Math. J. Okayama Univ. 40 (1998), 113-134 [2000]

THE QUASI KO*-TYPES OF STUNTED MOD 8 LENS SPACES

YASUZO NISHIMURA AND ZEN-ICHI YOSIMURA

0. Introduction

Let E be a ring spectrum with unit. Given CW-spectra X and Y we say that X is quasi E_* -equivalent to Y if $E \wedge X$ is equivalent to $E \wedge Y$ as an E-module spectrum (see [14]). In this case there exists a map $f:Y \to E \wedge X$ inducing an isomorphism $f_*:E_*Y \to E_*X$, which is called a quasi E_* -equivalence. For the real K-spectrum KO we are interested in the quasi KO_* -types of the mod q lens space L^n and its stunted space $L^n_{l+1} = L^n/L^l$ when q is a power of 2. Here we simply denote by L^{2m+1} the (2m+1)-dimensional standard mod q lens space $L^m(q)$ and by L^{2m} its 2m-skeleton $L^m_0(q)$. In [16] and [18] we have completely determined the quasi KO_* -types of the stunted mod 2 and mod 4 lens spaces. In this paper we shall determine the quasi KO_* -types of the stunted mod 8 lens spaces.

The complex K-spectrum KU possesses the conjugation ψ_C^{-1} . Given CW-spectra X and Y we say that X has the same C-type as Y if KU_*X is isomorphic to KU_*Y as an abelian group with involution ψ_C^{-1} . In the previous papers [16] and [18] we investigated all the C-types of the stunted mod 2 and mod 4 lens spaces L_{l+1}^n in order to determine their quasi KO_* -types. However it is very bothersome to investigate all the C-types of the stunted mod 8 lens spaces L_{l+1}^n because the behaviour of the conjugations ψ_C^{-1} on $KU^0L_{l+1}^n$ is complicated. To avoid a wasted effort in this paper we shall discuss several basic properties about the quasi KO_* -types of the stunted mod q lens spaces L_{l+1}^n (Propositions 1 and 2) by using Thom complexes and weighted projective spaces as stated below. These results assert that it is sufficient for us to determine only the quasi KO_* -types of $L^{2m} = L_0^m(8)$ and $L_3^{4s} = L_0^{2s}(8)/L_0^1(8)$ in order to establish our purpose (Theorems 2.8, 2.10 and 2.11) completely.

The second named author was partially supported by Grant-in-Aid for the Science Research of the Ministry of Education, 09640103.

Let ξ_{2m+1} be the canonical complex line bundle over $L^m(q)$ and ξ_{2m} its restriction onto $L_0^m(q)$. The stunted mod q lens space L_{2k}^{2k+n} is cellular homeomorphic to the Thom complex $T(k\epsilon_O(\xi_n))$, and L_{2k+1}^{2k+n} is so to $T(k\epsilon_O(\xi_n))/\Sigma^{2k}$, where ϵ_O stands for the realification. On the other hand, the S-dual $DL_{2k}^{2k+2m+1}$ is (stably) homotopy equivalent to the Thom complex $T(-k\epsilon_O(\xi_{2m+1})-\tau)$ where τ denotes the tangent vector bundle over $L^m(q)$. Using these facts we can show

Proposition 1. i) The stunted mod q lens space L_{l+4}^{n+4} is quasi KO_* -equivalent to $\Sigma^4 L_l^n$. In particular, L_{4m+1}^{4m+n} and L_{4m}^{4m+n} are quasi KO_* -equivalent to $\Sigma^{4m}L^n$ and $\Sigma^{4m} \vee \Sigma^{4m}L^n$, respectively. (Proposition 2.3).

ii) The S-dual DL_l^{4s+r} is quasi KO_* -equivalent to $\Sigma^{-4s-3}L_{3-r}^{4s+3-l}$ when $0 \le r \le 3$. (Proposition 2.4).

The mod q lens spaces $L_0^m(q)$ and $L^m(q)$ are exhibited as the fibers of certain maps $i_0: P^m \to P^{1,m-1}$ and $i: P^m \to P^{1,m}$, respectively. Here $P^m = P^m(1,1,\cdots,1)$ is the usual complex projective space of dimension m, and $P^{1,m-1} = P^m(q,1,\cdots,1)$ is the weighted projective space of type $(q,1,\cdots,1)$. Since the quasi KO_* -types of weighted projective spaces have been determined in [12], we can show

Proposition 2. When q is even, the stunted mod q lens space L_l^{4s-1} is quasi KO_* -equivalent to the wedge sum $L_l^{4s-2} \vee \Sigma^{4s-1}$, but L_l^{4s+1} is not so to $L_l^{4s} \vee \Sigma^{4s+1}$. (Proposition 2.6).

In §1 we construct new small spectra $PP'_{r,s,t,p,q}$, $_VPP'_{r,s,t,p,q}$, $_MPP'_{r,s,t,p,q}$ and so on appearing in Theorems 2.8, 2.10 and 2.11, and then study the behaviour of the conjugations ψ_C^{-1} on their KU-homology groups. Moreover we characterize the quasi KO_* -types of CW-spectra having the same C-type as $PP'_{r,s,t,p,q}$ ($_VPP'_{r,s,t,p,q}$) or $_PP'_{r,s,t,p,q}$ by developing the same method as adopted in [15] or [18] (Theorem 1.7). In the first part of §2 we discuss such several properties of the stunted mod q lens spaces L^n_{l+1} as Propositions 1 and 2 by using Thom complexes and weighted projective spaces. In the latter part of §2 we investigate the behaviour of the conjugations ψ_C^{-1} on $KU^0(L^m(8))$ and $KU^0(L^{2s}(8)/L^1(8))$, and then dualize their results to

determine the C-types of $L^{2m} = L_0^m(8)$ and $L_3^{4s} = L_0^{2s}(8)/L_0^1(8)$ (Propositions 2.7 and 2.9). Applying the characterization given in Theorem 1.7 to L^m and L_3^{4s} we can easily determine their quasi KO_* -types. Consequently we can prove our main results (Theorems 2.8, 2.10 and 2.11) by virtue of Propositions 1 and 2, as is stated above.

