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SOME RESULTS ON LITTLEWOOD’S PROBLEM AND
ORLICZ’S PROBLEM

KAZUO GOTO

ABSTRACT. We give a concrete example to the known problem of Lit-
tlewood by applying the stationary phase ( or saddle point ) method.
We also give a trigonometric series which is not Borel summable and
not a Fourier series. The result is an affirmative answer to Orlicz’s
problem.

1. INTRODUCTION

In [12] Littlewood asked to prove the following [cf.14(Appendix 5)] :

There exist complex numbers a1, az, ... ,an with |a,| =1, n=
1,2,...,N, such that (1) holds for all real = and for all suffi-
ciently large N,

(1) AVN < < AsV'N,

N
§ :an€27rznx
n=1

where A1 and Ao are some absolute positive constants.

Kahane[8] proved the existence of the complex numbers a1, ag, ... ,ayn
and the real numbers A1 =1 —¢ey, A2 =1+ €en,and ey — 0as N — o
stated above. Korner[9] (see [15]) proved the problem stated above. How-
ever Korner’s method of proof is not effective and cannot supply any con-
crete example to Orlicz’s problem[1]. Our answer to Littlewood’s problem
is that we give a concrete example and give numerical values of A; and A,
by applying the stationary phase method.

Hardy and Littlewood [6] or [20] announced that they had showed
that

N
(2) Z exp(27i(an + Bnlogn)) < VN

n=1
uniformly in o and (3 .
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It is known that
N
v = Zexp(zﬂn logn)exp(nbi), (B #0isreal, 6 € ]0,2n]

n=1

satisfies | fx| < A(B)V'N, where A(3) is a positive constant depending only
on 3 ( see [10] ).
They considered in [6] the possibility of the convergence and Cesaro
summability of the series
oo
(3) Z npfée%ri(om—l—ﬁn log n), p > 0.
n=1
But they announced in [7] that they did not prove the possibility of the
convergence and Cesaro summability of (3) by using their method when
p = 0. In the case of p = 0, we can show as a consequence of Theorem 4.2
that the series (3) is not Borel summable and not a Fourier series.
For more related results, we give references [3, 12, 19].

Orlicz[13:No.121] proposed the following :
[e.e]
Give an example of a trigonometric series Z(an cos nx+by, sin nx)

n=1

(o.9]
everywhere divergent and such that Z:(|an|2+€ + b, ]?1€) < o0
n=1
for every e >0 .
In Proposition 2.4 we estimate fab @)z for some function h(z).
Then, in Theorem 3.1, we obtain both an upper bound and a lower bound

N
of the exponential sum Zexp@m’(an + fnlogn)). In Theorem 3.2, we

n=1
give an affirmative and concrete example to the problem of Littlewood.

In Theorem 4.2, we obtain a concrete trigonometric series, which is not
Borel summable and not a Fourier series everywhere in R. The proof of
Theorem 4.2 is more directly shown by using another estimation than that
of Theorem 3.1. The trigonometric series also gives an example to Orlicz’s
problem.

2. STATIONARY PHASE METHOD

We prepare Proposition 2.1 and Proposition 2.4, by using station-
ary phase method, for proving Theorem 3.1 in the next section.
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Proposition 2.1 ([18, Lemma 4.7]). Let f(x) be a real function on
[a,b] with a continuous steadily decreasing f' . Let Hy = f'(b) and Hy =
f'(a). Set H= Hy — Hy + 2. Then we have

b
Z p2mif(n) _ Z / e2mi(f(x)—mz) g0 | O(log H),

a<n<b Hi—e<m<Ho+e”®

where € 1s a positive constant less than 1 and the constant implied by the
O is absolute.

Lemma 2.2 ([4, Chap. IV]). Let a and ¢ # 0 be real numbers. Then
we have for all b > 0,

/b eit(a+cx2)dx — A e _ i i(a+cb?)t +0 ;
0 (e T 2bet” Bct)? )

as t — oo, where

A= /Ooul/2eiu sgn(c)du _ eim’ sgn(c)ﬁ
0

and the constant implied by the O is absolute.

