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ON REAL HYPERSURFACES
IN A COMPLEX SPACE FORM

HIROYUKI KURIHARA

0. INTRODUCTION

A complex n-dimensional Kahler manifold of constant holomorphic sec-
tional curvature 4c is called a complex space form, which denoted by M,/(c).
The complete and simply connected complex space form is a complex pro-
jective space P,(C), a complex Euclidean space C, or a complex hyperbolic
space H,(C), according as ¢ > 0,¢ =0,¢ < 0.

The induced almost contact metric structure of a real hypersurface M in
M, (c) is denoted by (¢,€,7, <, >).

Typical examples of real hypersurfaces in P,(C) are homogeneous one.
R.Takagi ([18]) classified all homogeneous real hypersurfaces in P,(C) into
six types. Namely he proved

Theorem A ([18]). Every homogeneous real hypersurfaces in Po(C) is lo-
cally congruent to one of the following;

(A1) a tube over a hyperplane P,_,(C),

(A2) a tube over a totally geodesic P,(C)(1 <k <n-—2),

(B) a tube over a complez quadric Qn_1,

(C) a tube over a Pi(C) x P,_1)/2(C) and n is odd,

(D) a tube over a complez Grassmann G25(C) and n =9,

(E) a tube over a Hermitian symmetric space SO(10)/U(5) and n = 15.

On the other hand, J.Berndt([2]) classified all real hypersurfaces in H,(C)
with constant principal curvatures under the condition such that ¢ is prin-
cipal. Namely he proved

Theorem B ([2]). Let M be real hypersurfaces in Hp,(C). Then M has
constant principal curvature and £ ts principal if and only if M s locally
congruent to one of the following;

(Ao) a horosphere,

(A1) e geodesic hypershere or a tube over a hyperplane H,_,(C),

(A2) a tube over a totally geodesic H,(C)(1 < k <n —2),

(B) a tube over a totally real hyperbolic space H,(R).

Let M be a real hypersurface of type A; or A; in P,(C) or that of Ay,
A; or A in H,(C). Then M is said to be of type A for simplicity.
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Moveover, M.Kimura and S.Maeda([9]) and S.S.Ahn, S.B.Lee and Y.J.Suh
([1]) found non-homogeneous real hypersurfaces in P,(C) and Hy(C), respec-
tively which is called ruled real hypersurfaces.

The purpose of this paper is to give some characterizations of real hyper-
surfaces in My (c),c # 0. In section 1 we investigate M by using the action
¢ on the curvature tensor R. The action of the derivation R(X,Y’) on the
algebra of tensor fields of a real hypersurfaces on My(c),c # 0 have been
studied by many authors([4],(5],[6],[9]~[11] and so on). In particular,we in-
vestigate M by using the action R(X,Y) on the tensor field ¢ in section
2.

The auther would like to thank Professor R.Takagi for his valuable sug-
gestions and encouragement during the preparation of this paper.

1. PRELIMINARIES

Let M be a real hypersurface of M,(c),c # 0. In a neighborhood of each
point, we choose a unite normal vector field N in My(c). The Levi-Civita

connection D in My (c) and V in M are related by the following formulas
for any X,Y € X(M), where X(M) is the set of all vector fields on M:

(1.1) DxY =VxY+ < AX,Y > N,
DxN = —AX,

where <, > denotes the Riemannian metric of M induced from the metric
g on My,(c) and A is the shape operator of M. An eigenvector field X of
the shape operator A is called a principal curvature vector field. Also an
eigenvalue A of A called a principal curvature. In what follows, we denote
V) the eigenspace of A with eigenvalue A.

It is known that M has an almost contact metric structure induced from
the complex structure J on My(c), i.e., we define a tensor ¢ of type (1,1), a
vector field £ and a 1-form  on M by the following,

(12) <¢X~;Y>:g(JXaY)! <§X >= n(X):g(JX’N)'

Then we have

(1.3) P*X =X +n(X), <&E>=1, ¢¢=0.
From (1.1), we have easily

(1.4) (Vxd)Y =n(Y)AX- < AX\Y > ¢,
(1.5) Vx& =¢AX.

Let R be the curvature tensor of M. Since the curvature tensor of My(c)
has a nice form, we have the following Gauss and Codazzi equations:

R(X,Y)Z =c(<Y,Z>X-<X,Z>Y
(1.6) + < @Y, Z > pX— < ¢X,Z > ¢Y — 2 < ¢X,Y > ¢Z)
+ < AY,Z > AX— < AX,Z > AY,
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(L7)  (VxA)Y — (VyA)X = n(X)gY —9(Y)$X —2 < $X,Y > ¢.

