Math. J. Okayama Univ. 40 (1998), 135-140 [2000]

ON MORAVA K-GROUPS OF STUNTED PROJECTIVE SPACES

Y.M.YANG

1. Introduction

Let $k(n)^*(-)$ be the connective Morava K-theory with coefficient ring $k(n)^* = Z/2[v_n]$ and let $K(n)^*(-)$ be the Morava K-theory with coefficient ring $K(n)^* = Z/2[v_n, v_n^{-1}]$, where $|v_n| = -2(2^n - 1)$. In this paper we determine the module structure of $k(n)^*(RP_{m+1}^l)$ and the algebra structure of $k(n)^*(RP^l)$ over $k(n)^*$ at the prime 2. Here, the symbol RP_{m+1}^l denotes a stunted real projective space RP^l/RP^m $(0 \le m < l \le \infty)$.

Our principal tool for computing $k(n)^*(RP_{m+1}^l)$ is the Atiyah-Hirzebruch spectral sequence (AHSS)

$$E_2^{*,*} = H^*(RP_{m+1}^l; k(n)^*) \Longrightarrow k(n)^*(RP_{m+1}^l)$$

and we use the result of Yagita([1], LEMMA 2.1) for further computation.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to Professor G. Nishida for his constant attention and valuable advice. I am also grateful to Dr. M. Tanabe for several enlightening discussions and helpful advice.

2. STATEMENT OF RESULTS AND PROOFS

In this section, we determine the module structure of the Morava K-theory of the stunted real projective space and the algebra structure of the Morava K-theory of the real projective space over $k(n)^*$ at the prime 2.

The following lemma is needed for computation of the differentials of AHSS for $k(n)^*(RP_{m+1}^{\infty})$.

LEMMA 2.1[Yagita] Let X be a CW-complex. Let E_r be the Atiyah-Hirzebruch spectral sequence for $k(n)^*(X)$

$$E_2^{s,t} = H^s(X;k(n)^t) \Longrightarrow k(n)^{s+t}(X)$$

and its differential be $d_r: E_r^{s,t} \longrightarrow E_r^{s+r,t-r+1}$. Let $u \in H^*(X)$, then $d_r(u) = 0$ for $r < 2^{n+1} - 1$ and

$$d_{2^{n+l}-1}(u) = Q_n(u) \otimes v_n.$$

136 Y.M.YANG

where
$$Q_0 = Sq^1, Q_n = Sq^{2^n}Q_{n-1} + Q_{n-1}Sq^{2^n} (n \ge 1).$$

First we determine differentials of AHSS for $k(n)^*(RP_{m+1}^{\infty})$

$$E_2^{p,q}(RP_{m+1}^{\infty}) = H^p(RP_{m+1}^{\infty}; k(n)^q) \Longrightarrow k(n)^{p+q}(RP_{m+1}^{\infty}).$$

Let us consider the following cofibration

$$RP^m \stackrel{i}{\hookrightarrow} RP^\infty \stackrel{\pi}{\rightarrow} RP^\infty / RP^m = RP_{m+1}^\infty$$

from which we get the following exact sequence

$$0 \longrightarrow \tilde{H}^*(RP^{\infty}_{m+1}) \stackrel{\pi^*}{\longrightarrow} \tilde{H}^*(RP^{\infty}) \stackrel{i^*}{\longrightarrow} \tilde{H}^*(RP^m) \longrightarrow 0.$$

Throughout this paper all cohomology groups have Z/2 coefficients unless otherwise stated. Here we recall that $H^*(RP^{\infty}) = Z/2[u]$ where $u \in H^1(RP^{\infty})$ and, via π^* , we may identify $\tilde{H}^*(RP^{\infty}_{m+1})$ with the submodule of $\tilde{H}^*(RP^{\infty})$ generated by u^{m+1}, u^{m+2}, \cdots .