Proof. The proof runs along the same lines as [4, Chap. IV], except
that we have to pay attentions to the dependency of parameters in the
O terms. The constants implied by the O’s are absolute in this proof.
Without loss of generality, we may assume ¢ > 0. If we put u = cta? for
t > 0, then we have

b ) 6iat cb?t ]
/ ezt(aJrcz )d$ — / u71/2ezudu.
0 2(ct)'/? Jo

We prove that the integral fooo u” B et du converges. Integrating by
parts, we have

o0 oo
/ uiéei“du = —lNﬁéeiN + 1/ ufgei“du,
N 1 22 N

where N = ¢b?t. The function u~3 is monotone decreasing. Applying the
second mean value theorem to the real and imaginary parts of the second
integral, we obtain

o
) 1 )
/ wreldy = —~N"2¢N £ O(N™3),

N 2
as N — oo. Then we obtain
eiat 00 1/2 iu eiat -1 9 1N 1
_— - du = —————(cb“t) 26" O —=
2(ct)1/2 /N wooea 2(ct)1/2 4 S b3(ct)?
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_ -1 at iN 1
o ¢ T © <b3(ct)2> '
Therefore

b elat cb?t _
/ ezt(a-‘rcacQ)dx _ / u—l/Qewdu
0 2(ct)1/2 Jo
_ e’ > —1/2iu g, _ > ~1/2 iug
_2(ct)1/2 ; U e'du . U edu

etat i 2 1
A i(a+cb?)t
2(ct)1/2 et +0 b3(ct)2 )’
which completes the proof. ]

Lemma 2.3 ([4, Chap. IV]). Suppose that a real function h(x) on
[0, b] satisfies the following conditions:
(i) h(z) is of class C3 , W' (0) =0, h"(0) #0, and h'(x) #0
on (0,b].
(i7) h"(z) >0, or h"(z) < 0, throughout (0, b].
Under these conditions, for any real number § with 0 < § < b, we
have

b ih(0)t+27i sgn(h’(0))
ezth(a})dx _ ﬁe
/o 2t|h"(0)]

e <t2|h<5> mTOTE |h~<o>|> +o(;)
O<t|h(5)_h(0)1|1/2 |h~<o>|>+0(< 7o) i)

as t — oo, where the constants implied by the O’s are absolute.
If we choose 6 > b, then

b thie) g ﬁeih(o)t+im' sgn(h”(0)) o 1
e\ dy = +
/o 2t[h"(0)] t2|h(b) — R(0)[%/2/]n"(0)]

*=woremon)
([ (b) = h(0)[1/2\/TH7(0)]

as t — oo, where the constants implied by the O’s are absolute.

1
R o-)

-+

Proof. The proof runs along the same lines as [4, Chap. IV]. Since
h(z) is of class C3, we have

h(z) = a + dz? + o(x?),
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by Taylor’s theorem, where a = h(0), d = h"(0)/2, and o’s are Landau’s
small o.

Without loss of generality, we may suppose that h”(z) > 0 on (0, d].
Consider the function ¢(z) = y/h(x) — a, which is differentiable on [0, b].
The function h(z) is strictly increasing. There exists ¥(u) the inverse
function of ¢(z) on (0,b]. Then ¥(u) is three times continuously differen-
tiable and strictly increasing on the interval [0, p(d)] with ¥(0) = 0 and
¥'(0) = d/2. We choose any § € [0,b).