2. THE ACTION ¢ ON THE CURVATURE TENSOR OF M IN Mp,(c),c # 0.

First of all, for a ruled real hypersurface in My(c),c # 0, it is known that
following Lemma

Lemma 2.1 ([1],{9]). Let M be a real hypersurface in Myp(c),c # 0. The
shape operator A of M is written by
Af=af+pW (B#£0)
(2.1) AW = 3¢
AX =0 (forany X1& W)
where W is a unit vector field orthogonal to £, a,3 € C®(M) (C™®(M) is

the set of all smooth functions on M) if and only if M is locally congruent
to ruled real hypersurfaces.

Let M be a real hypersurface in Mp(c)(c # 0,n > 3) and Tj the distribu-
tion defined by To(z) = {X(z) € T,M|X(z) LE(z)} for x € M.
Using (1.3) and (1.6), we get
(#R)(X,Y)Z = ¢R(X,Y)Z — R(X,Y)¢Z — R(¢X,Y)Z — R(X,¢Y)Z
(2.2) =< AY,Z > (¢A — Ap)X— < AX,Z > (¢pA — A@)Y
+ < (A — AQ)Y,Z > AX— < (A — AP) X, Z > AY,
for any X,Y,Z € 1.

The purpose of this section is to prove the following

Theorem 1. Let M be a real hypersurface in My(c),(c # 0,n > 3). Sup-
pose

(2.3) (pR)(X,Y)Z =0,

for any X,Y,Z € Ty, then M ts locally congruent to be of type A or ruled
real hypersurfaces.

Let us prove Theorem 1.

First we assume that the structure vector field £ is not principal. Then we
can put Af = o + BW, where W € Ty, |W|| =1 and «, 8(# 0) € C*(M).
From (1.2),(1.3) and (2.2), the equation (2.3) shows

< ($R)(¢W, X)W — (pR)(W, X )¢W, & >= B < ¢X, AgW >= 0,

for any X € Ty. Therefore, since (1.2) and # # 0, we obtain < ¢A¢W, X >=
0. Together with < pApW,& >= 0, we find pApW = 0. Applying ¢ to this
equality and using (1.3), we get

(2.4) AW = 0.
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Again putting X = ¢W and Z = W in (2.3), from (1.3),(2.1) and (2.4)
we get
(2.5) < AY, W > AW - < AW, W > AY =0.
Taking the inner product with £, by 8 # 0 we have
< AY,W >=< AW, W >< Y, W >.

Thus we observe < AW, X >= 0 for any X € Tp,X L W. From this
equation we can write

(2.6) AW = BE + W,

where vy =< AW, W >€ C®(M).
Putting Y = W and Z = X in (2.3) and taking the inner product with
&, together with (1.2),(1.3),(2.2),(2.4) and B # 0, we observe

< ApX,X >=0.
Replacing X with Y + Z, we obtain
(2.7) < A¢Y — ¢AY,Z >=0,
for any Y, Z € Ty. Again replacing Y with ¢Y in above equation, we get
(2.8) < AY + ¢A¢Y,Z >=0.
Using (2.2) and (2.7), for any X,Y,Z € Ty and X,Y, ZLW, we rewrite (2.3)
- < AY,Z > (pA — AP)X— < AX,Z > (¢A — A9)Y = 0.
Putting X = ¢W in above equation, by (2.4) and 8 # 0, we obtain

< AY,Z >=0.

Above equation implies
(2.9) ¥=0 and AY =0,
for any Y L&, W. Thus because of (2.6),(2.9) and Lemma 2.1, M is locally
congruent to a ruled real hypersurface.

Next we assume that the structure vector field £ is principal with corre-
sponding principal curvature a. Then the following three propositions are
known.

Proposition A ([6],[12]). If€ is a principal curvature vector field, then the
corresponding principal curvature « is locally constant.

Proposition B ([12]). If £ is a principal curvature vector field with corre-
sponding principal curvature . Suppose X\ € Vy(xq) and a # 2A, then

$Xx € Vy(=(ar+20)/(22—a))-

Proposition C ([12]). If £ is a principal curvature vector field with cor-
responding principal curvature o. Suppose ¢Xy € V) for any vector fields
X € Vy(za)- Then ¢ and A are commutative.

Furthermore, M.Okumura([14]) and S.Montiel and A.Romero([13]) proved
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Theorem C ([13],[14]). Let M be a real hypersurface in My(c),c # 0.
Then ¢ and A are commutative if and only if M is locally congruent to
be of type A real hypersurfaces.

We can consider the following two cases.

First we suppose that o® — 4c = 0. In this case M is of type A in Theo-
rem B (for detail see ([2])).

Second we suppose that o? — 4c # 0.

Lemma 2.2. Let M be a real hypersurface in M,(c)(c # 0,n > 3) satisfying
(2.3) and £ is a principal vector field with corresponding principal curvature

a. Suppose that a® — 4c # 0. Then there ezists a principal curvature vector
field X € VA(;éa) such that ¢ X, € V).