1. Small spectra $PP'_{r,s,t,p,q}$ and $MPP'_{r,s,t,p,q}$

1.1. Let $SZ/2^m$ ($m \geq 1$) be the Moore spectrum of type $Z/2^m$, and $i: \Sigma^0 \to SZ/2^m$ and $j: SZ/2^m \to \Sigma^1$ be the bottom cell inclusion and the top cell projection, respectively. The stable Hopf map $\eta: \Sigma^1 \to \Sigma^0$ of order 2 admits an extension $\bar{\eta}: \Sigma^1 SZ/2^m \to \Sigma^0$ and a coextension $\tilde{\eta}: \Sigma^2 \to SZ/2^m$ satisfying $\bar{\eta}i = \eta$ and $j\tilde{\eta} = \eta$. Let us denote by $P_{m,n}, P'_{m,n}, P''_{m,n}, VP_{m,n}$ and $VP'_{m,n}$ the small spectra constructed as the cofibers of the following maps $\bar{\eta}j, i\bar{\eta}, i\bar{\eta} + \bar{\eta}j: \Sigma^1 SZ/2^n \to SZ/2^m, i_V \bar{\eta}j: \Sigma^1 SZ/2^n \to V_m$ and $i\bar{\eta}j'_V: \Sigma^{-1}V'_n \to SZ/2^m$, respectively. Here we adopt the notations V_m and V'_n in place of $P'_{m-1,1}$ and $P_{1,n-1}$, respectively, and $i_V: SZ/2^{m-1} \to V_m$ is the canonical inclusion and $j'_V: V'_n \to \Sigma^2 SZ/2^{n-1}$ is the canonical projection. According to [11, Proposition 3.2] and its dual, the spectra $VP_{m,n}$ and $VP'_{m,n}$ are quasi KO_* -equivalent to $\Sigma^2 P_{n+1,m-1}$ and $\Sigma^6 P'_{n-1,m+1}$, respectively.

As in [13] (or [18]) we denote by $PP'_{r,s,p}$, $P'P_{p,r,s}$, ${}_{V}PP'_{r,s,p}$ and ${}_{V}P'P_{p,r,s}$ the small spectra constructed as the cofibers of the following maps

 $\begin{array}{ll} (\bar{\eta}j,i\bar{\eta}): \Sigma^{1}SZ/2^{p} \rightarrow SZ/2^{r} \vee SZ/2^{s}, & i\bar{\eta} \vee \bar{\eta}j: \Sigma^{1}SZ/2^{r} \vee \Sigma^{1}SZ/2^{s} \rightarrow SZ/2^{p}, \\ (i_{V}\bar{\eta}j,i\bar{\eta}): \Sigma^{1}SZ/2^{p} \rightarrow V_{r} \vee SZ/2^{s}, & i\bar{\eta}j_{V}' \vee \bar{\eta}j: \Sigma^{-1}V_{r}' \vee \Sigma^{1}SZ/2^{s} \rightarrow SZ/2^{p}, \end{array}$

respectively. Evidently there hold the S-dualities $\Sigma^3 DPP'_{r,s,p} = P'P_{p,r,s}$ and $\Sigma^3 D_V PP'_{r,s,p} = _VP'P_{p,r,s}$. Note that $PP'_{r,0,p} = P_{r,p}, _VPP'_{r,0,p} = _VP_{r,p}, _VPP'_{1,s,p} = P'_{s,p+1}$ and their duals hold. In [18, Propositions 2.1 and 2.3] these small spectra were written as $U_{s,r,p}, U'_{p,r,s}, V_{s,r,p}$ and $V'_{p,r,s}$. According to [18, Corollary 3.4] the spectra $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p,r,s}$ are quasi $P'P_{p,r,s}$ and $P'P_{p$

We introduce new small spectra $P_{r,s,p,q}$, $P'_{p,q,r,s}$, $_VP_{r,s,p,q}$, $_VP'_{p,q,r,s}$, $_PP'_{r,s,t,p,q}$, $_PP'_{p,q,r,s,t}$, $_PP'_{r,s,t,p,q}$ and $_VP'P_{p,q,r,s,t}$ constructed as the cofibers of the following maps

$$(1.1) \begin{array}{cccc} i\bar{\eta}j_{P}\vee\tilde{\eta}j & : & \Sigma^{-1}P_{r,p}\vee\Sigma^{1}SZ/2^{q}\rightarrow SZ/2^{s}, \\ (i'_{P}\tilde{\eta}j,i\bar{\eta}) & : & \Sigma^{1}SZ/2^{s}\rightarrow P'_{p,r}\vee SZ/2^{q}, \\ i\bar{\eta}_{V}j_{P}\vee\tilde{\eta}j & : & \Sigma^{-1}_{V}P_{r,p}\vee\Sigma^{1}SZ/2^{q}\rightarrow SZ/2^{s}, \\ (vi'_{P}\tilde{\eta}j,i\bar{\eta}) & : & \Sigma^{1}SZ/2^{s}\rightarrow {}_{V}P'_{p,r}\vee SZ/2^{q}, \\ i\bar{\eta}j_{P}\vee\tilde{\eta}jj'_{P} & : & \Sigma^{-1}P_{r,p}\vee\Sigma^{-1}P'_{t,q}\rightarrow SZ/2^{s}, \\ (i'_{P}\tilde{\eta}j,i_{P}i\bar{\eta}) & : & \Sigma^{1}SZ/2^{s}\rightarrow P'_{p,r}\vee P_{q,t}, \\ i\bar{\eta}_{V}j_{P}\vee\tilde{\eta}jj'_{P} & : & \Sigma^{-1}_{V}P_{r,p}\vee\Sigma^{-1}P'_{t,q}\rightarrow SZ/2^{s}, \\ (vi'_{P}\tilde{\eta}j,i_{P}i\bar{\eta}) & : & \Sigma^{1}SZ/2^{s}\rightarrow {}_{V}P'_{p,r}\vee P_{q,t}, \end{array}$$

respectively. Here $i_P: SZ/2^q \to P_{q,t}, \ i'_P: SZ/2^p \to P'_{p,r}, \ Vi'_P: SZ/2^p \to VP'_{p,r}$ are the canonical inclusions, and $j_P: P_{r,p} \to \Sigma^2 SZ/2^p, \ Vj_P: VP_{r,p} \to \Sigma^2 SZ/2^p, \ j'_P: P'_{t,q} \to \Sigma^2 SZ/2^q$ are the canonical projections. Evidently there hold the S-dualities $\Sigma^3 DP_{r,s,p,q} = P'_{p,q,r,s}, \ \Sigma^3 DVP_{r,s,p,q} = VP'_{p,q,r,s}$. Note that $P_{r,s,p,q} = P'P_{p,q,r,s,t}$ and $P'P_{r,s,p,q} = VP'P_{p,q,r,s,t}$. Note that $P_{r,s,p,0} = PP'_{r,s,p}, \ VP_{r,s,p,0} = VPP'_{r,s,p}, \ VP_{r,s,p,q} = P'P_{r,s,p,q}, \ PP'_{r,s,0,p,q} = P'P_{r,s,0,p,q} = P'P_{r,s,0,p,q}, \ VPP'_{r,s,p,q}, \ VPP'_{r,s,p,q}, \ VPP'_{r,s,p,q}, \ VPP'_{r,s,p,q}, \ VPP'_{r,s,p,q}, \ VPP'_{r,s,p,q}, \ PP'_{r,s,p,q}, \ PP'_{r,s$