Divide the interval [0,b] into [0, d] and [0, b] . In the first interval, by
changing the variable u = ¢(z) , we have

5 ©(d)
/ elth(x)dx — / BZth(\I](u))\I’/(U)du
0 0

p(d) ©(9) .
_ d—1/2/ ezt(a+u2)du+/ (\Il’(u) . \I//(O)) ezthl(u)du’
0 0

where hi(u) = a + u?. We have as u — +0

\III(U) — \II,(O) Lo
4 ——— — =U7(0).
() 5 O)
Thus
b I b
(5) / ezth(z)dx _ / ezth(x)dx + / €Zth(x)d$
0 0 0

o®) #(9) | b
:&W/ifﬂﬁwm+/ me—@@wme+/emwm.
0 0 g

We consider the above three integrals, respectively. By Lemma 2.2,
we have

iat

e(0) j . 1
it(a+u?) — € - L4 i(at+p(8)2)t
I R aatro +0 (o)

ezat

:2ﬂﬂA+O<¢éP;>+O<¢%ﬁ>'
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Since h'(z) # 0 on [4,b] and h”(x) has a constant sign, we have, as
t — 00,

b— b—
A 1 1 d
zth(w)d _ = zth(x)d
/5 TN W) da *

R R SR T ) _1/b_ ih(z) 4 (1
~it [h’(b—)e n(8)° il ¢\ )™

- <<|h/<2—>| * |h'16>|> 1) |

By virtue of (4), we have, for sufficiently small € > 0,

/90(5) (\p/(u) — \I/’(O)) eithi(w) a1 — 1 /“’0 M d Sith1(u) gy,

it Ry () du

(6) )
L[90) ='0) oy} ™7 L [ i) 4 V@) = WO0) 4,
it Ry () it J. dx hy (z)

L) o)

since ¥(u) is of class C® and ¥””(0) exists. Thus we have, as t — oo,

/0@(5)(\1/’(71) —(0))e™M W dy = O <’1> .

Therefore

b
/ cith(=) g
0

'at
=d~ 1/2{ A+O<

cofl)eol(
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Thus we have, as t — oo,

b
/ cith(=) g
0

emt

1 1 1 1
=Aova (rh«s) “h )P tw> o <rh<6> “h(0) m)

o (D o <<|h'<11)—>r y Wt&!) 1) |

On the other hand, by (5) and (6),

b . e(b) 5 p(b) A
/ ezth(m)d:E _ d_1/2/ ezt(a—l—u )du + / (\I/'(u) _ \I//(O))ezthl(u)du
0 0 0

ith(0)+ 1 misign(h”’ (0)
_ Ve TRoY (NN S T o) = —
2t[1"(0))| @()3 12 \/|h(0)] p(b) t \/[n"(0)]

which completes the proof. ]

The following Proposition 2.4 is an immediate consequence of Lemma
2.3.

Proposition 2.4. Suppose that a real function h(zx) is of class C®

n [a,b], W' (c) = 0 at just one point ¢ with a < ¢ < b, and h"(c) # 0.

Moreover, h'(x) > 0, or b (xz) < 0, throughout [a,b]. Then, for any real
number 0,

b
A eith(x)dx _ % exp <zth(c) + %Z’W Sgn(h//(c))>

40 ( 1 n 1 ) 1
t2|h(min(c + 6,b)) — h(c)|3/2 ~ t|h(min(b,c + §)) — h(c)|'/2 [h ()]

1

T |h’(m1nc+5b ))
)

+0 (X(b— (c+5))% (1+ 7

1

+O <<t2h(max(a,c— 8)) — h(c)|3/? + t|h(max(a,c — & (c)|1/2 \/W)

+0 (x((c—5) - )1 <1+ |h’(2+)\ Ih’(maLX a,c=9 |)>

as t — oo, where x(z) is the charactor function with x(xz) = 0 if z > 0,
otherwise x(z) = 1.
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3. LITTLEWOOD’S PROBLEM

Theorem 3.1. (i) Let > 0. We have, for any 0 < e < 1,

N ) 1= (oot (log N-+1) e}

. e 2
§ : eQﬂz(an+,@n logn) < . /N
n—1 VB e —1

e(1+€)/28
+0 —\/3(61/23 Y + O(log N),

where the constants implied by the O’s are absolute and {x} is the fractional
part of x.

