ON REAL HYPERSURFACES IN A COMPLEX SPACE FORM

HIROYUKI KURIHARA

0. Introduction

A complex n-dimensional Kähler manifold of constant holomorphic sectional curvature 4c is called a complex space form, which denoted by $M_n(c)$. The complete and simply connected complex space form is a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C} , or a complex hyperbolic space $H_n(\mathbb{C})$, according as c > 0, c = 0, c < 0.

The induced almost contact metric structure of a real hypersurface M in $M_n(c)$ is denoted by $(\phi, \xi, \eta, <, >)$.

Typical examples of real hypersurfaces in $P_n(\mathbb{C})$ are homogeneous one. R.Takagi ([18]) classified all homogeneous real hypersurfaces in $P_n(\mathbb{C})$ into six types. Namely he proved

Theorem A ([18]). Every homogeneous real hypersurfaces in $P_n(\mathbb{C})$ is locally congruent to one of the following;

- (A_1) a tube over a hyperplane $P_{n-1}(\mathbb{C})$,
- (A₂) a tube over a totally geodesic $P_k(\mathbb{C})(1 \leq k \leq n-2)$,
- (B) a tube over a complex quadric Q_{n-1} ,
- (C) a tube over a $P_1(\mathbb{C}) \times P_{(n-1)/2}(\mathbb{C})$ and n is odd,
- (D) a tube over a complex Grassmann $G_{2,5}(\mathbb{C})$ and n=9,
- (E) a tube over a Hermitian symmetric space SO(10)/U(5) and n=15.

On the other hand, J.Berndt([2]) classified all real hypersurfaces in $H_n(\mathbb{C})$ with constant principal curvatures under the condition such that ξ is principal. Namely he proved

Theorem B ([2]). Let M be real hypersurfaces in $H_n(\mathbb{C})$. Then M has constant principal curvature and ξ is principal if and only if M is locally congruent to one of the following;

- (A_0) a horosphere,
- (A_1) a geodesic hypershere or a tube over a hyperplane $H_{n-1}(\mathbb{C})$,
- (A_2) a tube over a totally geodesic $H_k(\mathbb{C})(1 \leq k \leq n-2)$,
- (B) a tube over a totally real hyperbolic space $H_n(\mathbb{R})$.

Let M be a real hypersurface of type A_1 or A_2 in $P_n(\mathbb{C})$ or that of A_0 , A_1 or A_2 in $H_n(\mathbb{C})$. Then M is said to be of type A for simplicity.

Moveover, M.Kimura and S.Maeda([9]) and S.S.Ahn, S.B.Lee and Y.J.Suh ([1]) found non-homogeneous real hypersurfaces in $P_n(\mathbb{C})$ and $H_n(\mathbb{C})$, respectively which is called ruled real hypersurfaces.

The purpose of this paper is to give some characterizations of real hypersurfaces in $M_n(c), c \neq 0$. In section 1 we investigate M by using the action ϕ on the curvature tensor R. The action of the derivation R(X,Y) on the algebra of tensor fields of a real hypersurfaces on $M_n(c), c \neq 0$ have been studied by many authors([4],[5],[6],[9]~[11] and so on). In particular, we investigate M by using the action R(X,Y) on the tensor field ϕ in section 2.

The auther would like to thank Professor R.Takagi for his valuable suggestions and encouragement during the preparation of this paper.

1. Preliminaries

Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. In a neighborhood of each point, we choose a unite normal vector field N in $M_n(c)$. The Levi-Civita connection D in $M_n(c)$ and ∇ in M are related by the following formulas for any $X, Y \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is the set of all vector fields on M:

(1.1)
$$D_X Y = \nabla_X Y + \langle AX, Y \rangle N,$$
$$D_X N = -AX,$$

where <,> denotes the Riemannian metric of M induced from the metric g on $M_n(c)$ and A is the shape operator of M. An eigenvector field X of the shape operator A is called a principal curvature vector field. Also an eigenvalue λ of A called a principal curvature. In what follows, we denote V_{λ} the eigenspace of A with eigenvalue λ .