PROPOSITION 2.2 In the AHSS for $\tilde{k}(n)^*(RP_{m+1}^{\infty})$,

- 1. $d_{2^{n+1}-1}(u^{2i}) = 0$ for all $2i \ge m+1$.
- 2. $d_{2^{n+1}-1}(u^{2j+1}) = v_n u^{2j+2^{n+1}}$ for all $2j+1 \ge m+1$.
- 3. There are isomorphisms

$$\tilde{E}_{2^{n+1}}^{*,*} \cong \cdots \cong \tilde{E}_{\infty}^{*,*} \cong k(n)^* \{ u^{2i} | m+1 \le 2i \le m+2^{n+1}-1 \}$$
$$\oplus k(n)^* \{ u^{2k} | m+2^{n+1} \le 2k \} / (v_n).$$

PROOF. By induction on n we can easily compute the action of Q_n on $H^*(RP^{\infty})$ and hence on $H^*(RP^{\infty}_{m+1})$. In fact we have $Q_n(u^{2i}) = 0$ and $Q_n(u^{2i+1}) = u^{2i+2^{n+1}}$. Thus by the lemma 2.1 we get

(1)
$$d_{2^{n+1}-1}(u^{2i}) = 0 \text{ for any } 2i \ge m+1$$

and

(2)
$$d_{2^{n+1}-1}(u^{2j+1}) = v_n u^{2j+2^{n+1}} \text{ for any } 2j+1 \ge m+1.$$

This proves 1 and 2.

Next we prove 3. From (1), $v_n^a u^{2i}$ is cycle for any $a \ge 0$ and $2i \ge m+1$. If a=0, then u^{2i} can not be boundary. If $a \ge 1$ and $m+1 \le 2i \le m+2^{n+1}-1$, then for dimensional reason, $v_n^a u^{2i}$ can not be boundary. If $a \ge 1$ and $2i \ge m+2^{n+1}$, then since $v_n^a u^{2i} = d_{2^{n+1}-1}(v_n^{a-1}u^{2i-2^{n+1}+1})$, from (2), $v_n^a u^{2i}$ is boundary. Therefore $\tilde{E}_{2^{n+1}} \cong k(n)^* \{u^{2i} | m+1 \le 2i \le m+2^{n+1}-1\} \oplus k(n)^* \{u^{2k} | m+2^{n+1} \le 2k\}/(v_n)$. Since $E_{2^{n+1}}$ -term is concentrated in even degree we have $d_r = 0$ for any $r \ge 2^{n+1}$. Thus $\tilde{E}_{2^{n+1}} \cong \cdots \cong \tilde{E}_{\infty}$.

Next we consider RP_{m+1}^{l} . Let m < l and recall that

(3)
$$H^*(RP_{m+1}^l) = Z/2\{u^{m+1}, \dots, u^l\}.$$

Let $i: RP_{m+1}^l \hookrightarrow RP_{m+1}^\infty$ be the standard inclusion. Then induced homomorphism

$$i^*: H^*(RP_{m+1}^{\infty}) \to H^*(RP_{m+1}^l)$$

is epimorphism.

PROPOSITION 2.3 \tilde{E}_{∞} -term of the Atiyah-Hirzebruch spectral sequence for $\tilde{k}(n)^*(RP_{m+1}^l)$ is given by:

$$\tilde{E}_{\infty} \cong k(n)^* \{ u_{2i}, u_{2j+1} | m+1 \le 2i \le M, L \le 2j+1 \le l \}$$
$$\oplus k(n)^* \{ u_{2k} | m+2^{n+1} \le 2k \le l \} / (v_n)$$

as $k(n)^*$ -module where $M = Min(l, m + 2^{n+1} - 1)$, $L = Max(m + 1, l - 2^{n+1} + 2)$ and u_i denotes the class represented by u^i .

PROOF. For similarity, we only prove the proposition for the case: l is odd and m is even.

- (i). If $l < m + 2^{n+1}$, then for dimensional reason, all differentials are zero. Therefore $\tilde{E}_2 = \cdots = \tilde{E}_{\infty} \cong k(n)^* \{ u^{m+1}, \cdots, u^l \}$.
- (ii). If $l \ge m+2^{n+1}$, then since i^* is epimorphism, the generators u^{m+2k} are permanent cycle in AHSS for $\tilde{k}(n)^*(RP^l_{m+1})$ for $k=1,2,\cdots,l-1$. For dimensional reason, the generators u^{m+2k+1} are cycles for $l-2^{n+1}+2 \le m+2k+1 \le l$. Also since $v_n^a u^{m+2k+1}$ can not be boundary, from (1) and (2), $v_n^a u^{m+2k+1}$ is cycle and is not boundary for $l-2^{n+1}+2 \le m+2k+1 \le l$. Therefore

$$\tilde{E}_{2^{n+1}} \cong k(n)^* \{ u^{m+2}, \cdots, u^{m+2^{n+1}-2}; u^{l-2^{n+1}+2}, \cdots, u^l \}$$

$$\oplus k(n)^* \{ u^{m+2^{n+1}}, \cdots, u^{l-1} \} / (v_n).$$

For dimensional reason and the fact that u^{m+2k} are all permanent cycles, we have $d_r=0$ for all $r\geq 2^{n+1}$. Thus $\tilde{E}_{2^{n+1}}=\cdots=\tilde{E}_{\infty}$ and we get the proposition.