(73) Let 0 < 5 <1/(2log2) =0.7213--- . For any 0 < € < 1, we have

N
Z e?wi(an+ﬁn logn)

n=1

>__
_\/Be e28 — 1
1

1 1 1 1 1
—e 5VN-{e¥ —1————5+0(—=)+0®ogN),
Z\/Beﬂ {65 1 6215_1}+ (\/B)+ (log N)

1 _ 1+{a+B(log N+1)+e} 1 1
243 \/N.{ew_l_ T }

where the constants implied by the O’s are absolute.

1
Remark 3.1. €26 — 1 — —1— > 0 holds for 0 < 3 < 1/2log2.
e2B -1
Proof. The constants implied by the O ’s are absolute in this proof.
Without loss of generality, we may assume 0 < o < 1. We write e(z) =
e?™% We set f(x) = ax + Bz log .
By Proposition 2.1, we have

N N
Iy = g g2milantfnlogn) g / e(f(z) — hz)dx + O(log H),
1

n=1 Hy—e<h<Has+e

where H; = a+f, Hy = a+(log N+1),and H = Hy—H;+2 = flog N+2
for an arbitrary positive number € < 1.

Set h(x) = ax+ Bz log Nx—hz as in Proposition 2.4, M = [a+[—¢€],
and K = [a + S(log N + 1) + €|, where [z] denotes the smallest integer
> x, and [z] denotes the largest integer < x.
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The real number ¢, satisfies the equation h'(c,) = 0, id.e., a +
B(log Nep, +1) — h =0, log Nep, = h;a —1.Forc=¢, — 90 or ¢;, + 9, we
have

1| 1 ‘ _ ‘ 1 <ot )
R (c) a+ BlogNce+ 3 —h B(logec—logep)| = B8 7

by the mean value theorem.
Thus

Iy = Z/ — hx)dz + O(log N)

K 1
- N Z / eQTriN(oax—&—ﬁxlog(Nx)—hz)dx + O(IOgN).

Therefore, since ¢, satisfies h'(¢,) = 0,h”(x) > 0 for z > 0, we obtain

In=N Z { m <Nh(ch) ;) +0 <531/2\/§. N;)
(7) +0 (511/2\/? ;) +0 (e];iwl) } + O(log N)

We have

2(0) = hlen)| = [h(en)| = cnfB,

|h(1) — h(cp)| =a+ BlogN —h —cpf — 00 as N — oo.

For any small § > 0, if ¢, —§ <0, or ¢, + 0 > 1, then the term of

_ 1 cp, 1 1 cp, 1
=0 (gmyf5 w2) +o (55 w)

is replaced by

(s w) o (G5 w)
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by Proposition 2.4. Thus ZhK: v In = O(% log N'). Therefore, for any small

0 >0,
1

K
In=VN > {\/?G(N((wh + Benlog Neyp, — hep) + g)
h=M

1 cn 1 ch ehiTa_l
+0 (v 5) 0 (Gavvm ﬂ>+O(N26)}

+ O(log N).
Thus
Il < f:“%“”+0< = §j55)>+m1A0
N| S — (& e og
B h=M \/N\/B h=M

1 A, )e2s MHD 1 Ao, gers MY
= O(log N),
VB ewm) -1 O\VEVE o d + Ol )

where A(a, 8) = e28M=2=0)  Therefore

e+1— {a+6(log N+1)+e}
|IN| < Ne I + 0 ¢
\/B e28 — 1

which completes the proof of (7).
Next we show (ii). From (7) and (8) with K := K — 2, we have

/ Ch 72772Nﬁc + g 1 Ch
il 2 Z {\/ VNV B
K—
_ /Ch 7271'1Nﬁch+4 + / Z / h 727erﬁch+4
h= K 1 h=M

+o(@ .