It is known that M has an almost contact metric structure induced from the complex structure J on $M_n(c)$, i.e., we define a tensor ϕ of type (1,1), a vector field ξ and a 1-form η on M by the following,

$$(1.2) < \phi X, Y >= g(JX, Y), < \xi, X >= \eta(X) = g(JX, N).$$

Then we have

(1.3)
$$\phi^2 X = -X + \eta(X)\xi, \quad \langle \xi, \xi \rangle = 1, \quad \phi \xi = 0.$$

From (1.1), we have easily

$$(1.4) \qquad (\nabla_X \phi) Y = \eta(Y) A X - \langle AX, Y \rangle \xi,$$

(1.5)
$$\nabla_X \xi = \phi A X.$$

Let R be the curvature tensor of M. Since the curvature tensor of $M_n(c)$ has a nice form, we have the following Gauss and Codazzi equations:

$$R(X,Y)Z = c(\langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle \phi Y, Z \rangle \phi X - \langle \phi X, Z \rangle \phi Y - 2 \langle \phi X, Y \rangle \phi Z) + \langle AY, Z \rangle AX - \langle AX, Z \rangle AY,$$

$$(1.7) \qquad (\nabla_X A)Y - (\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2 < \phi X, Y > \xi.$$

2. The action ϕ on the curvature tensor of M in $M_n(c), c \neq 0$.

First of all, for a ruled real hypersurface in $M_n(c)$, $c \neq 0$, it is known that following Lemma

Lemma 2.1 ([1],[9]). Let M be a real hypersurface in $M_n(c), c \neq 0$. The shape operator A of M is written by

(2.1)
$$A\xi = \alpha \xi + \beta W \quad (\beta \neq 0)$$
$$AW = \beta \xi$$
$$AX = 0 \quad (for \ any \ X \perp \xi, W)$$

where W is a unit vector field orthogonal to ξ , $\alpha, \beta \in C^{\infty}(M)$ ($C^{\infty}(M)$ is the set of all smooth functions on M) if and only if M is locally congruent to ruled real hypersurfaces.

Let M be a real hypersurface in $M_n(c)(c \neq 0, n \geq 3)$ and T_0 the distribution defined by $T_0(x) = \{X(x) \in T_x M | X(x) \perp \xi(x)\}$ for $x \in M$. Using (1.3) and (1.6), we get

$$(\phi R)(X,Y)Z = \phi R(X,Y)Z - R(X,Y)\phi Z - R(\phi X,Y)Z - R(X,\phi Y)Z$$

$$(2.2) = \langle AY, Z \rangle (\phi A - A\phi)X - \langle AX, Z \rangle (\phi A - A\phi)Y$$

$$+ \langle (\phi A - A\phi)Y, Z \rangle AX - \langle (\phi A - A\phi)X, Z \rangle AY,$$

for any $X, Y, Z \in T_0$.

The purpose of this section is to prove the following

Theorem 1. Let M be a real hypersurface in $M_n(c), (c \neq 0, n \geq 3)$. Suppose

$$(2.3) \qquad (\phi R)(X,Y)Z = 0,$$

for any $X, Y, Z \in T_0$, then M is locally congruent to be of type A or ruled real hypersurfaces.

Let us prove Theorem 1.

First we assume that the structure vector field ξ is not principal. Then we can put $A\xi = \alpha\xi + \beta W$, where $W \in T_0$, ||W|| = 1 and $\alpha, \beta \neq 0 \in C^{\infty}(M)$. From (1.2),(1.3) and (2.2), the equation (2.3) shows

$$<(\phi R)(\phi W,X)W-(\phi R)(W,X)\phi W,\xi>=eta<\phi X,A\phi W>=0,$$

for any $X \in T_0$. Therefore, since (1.2) and $\beta \neq 0$, we obtain $\langle \phi A \phi W, X \rangle = 0$. Together with $\langle \phi A \phi W, \xi \rangle = 0$, we find $\phi A \phi W = 0$. Applying ϕ to this equality and using (1.3), we get

$$(2.4) A\phi W = 0.$$

Again putting $X = \phi W$ and Z = W in (2.3), from (1.3),(2.1) and (2.4) we get

Taking the inner product with ξ , by $\beta \neq 0$ we have

$$< AY, W > = < AW, W > < Y, W >$$
.

Thus we observe $\langle AW, X \rangle = 0$ for any $X \in T_0, X \perp W$. From this equation we can write

$$(2.6) AW = \beta \xi + \gamma W,$$

where $\gamma = \langle AW, W \rangle \in C^{\infty}(M)$.