$$(1.2) \begin{array}{ll} \tilde{\eta}jj_{P'P}: \Sigma^{-1}P'P_{s,p,q} \rightarrow SZ/2^r, & i_{PP'}i\bar{\eta}: \Sigma^{1}SZ/2^r \rightarrow PP'_{p,q,s}, \\ i_{V}\tilde{\eta}jj_{P'P}: \Sigma^{-1}P'P_{s,p,q} \rightarrow V_r, & i_{PP'}i\bar{\eta}j'_{V}: \Sigma^{-1}V'_{r} \rightarrow PP'_{p,q,s}, \\ \tilde{\eta}jj_{P'P}\pi'_{P}: \Sigma^{-1}P'_{s,t,p,q} \rightarrow SZ/2^r, & l_{P}i_{PP'}i\bar{\eta}: \Sigma^{1}SZ/2^r \rightarrow P_{p,q,s,t}, \\ i_{V}\tilde{\eta}jj_{P'P}\pi'_{P}: \Sigma^{-1}P'_{s,t,p,q} \rightarrow V_r, & l_{P}i_{PP'}i\bar{\eta}j'_{V}: \Sigma^{-1}V'_{r} \rightarrow P_{p,q,s,t}, \end{array}$$

respectively. Here $i_{PP'}: SZ/2^p \to PP'_{p,q,s}, \ l_P: PP'_{p,q,s} \to P_{p,q,s,t}$ are the canonical inclusions, and $j_{P'P}: P'P_{s,p,q} \to \Sigma^2 SZ/2^p, \ \pi'_P: P'_{s,t,p,q} \to PP'_{s,p,q}$ are the canonical projections.

For $Y=P_{r,s,p,q}$ or $_VP_{r,s,p,q}$ we observe that $KU_1Y=0$ and KU_0Y is isomorphic to the direct sum $KU_0PP'_{r,s,p}\oplus KU_0\Sigma^2SZ/2^q$ if s>q, to $KU_0SZ/2^r\oplus KU_0P'P_{s,p,q}$ if r>p, and to $KU_0P_{r,p}\oplus KU_0P_{s,q}$ if r>p>s, $r\leq p\geq s$, p>s>q or $p\geq s\leq q$. For $X=PP'_{r,s,t,p,q}$ or $_VPP'_{r,s,t,p,q}$ similarly we observe that $KU_1X=0$ and KU_0X is isomorphic to the direct sum $KU_0P_{r,s,p,q}\oplus KU_0SZ/2^t$ if q>t, to $KU_0SZ/2^r\oplus KU_0P'_{s,t,p,q}$ if r>p, to $KU_0PP'_{r,s,p}\oplus KU_0P'_{t,q}$ if s>q, $s\geq q\leq t$, $r>p\leq s\geq q$ or $r\leq p< s\geq q$, and to $KU_0P_{r,p}\oplus KU_0PP'_{s,t,q}$ if p>s, $r\leq p\geq s$, $p\geq s\leq q>t$ or $p\geq s$, $p\geq s\leq q>t$. In order to investigate the behavior of the conjugations ψ_C^{-1}

on KU_0Y and KU_0X we recall the following result shown in [18, Proposition 2.1 i)] (or [13, Proposition 1.1]).

Proposition 1.1. When $X = PP'_{r,s,p}$ or $_VPP'_{r,s,p}$ $(r, p \ge 1 \text{ and } s \ge 0)$, the conjugation ψ_C^{-1} on KU_0X is represented by the following matrix $A_{r,s,p}$:

$$(1) r > p > s (2) r \ge p \le s$$

$$KU_0X \cong Z/2^r \oplus Z/2^p \oplus Z/2^s Z/2^r \oplus Z/2^{p-1} \oplus Z/2^{s+1}$$

$$\psi_C^{-1} = \begin{pmatrix} 1 & 2^{r-p} & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2^{r-p+1} & -2^{r-p} \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(3) r \le p \ge s (4) r \le p \le s$$

$$KU_0X \cong Z/2^{r-1} \oplus Z/2^{p+1} \oplus Z/2^s Z/2^{r-1} \oplus Z/2^p \oplus Z/2^{s+1}$$

$$\psi_C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -2^{p-r+2} & -1 & 0 \\ -2^{p-r+1} & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2^{p-r+1} & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

When $X = P'P_{p,r,s}$ or $_VP'P_{p,r,s}$ $(r, p \ge 1 \text{ and } s \ge 0)$, the conjugation ψ_C^{-1} on KU_0X is immediately given as a dual of Proposition 1.1 (see [18, Proposition 2.1 ii)]), by making use of the universal coefficient sequence

$$0 \to \operatorname{Ext}(KU_{-1}DX,Z) \to KU_0X \to \operatorname{Hom}(KU_0DX,Z) \to 0$$

where DX stands for the S-dual of X. By a routine argument using Proposition 1.1 and its dual we can easily show

Proposition 1.2. When $X = PP'_{r,s,t,p,q}$ or $_VPP'_{r,s,t,p,q}$ $(r,s,p,q \ge 1)$ and $t \ge 0$, the conjugation ψ_C^{-1} on KU_0X is represented by the following matrix $A_{r,s,t,p,q}$:

$$(3) \ r > p \ge s \le q > t, \ r > p > s \le q \ge t$$

$$Z/2^r \oplus Z/2^p \oplus Z/2^{s-1} \oplus Z/2^{q+1} \oplus Z/2^t$$

$$\begin{pmatrix} 1 & 2^{r-p} & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0\\ 0 & -1 & 1 & 0 & 0\\ 0 & 2^{q-s+1} & -2^{q-s+2} & -1 & 0\\ 0 & 0 & -2^{q-s+1} & -1 & 1 \end{pmatrix}$$

(5)
$$r > p \le s \ge q > t$$
, $r \ge p \le s > q > t$
 $Z/2^r \oplus Z/2^{p-1} \oplus Z/2^{s+1} \oplus Z/2^q \oplus Z/2^t$

$$\begin{pmatrix} 1 & 2^{r-p+1} & -2^{r-p} & 0 & 0 \\ 0 & -1 & 1 & 2^{s-q} & 0 \\ 0 & 0 & 1 & 2^{s-q+1} & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