9) >\/\/§ ‘\/@6(—]\7501( + é) + vex—1e(—NpBcg—_1 + ;)’

+O<Vg>+0&gN)

e+l1—{a+pB(log N+1)+e}
28

T + O(log N),
)

+ O(log N)

nes ﬁ)eﬁ(K—Q—M—‘rl)

VB(e? —1)
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G

Using [re? + 1/ | = ¢/ , we obtain

[N | 2\}56216&(—1—04)—;{ ‘ \V efe (—ﬂeflf%e%([(_l)(e% - 1)) +1

10 - 62151_ 1} +0 <\/g> + O(log N)

o~ 36 ¢ 3gl0tBlog N+1)+e} /77| {6216 P 1 }

e28 —1
O <\/g> + O(log N)
_; { a1 1 } 1
FVN-qe2s —1— — +O<\/>)+O(logN).
e28 —1 ﬂ

N
Zexp(%ri(om + fn logn))‘ = |In]|

>

Sk

+

>

-

Thus we have

n=2
>—e 6\/7 %_ — 11 —|—O<\/T>+O(logN)>0,
\/B e28 —1 B
which completes the proof of Theorem 3.1. O

Now, as an immediate consequence of Theorem 3.1, we can give an
answer to Littlewood’s problem.

Theorem 3.2. Let a,, = exp(2wifinlogn), n = 1,2,..., where (3
is any constant with 0 < B < 1/(2log?2). Then (1) holds for all real x and
all sufficiently large N, where both constants A1 and As depend only on (.

4. ORLICZ’S PROBLEM

In this section, the proof of Orlicz’s problem is directly shown by
using another estimation than that of Theorem 3.1,which does not need
the condition such that the coefficient in main term of (11) is positive.

Lemma 4.1 ([cf.18, 4.12, 4.9 ]). Let f(x) be a real function on [a,b]
with a continuous steadily decreasing f'. Let o = f'(b) and 5 = f'(a). Let
g(x) be a real positive monotone function with a continuous derivative, and
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let |¢'(z)| be steadily decreasing. Then

- . e2mi(f(zr)—kzk)
Z g(n)e?m () —g=mi/4 ——————g(x)
a<n<b a<k<p ’f (wk)‘

+ O (max(g(a), g(b)) log(|8 — af +2)) + O (|g'(a)]) ,
where xy s the number satisfying f'(xg) = k.
Proof. 1t comes from directly from [18]. O

Next, we give a concrete trigonometric series which is not a Fourier
series. Moreover it is proved that the series is nowhere Borel summable.

Theorem 4.2. Let 3 # 0 and

an = n~1/2 cos(2nBnlog n)
by = —n~1/2sin(2nBnlogn).

Then though
o0
Z (Jan*T€ + [ba|*™) < 0o holds for every e >0,
n=1

oo
the trigonometric series g (an, cos 2mnx + by, sin 2rnx) is not a Fourier
. n=1
series .
Moreover the series is nowhere Borel summable.

Remark 4.1. By [16,pp.54-55], the trigonometric series given in
Theorem 4.2 is nowhere Fuler-Knopp summable, Taylor summable, and
Meyer-Kdnig’s summable.

Theorem 4.2 shows that the trigonometric series is an example to

Orlicz’s problem. Moreover, since Y 7, (ay cos2mnz + by, sin2wnz) =
1 oo . 1o )

Re (Zzozl n_ﬁezﬁl("x+5”1°g”)) , the series .00 | n=2e2mi(ne+fnlogn) jg not

Borel summable and not a Fourier series (cf.the comment on the series (3)

in the section 1 ).

Proof. Without loss of generality, we may assume 3 > 0. We show
that the series is not a Fourier series. To prove this it will suffice to show
that the series is not Cesaro summable on a set of positive measure of x
[15,p.89]. In fact we prove that the series is nowhere Cesaro summable.

We set

1 n 1 n
cp = —=cos2n(Bklogk + kx), s, = kz_ock, and ¢, = n_i_ll;osk.