Putting Y = W and Z = X in (2.3) and taking the inner product with ξ , together with (1.2),(1.3),(2.2),(2.4) and $\beta \neq 0$, we observe

$$< A\phi X, X >= 0.$$

Replacing X with Y + Z, we obtain

$$(2.7) < A\phi Y - \phi AY, Z >= 0,$$

for any $Y, Z \in T_0$. Again replacing Y with ϕY in above equation, we get

$$(2.8) \langle AY + \phi A \phi Y, Z \rangle = 0.$$

Using (2.2) and (2.7), for any $X, Y, Z \in T_0$ and $X, Y, Z \perp W$, we rewrite (2.3) as

$$< AY, Z > (\phi A - A\phi)X - < AX, Z > (\phi A - A\phi)Y = 0.$$

Putting $X = \phi W$ in above equation, by (2.4) and $\beta \neq 0$, we obtain

$$\langle AY, Z \rangle = 0.$$

Above equation implies

$$(2.9) \gamma = 0 and AY = 0,$$

for any $Y \perp \xi, W$. Thus because of (2.6),(2.9) and Lemma 2.1, M is locally congruent to a ruled real hypersurface.

Next we assume that the structure vector field ξ is principal with corresponding principal curvature α . Then the following three propositions are known.

Proposition A ([6],[12]). If ξ is a principal curvature vector field, then the corresponding principal curvature α is locally constant.

Proposition B ([12]). If ξ is a principal curvature vector field with corresponding principal curvature α . Suppose $X_{\lambda} \in V_{\lambda(\neq \alpha)}$ and $\alpha \neq 2\lambda$, then $\phi X_{\lambda} \in V_{\mu(=(\alpha\lambda+2c)/(2\lambda-\alpha))}$.

Proposition C ([12]). If ξ is a principal curvature vector field with corresponding principal curvature α . Suppose $\phi X_{\lambda} \in V_{\lambda}$ for any vector fields $X_{\lambda} \in V_{\lambda(\neq \alpha)}$. Then ϕ and A are commutative.

Furthermore, M.Okumura([14]) and S.Montiel and A.Romero([13]) proved

Theorem C ([13],[14]). Let M be a real hypersurface in $M_n(c), c \neq 0$. Then ϕ and A are commutative if and only if M is locally congruent to be of type A real hypersurfaces.

We can consider the following two cases.

First we suppose that $\alpha^2 - 4c = 0$. In this case M is of type A_0 in Theorem B (for detail see ([2])).

Second we suppose that $\alpha^2 - 4c \neq 0$.

Lemma 2.2. Let M be a real hypersurface in $M_n(c)(c \neq 0, n \geq 3)$ satisfying (2.3) and ξ is a principal vector field with corresponding principal curvature α . Suppose that $\alpha^2 - 4c \neq 0$. Then there exists a principal curvature vector field $X_{\lambda} \in V_{\lambda(\neq \alpha)}$ such that $\phi X_{\lambda} \in V_{\lambda}$.

Proof. Take an orthonormal frame field $\{\xi, X_{\lambda_i}, \phi X_{\lambda_i} (i = 1, ..., n-1)\}$ consisting of principal curvatures by α, λ_i, μ_i , respectively because of Proposition B. Such a frame field is said to be a local CR-frame field on M. Suppose that $\lambda_i \neq \mu_i$ for all i = 1, ..., n-1. In (2.3) setting $Y = \phi X_{\lambda_i}$ and $Z = X_{\lambda_i}$, using (1.2),(1.3),(2.2) and Proposition B we have

$$AX = \lambda_i < X_{\lambda_i}, X > X_{\lambda_i} + \mu_i < \phi X_{\lambda_i}, X > \phi X_{\lambda_i}$$

It follows that $\lambda_i = \mu_i = 0$, which is a contradiction.

Lemma 2.3. Under the assumptions of Lemma 2.2, the principal curvature of ϕX_{λ_i} is equal to that of X_{λ_i} (i = 1, ..., n-1).

Proof. There exists $X_{\nu} \in \{X_{\lambda_i} (i = 1, ..., n - 1)\}$ such that $\nu^2 = 1$ because of Lemma 2.2 and Proposition B. Then from (2.2) and Proposition B, we get

$$(\phi R)(X_{\lambda_i}, X_{\nu})Z = \nu(\lambda_i - \mu_i)(-\langle X_{\nu}, Z \rangle \phi X_{\lambda_i} + \langle \phi X_{\lambda_i}, Z \rangle X_{\nu}) = 0,$$
 for any $Z \in T_0$. It follows that $\lambda_i = \mu_i$.