(7)
$$r > p \le s \le q > t$$
, $r > p \le s < q \ge t$
 $r \ge p < s \le q > t$, $r \ge p < s < q \ge t$
 $Z/2^r \oplus Z/2^{p-1} \oplus Z/2^s \oplus Z/2^{q+1} \oplus Z/2^t$

$$\begin{pmatrix} 1 & 2^{r-p+1} & -2^{r-p} & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -2^{q-s+1} & -1 & 0 \\ 0 & 0 & -2^{q-s} & -1 & 1 \end{pmatrix}$$

(9)
$$r \le p \ge s > q > t$$

 $Z/2^{r-1} \oplus Z/2^{p+1} \oplus Z/2^s \oplus Z/2^q \oplus Z/2^t$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2^{p-r+2} & -1 & 0 & 0 & 0 \\ -2^{p-r+1} & -1 & 1 & 2^{s-q} & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

(11)
$$r \leq p \geq s \leq q \geq t$$

$$Z/2^{r-1} \oplus Z/2^{p+1} \oplus Z/2^{s-1} \oplus Z/2^{q+1} \oplus Z/2^t$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2^{p-r+2} & -1 & 0 & 0 & 0 \\ -2^{p-r+1} & -1 & 1 & 0 & 0 \\ 0 & 2^{q-s+1} & -2^{q-s+2} & -1 & 0 \\ 0 & 2^{q-s} & -2^{q-s+1} & -1 & 1 \end{pmatrix}$$

(13)
$$r \le p \le s > q > t$$
, $r \le p < s \ge q > t$
 $Z/2^{r-1} \oplus Z/2^p \oplus Z/2^{s+1} \oplus Z/2^q \oplus Z/2^t$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2^{p-r+1} & -1 & 1 & 2^{s-q} & 0 \\ 0 & 0 & 1 & 2^{s-q+1} & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

(4)
$$r > p > s \le q \le t$$
, $r > p \ge s < q \le t$
 $Z/2^r \oplus Z/2^p \oplus Z/2^{s-1} \oplus Z/2^q \oplus Z/2^{t+1}$

$$\begin{pmatrix} 1 & 2^{r-p} & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 2^{q-s} & -2^{q-s+1} & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(6)
$$r > p < s > q < t$$

$$Z/2^r \oplus Z/2^{p-1} \oplus Z/2^{s+1} \oplus Z/2^{q-1} \oplus Z/2^{t+1}$$

$$\begin{pmatrix} 1 & 2^{r-p+1} & -2^{r-p} & 0 & 0 \\ 0 & -1 & 1 & 2^{s-q+1} & -2^{s-q} \\ 0 & 0 & 1 & 2^{s-q+2} & -2^{s-q+1} \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(8)
$$r > p \le s < q \le t, r \ge p < s < q \le t$$

$$\mathbb{Z}/2^r \oplus \mathbb{Z}/2^{p-1} \oplus \mathbb{Z}/2^s \oplus \mathbb{Z}/2^q \oplus \mathbb{Z}/2^{t+1}$$

$$\begin{pmatrix} 1 & 2^{r-p+1} & -2^{r-p} & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -2^{q-s} & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(10)
$$r s > q < t$$

$$Z/2^{r-1} \oplus Z/2^{p+1} \oplus Z/2^s \oplus Z/2^{q-1} \oplus Z/2^{t+1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2^{p-r+2} & -1 & 0 & 0 & 0 \\ -2^{p-r+1} & -1 & 1 & 2^{s-q+1} & -2^{s-q} \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(12)
$$r \leq p \geq s \leq q \leq t$$

$$Z/2^{r-1} \oplus Z/2^{p+1} \oplus Z/2^{s-1} \oplus Z/2^q \oplus Z/2^{t+1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2^{p-r+2} & -1 & 0 & 0 & 0 \\ -2^{p-r+1} & -1 & 1 & 0 & 0 \\ 0 & 2^{q-s} & -2^{q-s+1} & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(14) r \le p \le s \ge q \le t$$

$$Z/2^{r-1} \oplus Z/2^p \oplus Z/2^{s+1} \oplus Z/2^{q-1} \oplus Z/2^{t+1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2^{p-r+1} & -1 & 1 & 2^{s-q+1} & 0 \\ 0 & 0 & 1 & 2^{s-q+2} & -2^{s-q+1} \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

When $X = P'P_{p,q,r,s,t}$ or $_VP'P_{p,q,r,s,t}$ $(r,s,p,q \geq 1 \text{ and } t \geq 0)$, the conjugation ψ_C^{-1} on KU_0X is immediately given as a dual of Proposition 1.2. As an immediate result of Proposition 1.2 and its dual we obtain

Corollary 1.3. i) The spectra $P_{r,s,p,q}$ and ${}_{V}P_{r,s,p,q}$ $(r,s,p \geq 1 \text{ and } q \geq 0)$ have the same C-type as $\Sigma^{2}P_{q+1,p,s,r-1}$.

- ii) The spectra $P'P_{p,q,r,s,t}$ and $_VP'P_{p,q,r,s,t}$ $(r,s,p,q\geq 1 \text{ and } t\geq 0)$ have the same C-type as $\Sigma^2PP'_{t+1,s,r-1,q,p}$.
- 1.2. Let us denote by M_m , M'_m , $MP_{m,n}$, $P'M'_{n,m}$, $MPP'_{r,s,p}$ and $P'PM'_{p,r,s}$ the small spectra constructed as the cofibers of the following maps

$$\begin{split} &i\eta: \Sigma^1 \to SZ/2^m, & \eta j: SZ/2^m \to \Sigma^0, \\ &i\eta \vee \tilde{\eta} j: \Sigma^1 \vee \Sigma^1 SZ/2^n \to SZ/2^m, & (\eta j, i\bar{\eta}): \Sigma^1 SZ/2^m \to \Sigma^1 \vee SZ/2^n, \\ &i\eta \vee \tilde{\eta} j j_P': \Sigma^1 \vee \Sigma^{-1} P_{s,p}' \to SZ/2^r, & (\eta j, i_P i\bar{\eta}): \Sigma^1 SZ/2^r \to \Sigma^1 \vee P_{p,s}, \end{split}$$

respectively. In [18, Proposition 2.4] the spectra $MP_{m,n}$ and $MPP'_{r,s,p}$ were written as $MV'_{m,n}$ and $MU_{s,r,p}$, respectively.

