnx + bn sin 2πnx) =

Re
(∑∞

n=1 n− 1
2 e2πi(nx+βn log n)

)
, the series

∑∞
n=1 n− 1

2 e2πi(nx+βn log n) is not
Borel summable and not a Fourier series (cf.the comment on the series (3)
in the section 1 ).

Proof. Without loss of generality, we may assume β > 0. We show
that the series is not a Fourier series. To prove this it will suffice to show
that the series is not Cesàro summable on a set of positive measure of x
[15,p.89]. In fact we prove that the series is nowhere Cesàro summable.

We set

ck =
1√
k

cos 2π(βk log k + kx), sn =
n∑

k=0

ck, and tn =
1

n + 1

n∑
k=0

sk.
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Then

tn = sn − 1
n + 1

n∑
k=0

kck.

We set f(n) = βn log n + nx. For an arbitrary positive integer
M(≥ [β log(β+1)+β+x+1]), we can choose n with M = [β log n+β+x].

By Lemma 4.1,we have

tn = Re

[
M∑

k=1

1√
k
e2πif(k) +

n∑
k=M+1

1√
k
e2πif(k) − 1

n + 1

n∑
k=1

√
ke2πif(k)

]

=Re

 M∑
k=1

1√
k
e2πif(k) +

e−πi/4

√
β

∑
β log M+β+x<k≤M

e−2πiβxk

+ O

(
1√
M

log(β log n + 2)
)
− e−πi/4

√
β

1
n + 1

∑
β+x<k≤M

xke
−2πiβxk

+ O

(
1√
n

log(β log n + 2)
)]

.

The number xk = exp
(

k − β − x

β

)
is the only root of the equation

β log xk + β + x − k = 0.
We have

tn =
∑

1≤k≤β+x

1√
k

cos(2πf(k)) +

+
∑

β+x<k≤M

[
1√
k

cos(2πf(k)) +
(

1 − xk

n + 1

)
1√
β

cos
(π

4
+ 2πβxk

)]

− 1√
β

∑
β+x<k≤β log M+β+x

cos
(π

4
+ 2πβxk

)
+ O

(
log(β log n + 2)√

β log n

)
.

Since log n− log(n− 1) ≤ 1/(n− 1) for all n, we can choose a subse-
quence n′ of n with [β log(n− 1) + β + x] = [β log n + β + x]− 1 = M − 1,
say. We abbreviate n′ to n. Then

tn − tn−1 =
1√
M

cos(2πf(M)) +
(

1 − xM

n + 1

)
1√
β

cos
(π

4
+ 2πβxM

)

+
1√
β

∑
β+x<k≤M−1

(
1
n
− 1

n + 1

)
xk cos

(π

4
+ 2πβxk

)
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− 1√
β

∑
k∈A

cos
(π

4
+ 2πβxk

)
+ O

(
log(β log n + 2)√

β log n

)
,

where A = {k ∈ N|β log[β log(n−1)+β+x]+β+x < k ≤ β log M +β+x}.
We have ∑

β+x<k≤M−1

(
1
n
− 1

n + 1

)
xk cos

(π

4
+ 2πβxk

)

=O

 1
n2

∑
0≤k≤M−1

xk

 = O

(
1
n

)
,

where xM = ne−θ/β and θ is the fractional part of β log n + β + x.
Thus we obtain, as n → ∞,

|tn − tn−1| =
∣∣∣∣ 1√

M
cos(2πf(M)) +

(
1 − xM

n + 1

)
1√
β

cos
(π

4
+ 2πβxM

)

− 1√
β

∑
k∈A

cos
(π

4
+ 2πβxk

)
+ O

(
log(β log n + 2)√

β log n

)
+ O

(
1
n

)∣∣∣∣∣
≥ 1√

β

∣∣∣∣ ∣∣∣ cos
(π

4
+ 2πβxa

)∣∣∣ − ∣∣∣∣ (
1 − xM

n + 1

)
cos

(π

4
+ 2πβne

− θ
β

)∣∣∣∣∣∣∣∣ + o(1),

where a = [β log M + β + x]. From the definition of M, we obtain

n − 1 = exp
(

β log(n − 1)
β

)
< xM =exp

(
M − β − x

β

)
≤exp

(
β log n

β

)
= n.

Thus
n − 1
n + 1

<
xM

n + 1
≤ n

n + 1
.

Therefore we obtain, for almost all x,

lim sup
n→∞

|tn − tn−1| ≥
1√
β

lim sup
n→∞

∣∣∣ cos
(π

4
+ 2πβxa

)∣∣∣
=

1√
β

lim sup
n→∞

∣∣∣∣ cos
(

π

4
+ 2πβexp

(
[β log[β log n + β + x] + β + x] − β − x

β

))∣∣∣∣
=

1√
β

> 0,

by the facts that for every λ > 1, (yλn)∞n=1 is u.d. mod 1 for almost all y,

where y = βe
−β+x

β and λ = e
1
β .
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This shows that tn does not converge for almost all x. Hence∑∞
n=1(an cos 2πnx + bn sin 2πnx) is not Cesàro summable, that is, not a

Fourie series.
Suppose that the series

∞∑
n=1

(an cos 2πnx + bn sin 2πnx)

is Borel summable. We note that the order of magnitude of the coefficients

of the series is clearly O

(
1√
n

)
. Hence the series converges by the known

Tauberian theorem for Borel summability method [5, Theorem 156].
This contradicts that the series is not Cesàro summable for any x.

Therefore the series is not Borel summable, which completes the proof.

Remark 4.2. It has brought to our notice that the original Orlicz
problem had been actually solved by Stečhkin[cf.2, Chap.XII, p.278]. In fact
he proved, possibly unware of the problem, a general theorem on divergent
trigonometric series, from which the solution to Orlicz’s problem follows
immediately as a corollary.
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[8] J.P.Kahane, Sur les polynómes à coefficients unimodulaires, Bull. London Math.
Soc. 12(1980)321-342.

[9] T.W.Körner, On a polynomial of Byrnes, Bull. London Math. Soc.,12, (1980)
219-224.

[10] J.E.Littlewood, On the mean values of certain trigonometrical polynomials, J.
London Math., Soc., vol.36(1961)307-334.

[11] J.E.Littlewood, On the mean values of certain trigonometrical polynomials II,
Illinois J. of Math., vol.6, No.1(1962)1-39.



136 KAZUO GOTO

[12] J.E.Littlewood, On polynomials,

n
X

±zm,

n
X

eαnizm, z = eθi , J. London Math.,

Soc., vol.41(1966)367-376.
[13] R.D. Mauldin(ed.), The Scottish Book, Problem No.121, Birkhäuser, 1981.
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