Hence from Proposition C and Theorem C, M is locally congruent to be of type A_1 or A_2 in Theorem A. Conversely by Lemma 2.1, the shape operator A of ruled real hypersurfaces M in $M_n(c)$ is written by (2.1). From this and Theorem C, it is easily checked that ruled real hypersurfaces and real hypersurfaces of type A satisfy condition (2.3). It completes the proof of Theorem 1.

Corollary 2. Let M be a real hypersurface in $M_n(c)$, $(c \neq 0, n \geq 3)$. If $(\phi R)(X,Y)$ Z=0 for one of $X,Y,Z \in \mathfrak{X}(M)$ and the rest in T_0 , then M is locally congruent to be of type A real hypersurfaces.

In fact, by (2.1) it is easily checked that ruled real hypersurfaces don't satisfy above condition.

Remark 2.1. Y.Maeda([12]) classified real hypersurfaces in $P_n(\mathbb{C})(n \geq 3)$ which satisfy the condition $\phi R \equiv 0$ and ξ is a principal curvature vector field.

3. Curvature operator of M in $M_n(c), c \neq 0$.

In this section, we consider the action of the derivation R(X,Y) on the algebras of tensor fields of a real hypersurface in $M_n(c), c \neq 0$. We recall that if T is a tensor field of type (r,s), then $R(X,Y) \cdot T = \nabla_X \nabla_Y T - \nabla_Y \nabla_X T - \nabla_{[X,Y]} T$ for $X,Y \in \mathfrak{X}(M)$.

For brevity of notation, we denote by RT the tensor of type (r, s + 2) defined by

$$(RT)(X_1, X_2, \ldots, X_s, X, Y) = (R(X, Y) \cdot T)(X_1, X_2, \ldots, X_s).$$

First of all we shall study real hypersurfaces M in $M_n(c), c \neq 0$ which satisfy $\mathfrak{S}(R\phi)(X,Y)Z = 0$ for any $X,Y,Z \in \mathfrak{X}(M)$, where \mathfrak{S} denotes the cyclic sum with respect to X,Y and Z.

Using (1.2),(1.3) and (1.6), we get

$$(R\phi)(X,Y)Z = R(X,Y)\phi Z - \phi R(X,Y)Z$$

$$(3.1) = c(<\phi X, Z > \eta(Y)\xi - <\phi Y, Z > \eta(X)\xi + \eta(X)\eta(Z)\phi Y$$

$$-\eta(Y)\eta(Z)\phi X) - \phi AX + \phi AY$$

$$+ AX - AY,$$

for any $X, Y, Z \in \mathfrak{X}(M)$.

Furthermore by (3.1) we have

$$\mathfrak{S}(R\phi)(X,Y)Z = (R\phi)(X,Y)Z + (R\phi)(Y,Z)X + (R\phi)(Z,X)Y$$

$$(3.2) = 2c(\langle X, \phi Y \rangle \eta(Z) + \langle Y, \phi Z \rangle \eta(X) + \langle Z, \phi X \rangle \eta(Y))$$

$$+ \langle (A\phi + \phi A)X, Y \rangle AZ + \langle (A\phi + \phi A)Y, Z \rangle AX$$

$$+ \langle (A\phi + \phi A)Z, X \rangle AY.$$

Lemma 3.1. Let M be a real hypersurface in $M_n(c), c \neq 0$. If

(3.3)
$$\mathfrak{S}(R\phi)(X,Y)Z = 0,$$

for any $X, Y, Z \in \mathfrak{X}(M)$, then the structure vector field ξ is principal.

Proof. We assume that the structure vector field ξ is not principal. Then we can put $A\xi = \alpha \xi + \beta W$, where $W \in T_0$, ||W|| = 1 and $\alpha, \beta \neq 0$.