Recall that the spectrum V_m is exhibited as the cofiber of the map $2^{m-1}\bar{i}:$ $\Sigma^0 \to C(\bar{\eta})$ where $C(\bar{\eta})$ denotes the cofiber of the map $\bar{\eta}: \Sigma^1 SZ/2 \to \Sigma^0$ and $\bar{i}: \Sigma^0 \to C(\bar{\eta})$ is the bottom cell inclusion. Denote by $_VM_m, _VMP_{m,n}$ and $_VMPP'_{r,s,p}$ the small spectra constructed as the cofibers of the following maps

$$\begin{split} &\bar{i}_V(\eta \wedge 1): \Sigma^1 C(\bar{\eta}) \to V_m, \\ &\bar{i}_V(\eta \wedge 1) \vee i_V \bar{\eta} j: \Sigma^1 C(\bar{\eta}) \vee \Sigma^1 SZ/2^n \to V_m, \\ &\bar{i}_V(\eta \wedge 1) \vee i_V \bar{\eta} j j_P': \Sigma^1 C(\bar{\eta}) \vee \Sigma^{-1} P_{s,p}' \to V_r, \end{split}$$

respectively, where $\bar{i}_V: C(\bar{\eta}) \to V_m$ is the canonical inclusion. According to [17, Lemma 1.5] the spectrum $_VM_m$ is quasi KO_* -equivalent to M_m . By virtue of [18, Theorem 3.3] (or [13, Theorem 1.2]) we observe that the spectra $_VMP_{m,n}$ and $_VMPP'_{r,s,p}$ are quasi KO_* -equivalent to $MP_{m,n}$ and $_MPP'_{r,s,p}$, respectively.

Using the maps given in (1.2) we introduce new small spectra $MP_{r,s,p,q}$, $_{V}MP_{r,s,p,q}$, $_{M}PP'_{r,s,t,p,q}$, $_{V}MPP'_{r,s,t,p,q}$, $_{P}M'_{p,q,r,s}$ and $_{P}PM'_{p,q,r,s,t}$ constructed as the cofibers of the following maps

$$(1.3) \begin{array}{cccc} i\eta\vee\tilde{\eta}jj_{P'P} & : & \Sigma^{1}\vee\Sigma^{-1}P'P_{s,p,q}\to SZ/2^{r},\\ & \bar{i}_{V}(\eta\wedge1)\vee i_{V}\tilde{\eta}jj_{P'P} & : & \Sigma^{1}C(\bar{\eta})\vee\Sigma^{-1}P'P_{s,p,q}\to V_{r},\\ & i\eta\vee\tilde{\eta}jj_{P'P}\pi'_{P} & : & \Sigma^{1}\vee\Sigma^{-1}P'_{s,t,p,q}\to SZ/2^{r},\\ & \bar{i}_{V}(\eta\wedge1)\vee i_{V}\tilde{\eta}jj_{P'P}\pi'_{P} & : & \Sigma^{1}C(\bar{\eta})\vee\Sigma^{-1}P'_{s,t,p,q}\to V_{r},\\ & (\eta j,i_{PP'}i\bar{\eta}) & : & \Sigma^{1}SZ/2^{r}\to\Sigma^{1}\vee PP'_{p,q,s},\\ & (\eta j,l_{P}i_{PP'}i\bar{\eta}) & : & \Sigma^{1}SZ/2^{r}\to\Sigma^{1}\vee P_{p,q,s,t}, \end{array}$$

respectively. Evidently there hold the S-dualities $\Sigma^3 DMP_{r,s,p,q} = P'M'_{p,q,r,s}$ and $\Sigma^3 DMPP'_{r,s,t,p,q} = P'PM'_{p,q,r,s,t}$. Note that $MP_{r,s,p,0} = MPP'_{r,s,p}$, $VMP_{r,s,p,0} = VMPP'_{r,s,p}$, $MPP'_{r,s,0,p,q} = MP_{r,s,p,q}$, $VMPP'_{r,s,0,p,q} = VMPP'_{r,s,p,q}$ and their duals hold. The spectra $MP_{r,s,p,q}$, $VMPP'_{r,s,p,q}$, $MPP'_{r,s,t,p,q}$, $VMPP'_{r,s,t,p,q}$, $VMPP'_{r,s,t,p,q}$, and $VPM'_{p,q,r,s,t}$ are exhibited as the cofibers of the following maps

$$i_{P}i\eta: \Sigma^{1} \to P_{r,s,p,q}, \qquad V_{P}i_{V}(\eta \wedge 1): \Sigma^{1}C(\bar{\eta}) \to V_{r,s,p,q},$$

$$(1.4) \quad i_{PP'}i\eta: \Sigma^{1} \to PP'_{r,s,t,p,q}, \quad V_{PP'}i_{V}(\eta \wedge 1): \Sigma^{1}C(\bar{\eta}) \to V_{P}P'_{r,s,t,p,q},$$

$$\eta jj'_{P}: \Sigma^{-1}P'_{p,q,r,s} \to \Sigma^{1}, \quad \eta jj_{P'P}: \Sigma^{-1}P'P_{p,q,r,s,t} \to \Sigma^{1},$$

respectively. Here $i_P: SZ/2^r \to P_{r,s,p,q}, \ _Vi_P: V_r \to _VP_{r,s,p,q}, \ i_{PP'}: SZ/2^r \to PP'_{r,s,t,p,q}, \ _Vi_{PP'}: V_r \to _VPP'_{r,s,t,p,q}$ are the canonical inclusions, and $j_P': P'_{p,q,r,s} \to \Sigma^2 SZ/2^r$ and $j_{P'P}: P'P_{p,q,r,s,t} \to \Sigma^2 SZ/2^r$ are the canonical projections.

For $X = MPP'_{r,s,t,p,q}$ or $_VMPP'_{r,s,t,p,q}$ it is obvious that $KU_0X \cong Z \oplus KU_0PP'_{r,s,t,p,q}$ and $KU_1X = 0$. In order to investigate the behavior of the conjugation ψ_C^{-1} on KU_0X we recall the following result shown in [18, Proposition 2.3] (or [13, Proposition 1.1]).

Proposition 1.4. When $X = MPP'_{r,s,p}$ or $_VMPP'_{r,s,p}$ $(r,p \ge 1 \text{ and } s \ge 0)$, the conjugation ψ_C^{-1} on $KU_0X \cong Z \oplus KU_0PP'_{r,s,p}$ is represented by the matrix $\begin{pmatrix} -1 & 0 \\ b & A_{r,s,p} \end{pmatrix}$ for a certain column vector \mathbf{b} transposed (-1,x,0). Here the matrix $A_{r,s,p}$ is expressed separately into four cases $(1) \sim (4)$ in Proposition 1.1, and the integer x is defined to be $0, 0, 2^{p-r+1}$ or 2^{p-r} according as $(1) \ r > p > s$, $(2) \ r \ge p \le s$, $(3) \ r \le p \ge s$ or $(4) \ r \le p \le s$.