Proof. Take an orthonormal frame field {¢, X,, #X»,(i =1,...,n—1)} con-
sisting of principal curvatures by a, A;, yi, respectively because of Proposi-
tion B. Such a frame field is said to be a local CR-frame field on M. Suppose
that A\; # piforalli =1,...,n—1. In (2.3) setting Y = ¢ X, and Z = X, ,
using (1.2),(1.3),(2.2) and Proposition B we have

AX =0 < Xy, X > X\, +pi < 0Xy,, X > X,
It follows that A\; = u; = 0, which is a contradiction. O

Lemma 2.3. Under the assumptions of Lemma 2.2, the principal curvature
of $X, is equal to that of X).(i=1,...,n—1).

Proof. There exists X, € {X,(i = 1,...,n — 1)} such that »?> = 1 because
of Lemma 2.2 and Proposition B. Then from (2.2) and Proposition B, we
get

(BR)(Xx;, X0)Z = v(Ai — pi)(— < Xy, Z > ¢ X5+ < 90X, Z > X)) =0,
for any Z € Ty. It follows that A\; = p;. O

Hence from Proposition C and Theorem C, M is locally congruent to
be of type A; or Az in Theorem A. Conversely by Lemma 2.1, the shape
operator A of ruled real hypersurfaces M in M, (c) is written by (2.1). From
this and Theorem C, it is easily checked that ruled real hypersurfaces and
real hypersurfaces of type A satisfy condition (2.3).

It completes the proof of Theorem 1.

Corollary 2. Let M be a real hypersurface in My(c),(c # 0,n > 3). If
(pR)(X,Y) Z =0 for one of X,Y,Z € X(M) and the rest in Ty, then M 1s
locally congruent to be of type A real hypersurfaces.

In fact, by (2.1) it is easily checked that ruled real hypersurfaces don’t
satisfy above condition.
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Remark 2.1. Y.Maeda([12]) classified real hypersurfaces in P,(C)(n > 3)
which satisfy the condition R = 0 and £ is a principal curvature vector

field.

3. CURVATURE OPERATOR OF M IN My(c),c # 0.

In this section, we consider the action of the derivation R(X,Y) on the
algebras of tensor fields of a real hypersurface in Myu(c),c # 0. We recall
that if T is a tensor field of type (r,s), then R(X,Y) -T = VxVyT —
VyVxT - VixyT for X,Y € X(M).

For brevity of notation, we denote by RT the tensor of type (r,s + 2)
defined by

(RT)(X1, X2y, Xs, X,Y) = (R(X,Y) - T)(X1, Xa, ..., X).

First of all we shall study real hypersurfaces M in My(c),c # 0 which
satisfy G(R¢)(X,Y)Z = 0 for any X,Y,Z € X(M), where G denotes the
cyclic sum with respect to X,Y and Z.

Using (1.2),(1.3) and (1.6), we get

(R$)(X,Y)Z = R(X,Y)¢Z — ¢R(X,Y)Z
(3.1) =c(< ¢X,Z > n(Y)§— < @Y, Z > n(X)¢ + n(X)n(2)¢Y
—p(Y)9(2)X)— < AY,Z > pAX+ < AX,Z > gAY
+ < AY,¢Z > AX— < AX,¢pZ > AY,
for any X,Y,Z € X(M).
Furthermore by (3.1) we have
S(R$)(X,Y)Z = (R¢)(X,Y)Z + (Rp)(Y, Z2)X + (R¢)(Z, X)Y
(3.2) =2¢(< X, Y > n(Z2)+ <Y, ¢Z > n(X)+ < Z,¢X > n(Y))
+ < (A + dA) XY > AZ+ < (Ap+ ¢A)Y,Z > AX
+ < (Ap+0A)Z, X > AY.

Lemma 3.1. Let M be a real hypersurface in Myp(c),c # 0. If
(3.3) 6(R¢)(X,Y)Z =0,
for any XY, Z € X(M), then the structure vector field £ is principal.

Proof. We assume that the structure vector field £ is not principal. Then we

can put A¢ = of + W, where W € Ty, ||[W| =1 and o, B(# 0) € C®°(M).
Putting X = ¢,Y = W and Z = ¢W in (3.3), by (1.2),(1.3) and (3.2), we

have

(3.4) —2c€+ < (Ad+ ¢A)oW, W > A€ + BAW = 0.

From (3.4), we can write

(3.5) AW = B€ + W,
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where v =< AW, W >€ C*(M). From (3.4) and (3.5), we obtain <
A¢W,¢W > = 0 and therefore

(3.6) 62 = ay - 2c.