Putting $X = \xi, Y = W$ and $Z = \phi W$ in (3.3), by (1.2),(1.3) and (3.2), we have

(3.4)
$$-2c\xi + < (A\phi + \phi A)\phi W, W > A\xi + \beta AW = 0.$$

From (3.4), we can write

$$(3.5) AW = \beta \xi + \gamma W,$$

where $\gamma = \langle AW, W \rangle \in C^{\infty}(M)$. From (3.4) and (3.5), we obtain $\langle A\phi W, \phi W \rangle = 0$ and therefore

$$\beta^2 = \alpha \gamma - 2c.$$

On the other hand, let e_1, \ldots, e_{2n-1} be a local orthonormal flame field on M. Let $X = e_i$ and $Y = \phi e_i$ in (3.3). Then contraction yields that

$$(3.7) -4c(n-1)\eta(Z)\xi + 2A^2Z - 2A\phi A\phi Z + (1-\alpha^2 tr A)AZ = 0.$$

Putting $Z = \xi$ in (3.7), we find

$$-4c(n-1)+2\beta^2-2\alpha\gamma=0,$$

together with (3.6), we get -4cn = 0, which is a contradiction.

Suppose M satisfies (3.3). Then by Lemma 3.1, the structure vector field ξ is principal with corresponding principal curvature α .

If $\alpha^2 - 4c = 0$, then by the same discussion as in section 2, M is of type A_0 in Theorem B.

Hence we suppose that $\alpha^2 - 4c \neq 0$. Then putting $X = \xi$ and $Z = X_{\lambda} \in V_{\lambda}$ in (3.2), from (1.2) and (1.3), we find

$$2c + \alpha(\lambda + \mu) = 0.$$

This equation tells us that $\alpha \neq 0$. Together with Proposition B, we have

$$\lambda(\alpha\lambda+2c)=0.$$

Thus M has three distinct constant principal curvatures

$$(3.8) 0, \ \alpha, \ -\frac{2c}{\alpha}.$$

On the other hand, M.Kimura([8]) proved

Theorem D ([8]). Let M be a real hypersurface in $P_n(\mathbb{C})$. Then M has constant principal curvature and ξ is principal if and only if M is locally congruent to a homogeneous real hypersurface.

Together with Theorem B, M is of type $A_1 \sim E$ in Theorem A or type $A_0 \sim B$ in Theorem B.

Conversely it is easily checked that these real hypersurfaces don't satisfy (3.8) and therefore also condition (3.3). Thus we obtain following Proposition

Proposition 3. Let M be a real hypersurface in $M_n(c), c \neq 0$. Then M cannot satisfies $\mathfrak{S}(R\phi)(X,Y)Z = 0$ for any $X,Y,Z \in \mathfrak{X}(M)$.

Remark 3.1. R. Takagi([19]) and J. Saito([16]) classified real hypersurfaces in $P_n(\mathbb{C}), n \geq 3$ and $H_n(\mathbb{C}), n \geq 3$, with three distinct principal curvature, respectively.

Corollary 4. Let M be a real hypersurface in $M_n(c)$, $c \neq 0$. Then M cannot satisfies $R\phi \equiv 0$.

Next, we shall study real hypersurfaces M in $M_n(c), c \neq 0$ which satisfy $(R\phi)(X, Y)Z = 0$ for any $X, Y, Z \in T_0$. Using (3.1), we get

(3.9)
$$(R\phi)(X,Y)Z = -\langle AY, Z \rangle \phi AX + \langle AX, Z \rangle \phi AY + \langle AY, \phi Z \rangle AX - \langle AX, \phi Z \rangle AY,$$

for any $X, Y, Z \in T_0$. Assume

(3.10)
$$(R\phi)(X,Y)Z = 0.$$

First we assume that the structure vector field ξ is not principal. Then we can put $A\xi = \alpha\xi + \beta W$, where $W \in T_0$, ||W|| = 1 and $\alpha, \beta \neq 0$ $\in C^{\infty}(M)$.

Taking the inner product of (3.9) with ξ , from (1.2),(1.3) and (3.10), we have

(3.11)
$$\langle Y, W \rangle \phi AX - \langle X, W \rangle \phi AY, Z \rangle = 0.$$

Putting X = W and $Z = \phi W$ in (3.11), we observe

$$(3.12) AW = \beta \xi + \gamma W,$$

where $\gamma = \langle AW, W \rangle \in C^{\infty}(M)$. The equation (3.11) also implies

$$< Y, W > AX = < X, W > AY.$$

This equation tells us that

$$(3.13) AX = 0,$$

for all $X \in T_0, X \perp W$. In this case, three equations (3.12),(3.13) and $A\xi = \alpha \xi + \beta W$ imply the type number of M is smaller than 3, where the type number of M is defined as the rank of A. For the probrem with respect to the type number t, Y.J.Suh([17]) and M.Ortega and J.D.Perez([15]) showed that

Theorem E ([15],[17]). Let M be a real hypersurface in $M_n(c)$ ($c \neq 0, n \geq 3$) satisfying $t(p) \leq 2$ for any point p in M. Then M is a ruled real hypersurface.

