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HIGHER DERIVATIVES AND FINITENESS IN RINGS

HOWARD E. BELL

Abstract. Let n be a positive integer, R a prime ring, U a nonzero
right ideal, and d a derivation on R. Under appropriate additional
hypotheses, we prove that if dn(U) is finite, then either R is finite or
d is nilpotent. We also provide an extension to semiprime rings.

In [2] it is proved that if R is a prime ring and d is a derivation on R
such that d(R) is finite, then either R is finite or d = 0. This result invites
an investigation of prime rings with derivation such that dn(U) is finite for
some derivation d, some n ≥ 1, and some ideal (or right ideal) U . If U is a
nonzero ideal, or if U is a nonzero right ideal and R is suitably-restricted,
we can show that either R is finite or d is nilpotent on R.

1. Preliminaries

Let R be a ring and S a nonempty subset of R, and let f be a mapping
from R to R. We say that f is nilpotent on S if fn(S) = {0} for some
positive integer n; more generally, we call f periodic on S if there exist
distinct positive integers m, n such that fn(x) = fm(x) for all x ∈ S. We
denote the right annihilator of S by Ar(S).

We begin by stating and proving a lemma from [1].

Lemma 1.1. An infinite prime ring contains no nonzero finite right
ideal.

Proof. Let R be infinite and prime, and suppose H is a nonzero finite
right ideal. Let H \ {0} = {x1, x2, ..., xn}. For each i = 1, 2, ..., n, define
fi : R → H by fi(r) = xir for all r ∈ R. Then fi(R) is finite, hence ker fi =
Ar(xi) is a right ideal of R having finite index in R. Thus K =

⋂n
i=1 ker fi

is a right ideal of finite index, necessarily nonzero, such that HK = {0}.
But this cannot happen in a prime ring.

It is well-known that if R is a ring of prime characteristic p and d is
a derivation on R, then dp is also a derivation. This observation is the key
to the following lemma, which we shall use several times.
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Lemma 1.2. Let n be a fixed positive integer, and let R be a class
of prime rings with the following property:

(*) If R ∈ R admits a nonzero derivation d such that d(U) is finite
for some nonzero ideal (resp. right ideal) U , then R is finite.

Then for any R ∈ R and any derivation d such that dn(U) is finite for
some nonzero ideal (resp. right ideal) U , either R is finite or d is nilpotent
on R.

Proof. It will suffice to prove the right ideal version. Let R ∈ R and U
a nonzero right ideal of R, and let d be a derivation on R such that dn(U) is
finite. If charR = 0, then dn(U) = {0}; and by a result of Chung and Luh
[4], d is nilpotent on R. Thus, we assume that R has prime characteristic
p. Let P be the smallest power of p which is at least n, and let δ = dP .
Since δ is a derivation and δ(U) is finite, it follows from (∗) that either R
is finite or δ = 0; and the latter possibility implies that d is nilpotent on
R.

2. The case of U an ideal

If U is assumed to be an ideal, then we can show that dn(U) can be
finite only in the obvious ways.

Theorem 2.1. Let n be a fixed positive integer. Let R be a prime
ring and d a derivation on R such that dn(U) is finite for some nonzero
ideal U . Then either R is finite or d is nilpotent on R.

Proof. Let R be any prime ring, U any nonzero ideal and d a deriva-
tion on R such that d(U) is finite. Consider the map Φ : U → d(U) given
by Φ(x) = d(x) for all x ∈ U . Then kerΦ = {x ∈ U | d(x) = 0} is a
subring of U of finite index in U , so by a result of Lewin[5], kerΦ contains
an ideal H of U which has finite index in U . If H = {0}, then U is finite;
and by Lemma 1.1, R is finite. Suppose, then, that H 6= {0}. For all x ∈ U
and y ∈ H, we have 0 = d(yx) = yd(x) + d(y)x = yd(x); and therefore
yUd(U) = {0}. But for y ∈ H \{0}, yU is a nonzero right ideal of R, hence
Ar(yU) = {0}. Thus d(U) = {0}, and it follows easily that d = 0. Our
result now follows by Lemma 1.2.

3. The case of U a right ideal

Most of the proof of Theorem 2.1 works if U is assumed to be only
a right ideal; the hypothesis that U is a two-sided ideal is used only in
showing that y ∈ H \ {0} implies yU 6= {0}. Of course, if R is a domain,
the same implication holds; hence, we have
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Theorem 3.1. Let R be a ring with no nonzero divisors of zero, and
U a nonzero right ideal of R. If d is a derivation on R and dn(U) is finite
for some positive integer n, then either R is finite or d is nilpotent on R.

By combining Theorem 2.1 and a result in [3], we obtain

Theorem 3.2. Let R be a prime ring and U a nonzero right ideal
of R. If d is a nonzero derivation and there exists a positive integer n for
which dn(U) is finite and central, then d is nilpotent on R.

Proof. Assume d is not nilpotent. Then by the final result in [3], R is
commutative and hence U is an ideal. By Theorem 2.1, R is finite, hence
a finite commutative domain - i.e. a finite field. But it is known that finite
fields admit no nonzero derivations.

Whether we can always replace U in Theorem 2.1 by a right ideal is
an open question; however, we do have an affirmative answer for PI-rings.

Theorem 3.3. Let R be a prime PI-ring, and let d be a derivation
on R such that dn(U) is finite for some nonzero right ideal U and some
positive integer n. Then either R is finite or d is nilpotent on R.