By a routine argument using Proposition 1.4 we can show

Proposition 1.5. When $X = MPP'_{r,s,t,p,q}$ or $_VMPP'_{r,s,t,p,q}$ $(r,s,p,q \ge 1)$ and $t \ge 0$, the conjugation ψ_C^{-1} on $KU_0X \cong Z \oplus KU_0PP'_{r,s,t,p,q}$ is represented by the matrix $\begin{pmatrix} -1 & \mathbf{0} \\ \mathbf{b} & A_{r,s,t,p,q} \end{pmatrix}$ for a certain column vector \mathbf{b} transposed (-1,x,y,0,0). Here the matrix $A_{r,s,t,p,q}$ is expressed separately into sixteen cases $(1) \sim (16)$ in Proposition 1.2, and the integers x, y are given in each case as follows:

$$(x, y) = \begin{cases} (0, 0) & \text{in cases of } (1) \sim (8) \\ (2^{p-r+1}, 0) & \text{in cases of } (9) \sim (10) \\ (2^{p-r+1}, 2^{p-r}) & \text{in cases of } (11) \sim (12) \\ (2^{p-r}, 0) & \text{in cases of } (13) \sim (16). \end{cases}$$

For $X = P_{m,n}$, $_VP_{m,n}$, $MP_{m,n}$, $PP'_{r,s,p}$, $_VPP'_{r,s,p}$ or $MPP'_{r,s,p}$ $(m,r,s,p \ge 1 \text{ and } n \ge 0)$ we recall the KO-homology groups KO_iX $(0 \le i \le 7)$ tabled below (see [17, Proposition 2.2], [18, Propositions 2.2 and 2.4] or [13, Proposition 1.1]:

where $(*)_{k,1} \cong \mathbb{Z}/2^{k+2}$ and $(*)_{k,l} \cong \mathbb{Z}/2^{k+1} \oplus \mathbb{Z}/2$ if $l \geq 2$.

For $X = P'_{n,m}$, $_VP'_{n,m}$, $P'M'_{n,m}$, $P'P_{p,r,s}$, $_VP'P_{p,r,s}$, $P'PM'_{p,r,s}$ $(m,r,s,p \ge 1 \text{ and } n \ge 0)$ the KO-homology groups KO_iX $(0 \le i \le 7)$ are immediately given by making use of the universal coefficient sequence

$$0 \to \operatorname{Ext}(KO_{3-i}DX, Z) \to KO_iX \to \operatorname{Hom}(KO_{4-i}DX, Z) \to 0$$

where DX stands for the S-dual of X. Using these results we can easily compute

Proposition 1.6. When $X = PP'_{r,s,t,p,q}$, $VPP'_{r,s,t,p,q}$ or $MPP'_{r,s,t,p,q}$ $(r,s,p,q) \ge 1$ and $t \ge 0$, the KO-homology groups KO_iX $(0 \le i \le 7)$ are tabled as

follows:

where $(*)_{k,1} \cong \mathbb{Z}/2^{k+2}$ and $(*)_{k,l} \cong \mathbb{Z}/2^{k+1} \oplus \mathbb{Z}/2$ if $l \geq 2$.

When $X = P'P_{p,q,r,s,t}$, $_VP'P_{p,q,r,s,t}$ or $P'PM_{p,q,r,s,t}$ $(r,s,p,q \geq 1)$ and $t \geq 0$ the KO-homology groups KO_iX $(0 \leq i \leq 7)$ are immediately given as a dual of Proposition 1.6.

Recall that the conjugation ψ_C^{-1} on $KU_0P_{m,n}''$ is represented by the following matrix:

$$\begin{array}{cccc} m > n & m = n \\ Z/2^{m+1} \oplus Z/2^{n-1} & Z/2^m \oplus Z/2^n \\ \begin{pmatrix} 1 - 2^{m-n+1} & 2^{m-n+2}(1-2^{m-n}) \\ 1 & -1 + 2^{m-n+1} \end{pmatrix} & \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \\ m < n & & & \\ Z/2^{m-1} \oplus Z/2^{n+1} & & & \\ \begin{pmatrix} 1 - 2^{n-m+1} & 1 \\ 2^{n-m+2}(1-2^{n-m}) & -1 + 2^{n-m+1} \end{pmatrix} \end{array}$$

and $KO_iP''_{m,n}\cong \mathbb{Z}/2^m$, 0, $\mathbb{Z}/2^n$, 0 according as $i\equiv 0,1,2,3 \mod 4$ (see [17, Propositions 2.1 and 2.2]). Note that $\Sigma^2P''_{n,m}$ and $\Sigma^4P''_{m,n}$ have the same quasi KO_* -type as $P''_{m,n}$.

Let X be a CW-spectrum having the same C-type as the wedge sum $Y \vee (\vee_i P''_{m_i,n_i})$, where $Y = SZ/2^r$, M_r $(r \geq 1)$, $PP'_{r,s,p}$, $MPP'_{r,s,p}$ $(r,p \geq 1)$ and $s \geq 0$, $PP'_{r,s,t,p,q}$ or $MPP'_{r,s,t,p,q}$ $(r,s,p,q \geq 1)$ and $t \geq 0$. Then we note that $KO_1X \oplus KO_5X \cong Z/2$ or 0, and $KO_3X \oplus KO_7X \cong Z/2$. Applying the same method as adopted in [15, Theorems 3.3 and 4.2] or [18, Theorem 3.3] we can show

Theorem 1.7. i) Let Y be the small spectrum $SZ/2^r$ $(r \geq 1)$, $PP'_{r,s,p}$ $(r,p \geq 1 \text{ and } s \geq 0)$ or $PP'_{r,s,t,p,q}$ $(r,s,p,q \geq 1 \text{ and } t \geq 0)$. If a CW-spectrum X has the same C-type as the wedge sum $Y \vee (\vee_i P''_{m_i,n_i})$, then it is quasi KO_* -equivalent to the wedge sum $W \vee (\vee_i P''_{m_i,n_i})$. Here W is one of the following four spectra:

- (1) $SZ/2^r$, $\Sigma^4 SZ/2^r$, V_r and $\Sigma^4 V_r$ when $Y = SZ/2^r$;
- (2) $PP'_{r,s,p}$, $\Sigma^4 PP'_{r,s,p}$, $_VPP'_{r,s,p}$ and $\Sigma^4 _VPP'_{r,s,p}$ when $Y=PP'_{r,s,p}$;
- (3) $PP'_{r,s,t,p,q}$, $\Sigma^4 PP'_{r,s,t,p,q}$, $VPP'_{r,s,t,p,q}$ and $\Sigma^4 VPP'_{r,s,t,p,q}$ when $Y = PP'_{r,s,t,p,q}$.
- ii) Let Y be the small spectrum M_r $(r \ge 1)$, $MPP'_{r,s,p}$ $(r,p \ge 1 \text{ and } s \ge 0)$ or $MPP'_{r,s,t,p,q}$ $(r,s,p,q \ge 1 \text{ and } t \ge 0)$. If a CW-spectrum X has the same C-type as the wedge sum $Y \lor (\lor_i P''_{m_i,n_i})$, then it is quasi KO_* -equivalent to the wedge sum $W \lor (\lor_i P''_{m_i,n_i})$. Here W is either of the following two spectra:
- (1) M_r and $\Sigma^4 M_r$ when $Y = M_r$;
- (2) $MPP'_{r,s,p}$ and $\Sigma^4 MPP'_{r,s,p}$ when $Y = MPP'_{r,s,p}$;
- (3) $MPP'_{r,s,t,p,q}$ and $\Sigma^4 MPP'_{r,s,t,p,q}$ when $Y = MPP'_{r,s,t,p,q}$.

Combining Theorem 1.7 with Corollarly 1.3 and Proposition 1.5 we can immediately obtain

Corollary 1.8. i) The spectrum $_{V}P_{r,s,p,q}$ $(r,s,p\geq 1 \text{ and } q\geq 0)$ is quasi KO_{*} -equivalent to $\Sigma^{2}P_{q+1,p,s,r-1}$.

- ii) The spectra $P'P_{p,q,r,s,t}$ and $_VP'P_{p,q,r,s,t}$ $(r,s,p,q\geq 1 \text{ and } t\geq 0)$ are quasi KO_* -equivalent to $\Sigma^2PP'_{t+1,s,r-1,q,p}$ and $\Sigma^6_VPP'_{t+1,s,r-1,q,p}$, respectively.
- iii) The spectrum $_VMPP'_{r,s,t,p,q}$ $(r,s,p,q\geq 1 \text{ and } t\geq 0)$ is quasi KO_* -equivalent to $MPP'_{r,s,t,p,q}$.

2. The stunted mod 8 lens spaces

2.1. Let E be an (associative) ring spectrum with unit and ξ be an n-dimensional real vector bundle over a CW-complex X. Let us denote by $T(\xi)$ the Thom complex of ξ , thus $T(\xi) = D(\xi)/S(\xi)$ where $D(\xi)$ and $S(\xi)$ are the associated disc and sphere bundle, respectively. We say ξ to be E-orientable if there exists a Thom class $u_{\xi} \in E^nT(\xi)$ such that the composite map $(u_{\xi} \wedge p_+)\Delta : T(\xi) \to \Sigma^n E \wedge X_+$ is a quasi E_* -equivalence. Here $\Delta: T(\xi) \to T(\xi) \wedge D(\xi)_+$ is induced by the diagonal map and $p: D(\xi) \to X$ denotes the projection, and Y_+ stands for the based CW-complex with the additional base point E-for any E-complex E

Proposition 2.1. Let ξ be an n-dimensional real vector bundle over X. If ξ is E-orientable, then the Thom complex $T(\xi \oplus \alpha)$ is quasi E_* -equivalent to $\Sigma^n T(\alpha)$ for any real vector bundle α over X.

Proof. Consider the composite map $(u_{\xi} \wedge 1)\varphi : T(\xi \oplus \alpha) \to \Sigma^n E \wedge T(\alpha)$ where $\varphi : T(\xi \oplus \alpha) \to T(\xi \times \alpha) \cong T(\xi) \wedge T(\alpha)$ is the canonical map. If α is the trivial bundle of dimension m, then $(u_{\xi} \wedge 1)\varphi = (u_{\xi} \wedge p_{+})\Delta : \Sigma^m T(\xi) \to \Sigma^{n+m} E \wedge X_{+}$, thus $(u_{\xi} \wedge 1)\varphi$ is a quasi E_* -equivalence. For a general α we apply the Mayer-Vietoris exact sequence to observe that the map $(u_{\xi} \wedge 1)\varphi$ is a quasi E_* -equivalence.

Let $L^m(q)$ be the (2m+1)-dimensional standard mod q lens space and $L_0^m(q)$ its 2m-skeleton. For simplicity we set $L^{2m+1} = L^m(q)$ and $L^{2m} = L_0^m(q)$. Let ξ_{2m+1} be the canonical complex line bundle over $L^m(q)$ and ξ_{2m} denote the restriction of ξ_{2m+1} onto $L_0^m(q)$. As is well known, the 8-dimensional real vector bundle $2\epsilon_0(\xi_n) \oplus 4\theta$ over L^n is KO-orientable where ϵ_0 stands for the realification and θ denotes the trivial real line bundle over L^n . Hence we see

Corollary 2.2. The Thom complex $T(2\epsilon_0(\xi_n) \oplus \alpha)$ is quasi KO_* -equivalent to $\Sigma^4 T(\alpha)$ for any real vector bundle α over L^n .

The stunted mod q lens space L^n/L^l $(n>l\geq 0)$ is simply written to be L^n_{l+1} as usual. Recall that the stunted mod q lens spaces L^{2k+n}_{2k} is cellular homeomorphic to the Thom complex $T(k\epsilon_0(\xi_n))$, and L^{2k+n}_{2k+1} is so to $T(k\epsilon_0(\xi_n))/\Sigma^{2k}$ (see [3, Theorem 1] or [6, Theorem 4.7 and Corollary 4.8]). From Corollary 2.2 we can immediately show

Proposition 2.3. The stunted mod q lens space L_{l+4}^{n+4} is quasi KO_* -equivalent to $\Sigma^4 L_l^n$. In particular, L_{4m+1}^{4m+n} and L_{4m}^{4m+n} are quasi KO_* -equivalent to $\Sigma^{4m} L^n$ and $\Sigma^{4m} \vee \Sigma^{4m} L^n$, respectively.

According to the duality theorem [2, Theorem 3.3] for Thom complexes, the S-dual $DL_{2k}^{2k+2m+1} = DT(k\epsilon_0(\xi_{2m+1}))$ is (stably) homotopy equivalent to $T(-k\epsilon_0(\xi_{2m+1}) - \tau)$ where τ denotes the tangent vector bundle over $L^m(q)$. Choose a positive integer N such that it is divisible by the J-order of $\epsilon_0(\xi_{2m+1}) - 2\theta$. Then we can observe that the S-dual $DL_{2k}^{2k+2m+1}$ is (stably) homotopy equivalent to $\Sigma^{1-2N}L_{2N-2k-2m-2}^{2N-2k-1}$ because $\tau \oplus \theta \cong (m+1)\epsilon_0(\xi_{2m+1})$. This implies directly that the S-dual DL_l^n is (stably) homotopy equivalent to $\Sigma^{1-2N}L_{2N-n-1}^{2N-l-1}$ even if (n,l)=(2k+2m,2k), (2k+2m+1,2k+1) or (2k+2m,2k+1). (See [10, Proposition 5] or [8, Lemma 2.9]). Applying Proposition 2.3 we can immediately obtain

Proposition 2.4. The S-dual DL_l^{4s+r} is quasi KO_* -equivalent to $\Sigma^{-4s-3}L_{3-r}^{4s+3-l}$ when $0 \le r \le 3$.