Let us consider the following filtration of $\tilde{k}(n)^*(RP_{m+1}^l)$

$$(4) \qquad \qquad \tilde{k}(n)^*(RP^l_{m+1}) = \tilde{F}^{0,*} \supset \cdots \supset \tilde{F}^{s,*-s} \supset \tilde{F}^{s+1,*-s-1} \supset \cdots$$

where $\tilde{F}^{s,*-s} = ker\{\tilde{k}(n)^*(RP^l_{m+1}) \longrightarrow \tilde{k}(n)^*((RP^l_{m+1})^{s-1})\}$ is a $k(n)^*$ -submodule of $\tilde{k}(n)^*(RP^l_{m+1})$. Then since $\tilde{F}^{l+1,*-l-1}=0$, the filtration (4) is finite. Note that $\tilde{E}^{s,*}_{\infty} \simeq \tilde{F}^{s,*}/\tilde{F}^{s+1,*-1}$.

Lemma 2.4 $\tilde{F}^{s,*}\cong \tilde{F}^{s+1,*-1}\oplus \tilde{E}_{\infty}^{s,*}$ as $k(n)^*$ -module.

138 Y.M.YANG

PROOF. We prove that the following exact sequence splits as $k(n)^*$ -module;

$$0 \longrightarrow \tilde{F}^{s+1,*-1} \longrightarrow \tilde{F}^{s,*} \xrightarrow{\pi} \tilde{E}_{\infty}^{s,*} \longrightarrow 0.$$

By Proposition 2.3,

5)
$$\tilde{E}_{\infty}^{s,*} \cong \begin{cases} k(n)^* & \text{if } s \text{ is even and } m+1 \le s \le Min(l, m+2^{n+1}-1) \\ k(n)^* & \text{if } s \text{ is odd and } Max(m+1, l-2^{n+1}+2) \le s \le l \\ k(n)^*/(v_n) & \text{if } s \text{ is even and } m+2^{n+1} \le s \le l \\ 0 & \text{otherwise} \end{cases}$$

If s is not in the third case, the exact sequence clearly splits. Suppose that s is even and $m + 2^{n+1} \le s \le l$. Let $u_s \in \tilde{E}_{\infty}^{s,0}$ be as in Proposition 2.3. Then since π is surjective, there exists an element $x \in \tilde{F}^{s,0}$ such that $\pi(x) = u_s$. To prove the lemma it suffices to show that $v_n x = 0$. Since $\pi(v_n x) = v_n \pi(x) = v_n u_s = 0$, $v_n x$ is in $\tilde{F}^{s+1,-2(2^n-1)-1}$. By Proposition 2.3, it is easy to see that $\tilde{E}_{\infty}^{s+k,-2(2^n-1)-k} = 0$ for all $k \ge 1$. Thus $\tilde{F}^{s+1,-2(2^n-1)-1} = 0$ and hence $v_n x = 0$.

From Lemma 2.4, we have the following Theorem.

Theorem 2.5 $\tilde{k}(n)^*(RP^l_{m+1})\cong \bigoplus_s \tilde{E}^{s,*-s}_{\infty}$ as graded $k(n)^*$ -module.

COROLLARY 2.6 As $k(n)^*$ -module

$$\tilde{k}(n)^*(RP_{m+1}^l) \cong k(n)^*\{x_{2i}, x_{2j+1}|m+1 \le 2i \le M, L \le 2j+1 \le l\}$$
$$\oplus k(n)^*\{x_{2k}|m+2^{n+1} \le 2k \le l\}/(v_n)$$

where $M = Min(l, m + 2^{n+1} - 1), L = Max(m + 1, l - 2^{n+1} + 2)$ and x_i corresponds to ui under the above isomorphism.

THEOREM 2.7 There exists a ring isomorphism $E_{\infty} \cong k(n)^*(RP^l)$.