Proof. In view of Lemma 1.2 and its proof, we may assume that d(U)
is finite and R has prime characteristic p. It is well known that a prime PI-
ring has nonzero center Z; and if z ∈ Z \ {0}, then d(zp) = pzp−1d(z) = 0,
so R has nonzero central constants.

Suppose that d(U) 6= {0}, and let |d(U)| = k. Then for any non-
constant u ∈ U and nonzero central constant z, there exist distinct m,
n ∈ {1, 2, ..., k + 1} such that d(zmu) = d(znu) - i.e. (zm − zn)d(u) = 0;
and since Z has no elements which are zero divisors in R, we get zm = zn.
It follows easily that there exist distinct integers M , N such that zM = zN

for all central constants z, hence Z satisfies the identity zMp = zNp and
therefore Z is a finite field.

Since R is a prime PI-ring, its central localization RZ is a primitive
PI-ring [6, Theorem 6.1.30]. Moreover, since Z is a field, R ∼= RZ and
hence R is primitive. By a classical result of Kaplansky, R is therefore
finite-dimensional over Z; hence R is finite.

In the proof of this theorem, the right ideal property of U is used only
twice: in the proof of Lemma 1.2, to show that d nilpotent on U implies
d nilpotent on R, and in the argument above to guarantee that ZU ⊆ U .
Thus, our methods yield

Theorem 3.4. Let R be a prime PI-ring and S an additive subgroup
such that ZS ⊆ S. If R admits a derivation d such that dn(S) is finite,
then either R is finite or d is nilpotent on S.
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4. A theorem on semiprime rings

We conclude the paper with a theorem which replaces “nilpotent” by
“periodic”, and which is available in the setting of semiprime rings.

Theorem 4.1. Let R be a semiprime ring having no nonzero finite
right ideals. If U is a nonzero right ideal of R and d is a derivation on
R such that dn(U) is finite for some positive integer n, then U contains a
nonzero right ideal U1 of R such that d is periodic on U1.

The proof uses a rather general lemma.

Lemma 4.2. Let R be an arbitrary ring and S a nonempty subset of
R. If f : R → R is a mapping such that f(S) ⊆ S and fn(S) is finite for
some positive integer n, then f is periodic on S.

Proof. Since f(S) ⊆ S, for each positive integer k we have fk+1(S) =
fk(f(S)) ⊆ fk(S). Thus, if fn(S) is finite, the chain fn(S) ⊇ fn+1(S) ⊇
fn+2(S) ⊇ . . . must become stationary at some point, say at fN (S) =
{x1, x2, . . . , xm}. Then for each u ≥ 1, the ordered m-tuple
(fu(x1), fu(x2), ..., fu(xm)) is a permutation of (x1, x2, ..., xm). Therefore
there exist distinct u, v ≥ 1 such that fu(xi) = fv(xi) for all i = 1, 2, ...,m.
Now for each x ∈ S, fN (x) = xi for some i = 1, 2, ...,m; therefore
fN+u(x) = fN+v(x) for all x ∈ S.

Proof of Theorem 4.1. Let U be a nonzero right ideal with dn(U)
finite. Let T be the torsion ideal of R; and for each prime p, let Tp be
the p-primary component of T . If T = {0}, then dn(U) = 0, so clearly
d is periodic on U . If T 6= {0} and U ∩ T = {0}, then UT = {0}; and
it follows easily by semiprimeness that TU = 0 as well. It follows that
Udm(U) = {0} = dm(U)U for all m ≥ n. By applying d to these equations
repeatedly, we see that di(U)dj(U) = {0} for all nonnegative i, j with
i ≥ n or j ≥ n. By Leibniz’ formula, we obtain d2n−1(U2) = {0}, hence d
is periodic on U2.

The remaining case is that of U ∩T 6= {0}, in which case U ∩Tp 6= {0}
for some prime p. Now by semiprimeness of R, pTp = {0}; thus, V = U∩Tp

is a nonzero right ideal of R with pV = {0}. Moreover, dP (V ) is finite,
where P is the smallest power of p which is at least n.

It remains only to prove that if V is any nonzero right ideal with pV =
{0} and dp

α

(V ) finite for some α, then d is periodic on some nonzero right
ideal contained in V . We use induction on

∣∣∣dp
α

(V )
∣∣∣. A crucial observation

is that, by Leibniz’ formula,
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dp
α

(xy) = dp
α

(x)y + xdp
α

(y) for x, y ∈ R with at least one of x, y in V.

(1)

If
∣∣∣dp

α

(V )
∣∣∣ = 1, then dp

α

(V ) = {0} = dp
α+1

(V ), so d is obviously

periodic on V . Now assume the result holds for nonzero right ideals V̂

with pV̂ = {0} and
∣∣∣dp

α

(V̂ )
∣∣∣ < k, and let V be a nonzero right ideal

with pV = {0} and
∣∣∣dp

α

(V )
∣∣∣ = k. If V contains a nonzero right ideal

I of R with
∣∣∣dp

α

(I)
∣∣∣ < k, the desired conclusion is immediate from the

inductive hypothesis; hence we assume that for every nonzero right ideal
I contained in V , dp

α

(I) = dp
α

(V ). Now since V is infinite and dp
α

(V ) is
finite, V contains a nonzero subset S such that dp

α

(S) = {0}; and since R
is semiprime, for s ∈ S \ {0}, sR is a nonzero right ideal contained in V .
Therefore, by (1) we get dp

α

(V ) = dp
α

(sR) = sdp
α

(R) ⊆ V ; hence dp
α

is
periodic on V by Lemma 4.2. Thus, d is periodic on V .
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