Thus in this case, M is locally congruent to a ruled real hypersurface.

Second we assume that the structure vector field ξ is principal with corresponding principal curvature α . If $\alpha^2-4c=0$, then M is of type A_0 in Theorem B. Thus we suppose that $\alpha^2-4c\neq 0$. Take a local CR-frame field $\{\xi, X_{\lambda_i}, \phi X_{\lambda_i} (i=1,\ldots,n-1)\}$ consisting of principal curvatures by α, λ_i, μ_i , respectively. Putting $X=Z=X_{\lambda_j}$ and $Y=X_{\lambda_j}$ in (3.10), by (1.2),(1.3) and (3.9), we obtain $\lambda_i=0$ for some i. Then from Proposition B, we get $\mu_i=-2c/\alpha$. Furthermore putting $X=Z=\phi X_{\lambda_j}$ and $Y=\phi X_{\lambda_j}$ in (3.10), we have $\mu_j=0$ for any $j\neq i$. Thus we get $\lambda_j=-2c/\alpha$ for any $j\neq i$. Therefore M is of type $A_1\sim E$ in Theorem A or type $A_0\sim B$ in Theorem B.

Conversely it is trivial that these real hypersurfaces don't satisfy (3.8) and from (2.1) ruled real hypersurfaces satisfy (3.10).

Consequently, we obtain the following theorem.

Theorem 5. Let M be a real hypersurface in $M_n(c), c \neq 0, n \geq 3$. Suppose $(R\phi)(X,Y)Z = 0$ for any $X,Y,Z \in T_0$, then M is locally congruent to a ruled real hypersurface.

REFERENCES

- [1] S.S.Ahn, S.B.Lee and Y.J.Suh, On ruled real hypersurfaces in a complex space form, Tsukuba J. Math. 17 (1993), 311-322.
- [2] J.Berndt, Real hypersurfaces in a complex hyperbolic space, J. reine angew. Math. 395 (1989), 132-141.
- [3] T.E.Cecil and P.J.Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- [4] Y.W.Choe, Characterizations of certain real hypersurfaces of a complex space form, Nihonkai Math. J. 6 (1995), 97-114.
- [5] T.Goto, Geodesic hypersheres in complex projective space, Tsukuba J. Math. 18 (1994), 207-215.
- [6] U-H.Ki and Y.J.Suh, On real hypersurfaces of a complex space form, Math. J. Okayama 32 (1990), 207-221.
- [7] U-H.Ki, H.Nakagawa and Y.J.Suh, Real hypersurfaces with harmonic Wyle tensor of a complex space form, Hiroshima Math. J. 20 (1990), 93-102.
- [8] M.Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- [9] M.Kimura and S.Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
- [10] M.Kimura and S.Maeda, On real hypersurfaces of a complex projective space III, Hokkaido Math. J. 22 (1993), 63-78.
- [11] S.Maeda, Real hypersurfaces of complex projective spaces, Math. Ann. 263 (1983), 473-478.
- [12] Y.Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- [13] S.Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245-261.
- [14] M.Okumura, On some real hypersurfaces of a complex projective space, Trans. Am. Math. Soc. 212 (1975), 355-364.
- [15] M.Ortega and J.D.Perez, Constant holomorphic sectional curvature and type number of real hypersurfaces of complex hyperbolic space, In: Artemiadis, N. K. (ed.) et al., Proceedings of the 4th international congress of geometry, (ISBN 960-7425-11-1/hbk) (1997), 327-335.
- [16] J.Saito, Real hypersurfaces in a complex hyperbolic space with three constant principal curvatures, Tsukuba J. Math. 23 (1999), 353-367.
- [17] Y.J.Suh, A characterization of ruled real hypersurfaces in P_n(C), J. Korean Math. Soc. 29 (1992), 351-359.
- [18] R.Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- [19] R.Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I,II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.

HIROYUKI KURIHARA
DEPARTMENT OF MATHEMATICS AND INFORMATICS

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY CHIBA UNIVERSITY, CHIBA-SHI, 263-8522, JAPAN

e-mail address: hkurihar@math.s.chiba-u.ac.jp

(Received June 11, 1999)

(Revised August 28, 1999)