On the other hand, let ey, ..., es,_1 be a local orthonormal flame field on
M. Let X =e; and Y = ¢e; in (3.3). Then contraction yields that
(3.7) —de(n — 1n(Z2)€ + 2A%Z —2A¢APZ + (1 — o’trA)AZ = 0.

Putting Z = £ in (3.7), we find
—4c(n — 1) +268% — 20y =0,
together with (3.6), we get —4cn = 0, which is a contradiction. O

Suppose M satisfies (3.3). Then by Lemma 3.1, the structure vector field
£ is principal with corresponding principal curvature a.
If o® — 4c = 0, then by the same discussion as in section 2, M is of type A
in Theorem B.
Hence we suppose that o? — 4c # 0. Then putting X = ¢ and Z = X, € V),
in (3.2), from (1.2) and (1.3), we find

2c+a(A+p)=0.
This equation tells us that a # 0. Together with Proposition B, we have

AlaX +2¢) = 0.
Thus M has three distinct constant principal curvatures
2
(3.8) 0, a, — <.
o

On the other hand, M.Kimura([8]) proved
Theorem D ([8]). Let M be a real hypersurface in P,(C). Then M has

constant principal curvature and £ is principal if and only if M is locally
congruent to a homogeneous real hypersurface.

Together with Theorem B, M is of type A; ~ E in Theorem A or type
Ay ~ B in Theorem B.

Conversely it is easily checked that these real hypersurfaces don’t satisfy
(3.8) and therefore also condition (3.3). Thus we obtain following Proposi-
tion
Proposition 3. Let M be a real hypersurface in M,(c),c # 0. Then M
cannot satisfies S(RP)(X,Y)Z =0 for any X,Y,Z € X(M).

Remark 3.1. R.Takagi([19]) and J.Saito([16]) classified real hypersurfaces
in Pp(C),n > 3 and H,(C),n > 3, with three distinct principal curvature,
respectively.

Corollary 4. Let M be a real hypersurface in M,(c),c # 0. Then M cannot
satisfies R¢p = 0.
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Next, we shall study real hypersurfaces M in M,(c),c # 0 which satisfy
(RP)(X,Y)Z =0 for any X,Y,Z € Ty.
Using (3.1), we get
(3.9) (RO)X,Y)Z =— < AY,Z > ¢pAX+ < AX,Z > pAY
+ < AY,¢Z > AX—- < AX,9Z > AY,
for any X,Y,Z € Ty. Assume
(3.10) (R$)(X,Y)Z =0.

First we assume that the structure vector field £ is not principal. Then we
can put A§ = af + W, where W € Ty, ||W|| = 1 and a, B(# 0) € C*°(M).

Taking the inner product of (3.9) with £, from (1.2),(1.3) and (3.10), we
have

(3.11) <<Y,W > ¢AX— < X,W > AY,Z >=0.
Putting X = W and Z = ¢W in (3.11), we observe
(3.12) AW = B¢ + W,

where v =< AW, W >€ C*®°(M). The equation (3.11) also implies
<Y, W >AX =< X, W > AY.

This equation tells us that

(3.13) AX =0,

for all X € Tp, X LW. In thjs case, three equations (3.12),(3.13) and A¢ =
a + BW imply the type number of M is smaller than 3, where the type
number of M is defined as the rank of A. For the probrem with respect to
the type number ¢, Y.J.Suh([17]) and M.Ortega and J.D.Perez([15]) showed
that

Theorem E ([15],(17]). Let M be a real hypersurface in My(c)(c # 0,n >
3) satisfying t(p) < 2 for any point p in M. Then M is a ruled real hyper-
surface.

Thus in this case, M is locally congruent to a ruled real hypersurface.

Second we assume that the structure vector field ¢ is principal with cor-
responding principal curvature a. If o — 4c = 0, then M is of type Ag
in Theorem B. Thus we guppose that o? — 4c # 0. Take a local CR-frame
field {¢, X, ¢X);(i = 1,...,n — 1)} consisting of principal curvatures by
@, Ai, i, Tespectively. Putting X = Z = X),; and ¥ = X, in (3.10), by
(1.2),(1.3) and (3.9), we obtain A; = 0 for some i. Then from Proposition
B, we get u; = —2¢/a. Furthermore putting X = Z = ¢X»; and Y = ¢ X,
in (3.10), we have uj = 0 for any j # i. Thus we get A\; = —2c/a for any
j # 1. Therefore M is of type A; ~ FE in Theorem A or type Ag ~ B in
Theorem B.
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Conversely it is trivial that these real hypersurfaces don’t satisfy (3.8)
and from (2.1) ruled real hypersurfaces satisfy (3.10).
Consequently, we obtain the following theorem.

Theorem 5. Let M be a real hypersurface in My,(c),c # 0,n > 3. Suppose
(RO)(X,Y)Z = 0 for any X,Y,Z € Ty, then M is locally congruent to a
ruled real hypersurface.
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