PROOF. $E_{\infty}^{*,*}$ is generated by 1 and u_i as $k(n)^*$ -algebra and

$$u_i \cdot u_j = \begin{cases} u_{i+j} & \text{if } i+j \text{ is in the range given in Prop2.3.} \\ 0 & \text{if } i+j \text{ is out of the range.} \end{cases}$$

Let $x_i \in k(n)^*(RP^l)$ be as in Cor2.6. It is clear that both $x_i \cdot x_j$ and x_{i+j} represent u_{i+j} if i+j is in the range given in Prop2.3 and $x_i \cdot x_j$ represents 0 if i + j is out of the range. First we consider first case. In this case, $x_i \cdot x_j - x_{i+j}$ is in the higher filtration. But we can prove that the higher filtration is zero in the degree of $x_i \cdot x_i$ by using Prop2.3 as in the proof of Lem2.4 and hence $x_i \cdot x_j - x_{i+j} = 0$. Therefore $x_i \cdot x_j = x_{i+j}$. Similarly we have $x_i \cdot x_j = 0$ in the second case. This proves the theorem.

1. Let $l < 2^{n+1}$, then $k(n)^*(RP^l) = k(n)^*[u]/(u^{l+1})$ where the class u represents x_1 .

- 2. Let l be an odd integer such that $l > 2^{n+1}$, then $k(n)^*(RP^l) = k(n)^*[x,y]/(v_nx^{2^n},y^2-x^{l-2^{n+1}+2},x^{\frac{l+1}{2}},yx^{2^n})$ where $x = x_2, y = x_{l-2^{n+1}+2}$.
- 3. Let l be an even integer such that $l \ge 2^{n+1}$, then $k(n)^*(RP^l) = k(n)^*[x,z]/(v_nx^{2^n},z^2-x^{l-2^{n+1}+3},x^{\frac{l+2}{2}},z\cdot x^{2^n-1})$ where $z=x_{l-2^{n+1}+3}$.

PROOF 1. Trivial. 2. Let $\psi: k(n)^*[x,y] \longrightarrow k(n)^*(RP^l)$ be a $k(n)^*$ -algebra homomorphism given by $\psi(x) = x_2$ and $\psi(y) = x_{l-2^{n+1}+2}$. Then it is easy to see that ψ is surjective and $(v_n x^{2^n}, y^2 - x^{l-2^{n+1}+2}, x^{\frac{l+1}{2}}, yx^{2^n}) \subset \ker \psi$. By comparing graded dimension over \mathbb{F}_2 , we see that ψ induces an isomorphism $k(n)^*[x,y]/(v_n x^{2^n}, y^2 - x^{l-2^{n+1}+2}, x^{\frac{l+1}{2}}, yx^{2^n}) \xrightarrow{\cong} k(n)^*(RP^l)$. 3. The proof is similar to 2.

Using $K(n)^*(X) = k(n)^*(X)[v_n^{-1}], \quad K(n)^*(RP^l)$ and $K(n)^*(RP^l_{m+1})$ will immediately be deduced.

THEOREM 2.9 As $K(n)^*$ -module $\tilde{K}(n)^*(RP_{m+1}^l)$ is given by:

$$\tilde{K}(n)^*(RP_{m+1}^l) \cong K(n)^*\{x_{2i}, x_{2j+1}|m+1 \le 2i \le M, L \le 2j+1 \le l\}$$

where $M = Min(l, m + 2^{n+1} - 1)$ and $L = Max(m + 1, l - 2^{n+1} + 2)$.

THEOREM 2.10

1. Let $l < 2^{n+1}$, then

$$K(n)^*(RP^l) = K(n)^*[u]/(u^{l+1})$$

where the class u represents x_1 .

2. Let l be an odd integer such that $l > 2^{n+1}$, then

$$K(n)^*(RP^l) = K(n)^*[x,y]/(x^{2^n},y^2-x^{l-2^{n+1}+2})$$

where $x = x_2$, $y = x_{l-2^{n+1}+2}$.

3. Let l be an even integer such that $l \geq 2^{n+1}$, then

$$K(n)^*(RP^l) = K(n)^*[x,z]/(x^{2^n},z\cdot x^{2^n-1},z^2-x^{l-2^{n+1}+3})$$

where $z = x_{l-2^{n+1}+3}$.

REFERENCES

- [1] N. Yagita, On the Steenrod algebra of Morava K-theory, J.London Math. Soc.,22 (1980)
- [2] W.Stephen. Wilson, A BP Introduction and Sampler, Regional Conference Series No.48 (1982) A.M.S
- [3] T. Nishimoto Atiyah-Hirzebruch spectral sequence of $K(n)^*(SO(m))$ and $K(n)^*(Spin(m))$, Preprint.

Y. M. YANG
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KYOTO UNIVERSITY
KYOTO, 310-0056

(Received February 12, 1999)