Vi
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Then

1 n
tn = Sp, — n+12kck.
k=0
We set f(n) = (nlogn + nz. For an arbitrary positive integer
M(> [Blog(B8+1)+4 B+x+1]), we can choose n with M = [Blogn+ [+ x].
By Lemma 4.1,we have

M n

1 2mif (k) § 1 27rzf
76 +
k=M+1 \/E TL

tn:Re

Z \/E 2mif (k)

—7ri/4

M
L 27rzf(k —2mifxy
Re |3 e VD

k=1 Blog M+p+x<k<M
O <

—i—O( Blogn+2)>

—7i/4 1 )
log(Blogn + 2)> 6\/5 e Z zpe” 2P

Brx<k<M

k— (3 —
The number zp = exp gw) is the only root of the equation
Blogzy +8+x—k=0.
We have
t, = Z cos(2m f(k)) +
1<k<B+a \F
1 Tk 1 T
+ Z { cos(2mf(k)) + <1 - > —— cos (— + 27165%”
BHz<k<M \/E n+l \/B 4
1 <7r log(Blogn + 2)
- — Z cos | — + 27w Bxy —|—O< —— .
\/B B+r<k<plog M+pL+z 4 ) flogn

Since logn —log(n — 1) < 1/(n — 1) for all n, we can choose a subse-
quence n’ of n with [Blog(n — 1)+ B+ a] = [Blogn+ f+2]—1=M —1,
say. We abbreviate n’ to n. Then

ty —tp—1 = \/1M cos(2mf(M)) + <1 - nﬂ—Ml) \/13 Cos (% + 27rﬂxM>

1 1 1
+ﬁ Z (n T 1) T}, COS <% + 27Tﬁazk>

Btr<k<M-1
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log(Blogn + 2)
_%COS( +27T,BSU)+O< NG ),

where A = {k € N|SBlog|[Blog(n—1)++x]|+ 0+ < k < Blog M +[+x}.

We have
1 1
Z < - 1) T, COS (% + QWﬂxk>
Brackem—1 N T T

1 1
=0lz 2 = :O<n)v

0<k<M-1

where 237 = ne=?7 and 6 is the fractional part of Blogn + (8 + .
Thus we obtain, as n — oo,

cos(2mf(M)) + <1 — rf—kj\/ll) \/15 cos (Z + 27T,8$M)

|tn - tn—1| =

1
VM

log(Blogn + 2) 1
75 s (Framm) w0 (BT o (1)

keA

> f ‘ cos ( + 27Tﬁ:1:a> (1 — nxf1> cos (g + 27rﬁne_%) ’ +o(1),

where a = [flog M + [ + z|. From the definition of M, we obtain

n—1=exp (510%(5”—1)> < 24y —exp (M—ﬁﬁﬂ)

< (757) 5

n—1 Tr n
< < .
n+l n+1" n+1l
Therefore we obtain for almost all z,
liTanHsotip [tn, — tn—1| > T llrrgisotip ‘ cos (% + 2%5%)

- ( + 2 fexp ([mog[mogw’ﬂ*ﬂ + 8+ 1] —ﬂ—af)))
! E

Thus

=——Ilimsu
VB mene
1

VB
by the facts that for every A > 1, (yA™)>2, is u.d. mod 1 for almost all y,

+z

where y = fe and A = e%.

>0,



SOME RESULTS ON LITTLEWOOD’S PROBLEM AND ORLICZ’S PROBLEM 135

This shows that t, does not converge for almost all x. Hence
Yoo (ay cos2mna 4 by sin 2rnz) is not Cesaro summable, that is, not a
Fourie series.

Suppose that the series

oo
Z(an cos 2mnx + by, sin 2nx)

n=1

is Borel summable. We note that the order of magnitude of the coefficients

1
of the series is clearly O <\f> Hence the series converges by the known
n
Tauberian theorem for Borel summability method [5, Theorem 156].
This contradicts that the series is not Cesaro summable for any .

Therefore the series is not Borel summable, which completes the proof. [J

Remark 4.2. It has brought to our notice that the original Orlicz
problem had been actually solved by Stechkin[cf.2, Chap.XII, p.278]. In fact
he proved, possibly unware of the problem, a general theorem on divergent
trigonometric series, from which the solution to Orlicz’s problem follows
immediately as a corollary.
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