Let $S^{2n+1}(q_0,\cdots,q_n)$ denote the unit sphere $S^{2n+1}\subset \mathbb{C}^{n+1}$ with S^{1-1} action defined by $\lambda\cdot(x_0,\cdots,x_n)=(\lambda^{q_0}x_0,\cdots,\lambda^{q_n}x_n)\in \mathbb{C}^{n+1}$ for any $\lambda\in S^1\subset \mathbb{C}$. The orbit space $P^n(q_0,\cdots,q_n)=S^{2n+1}(q_0,\cdots,q_n)/S^1$ is called a weighted projective space. For simplicity we set $P^n=P^n(1,1,\cdots,1)$ and $P^{1,n-1}=P^n(q,1,\cdots,1)$ for a fixed positive integer q. Hereafter we shall assume that q is even. Of course, P^n is the usual complex projective space $\mathbb{C}P^n$ of dimension p_0 . In [12, Theorem 2.4] we have determined the quasi p_0 -types of weighted projective spaces p_0 - p_0 - p_0 . In fact, the spaces p_0 - p_0

The mod q lens spaces $L^{2n} = L_0^n(q)$ and $L^{2n+1} = L^n(q)$ are related to the weighted projective spaces P^n , $P^{1,n-1}$ and $P^{1,n}$ by the following (homotopy) commutative diagram

with two cofiber sequences (see [4]). Here i, \tilde{i} and i_L are the canonical inclusions, π is the natural surjection and the map i_0 is defined by $i_0[x_0,\cdots,x_{n-1},x_n]=[x_n^q,x_0,\cdots,x_{n-1}].$ Notice that the stunted weighted projective spaces P^{2m+n}/P^{2m} , P^{2m+n+1}/P^{2m+1} , $P^{1,2m+n-1}/P^{1,2m-1}$ and $P^{1,2m+n}/P^{1,2m}$ are quasi KO_* -equivalent to $\Sigma^{4m}P^n$, $\Sigma^{4m+2}P^{1,n-1}$, $\Sigma^{4m}P^{1,n-1}$ and $\Sigma^{4m+2}P^n$, respectively. Then we have the following cofiber sequences of KO-module spectra with $\epsilon = 0$ or 1:

(2.1)

Note that $KO_{2i}(L_{4m\pm 1}^{4m+n})$ and $\mathrm{Tor}KO_{2i}(L_{4m-2}^{4m+n})$ are $\mathbb{Z}/2$ -modules because $KU_0(L_{4m\pm 1}^{4m+n})=0$ and $KU_0(L_{4m-2}^{4m+n})\cong Z$, where TorG stands for the torsion subgroup of G. By means of (2.1) we can immediately compute

Lemma 2.5. When q is even, the stunted mod q lens spaces L_{4m+k}^{4m+n} satisfies

- i) $KO_{4m}(L_{4m\pm 1}^{4m+n})=0={
 m Tor}KO_{4m}(L_{4m-2}^{4m+n})$ if $n\equiv 1,2,3,4,5 \bmod 8$;
- ii) $KO_{4m+4}(L_{4m\pm 1}^{4m+n})=0=\mathrm{Tor}KO_{4m+4}(L_{4m-2}^{4m+n})$ if $n\equiv 0,1,5,6,7$ mod 8; iii) $KO_{4m+6}(L_{4m\pm 1}^{4m+n})=0=\mathrm{Tor}KO_{4m+6}(L_{4m-2}^{4m+n});$ and
- iv) $\operatorname{Tor} KO_{4m+2}(L_{4m-2}^{4m+n}) = 0.$

Proposition 2.6. Assume that q is even.

- i) The stunted mod q lens space L_l^{4s-1} is quasi KO_* -equivalent to the wedge sum $L_l^{4s-2} \vee \Sigma^{4s-1}$. (Cf. [13, Proposition 3.4]).
- ii) The stunted mod q lens space L_l^{4s+1} is never quasi KO_* -equivalent to the wedge sum $L_l^{4s} \vee \Sigma^{4s+1}$.

Proof. i) When l = 4m + 1 or 4m we consider the following commutative diagram

with two cofiber sequences. Recall that $P^{1,n-1}$ and $P^{1,n}$ are quasi KO_* equivalent to the wedge sum $\Sigma^2 \vee (\vee_{s-m-1} C(\eta))$ and $\Sigma^2 \vee (\vee_{s-m-1} C(\eta)) \vee$ $\Sigma^{4(s-m)}$, respectively, when n=2(s-m)-1. Then we can immediately observe that the upper left map $1 \wedge \tilde{\alpha}$ is trivial. When l = 4m - 1 or 4m - 2 we use the following commutative diagram

with two cofiber sequences. Since P^n is quasi KO_* -equivalent to the wedge sum $\bigvee_{s-m} C(\eta)$ when n=2(s-m), it is obvious that the upper left map $1 \wedge \alpha$ is trivial.

- ii) By virtue of Proposition 2.3 we may assume that $l \not\equiv 0 \bmod 4$. Using (2.1) we can easily compute that $KO_{4m}L_{4m+1}^{4m+8t} \cong KO_{4m+4}L_{4m+1}^{4m+8t+4} \cong Tor KO_{4m}L_{4m-2}^{4m+8t} \cong Tor KO_{4m+4}L_{4m-2}^{4m+8t+4} \cong Z/2$, but $KO_{4m}L_{4m-1}^{4m+8t} \cong Z/2$ or 0. Moreover we can see that $KO_{4m}L_{4m-1}^{4m+8t-2} \cong Z/2$. From the above i) it follows that $KO_{4m}L_{4m-1}^{4m+8t-1} \cong Z/2 \oplus Z/2$. This implies that $KO_{4m}L_{4m-1}^{4m+8t}$ must be Z/2. By means of Lemma 2.5 we can conclude that $Tor\{KO_0L_l^{4s} \oplus KO_4L_l^{4s}\} \cong Z/2$, but $Tor\{KO_0L_l^{4s+1} \oplus KO_4L_l^{4s+1}\} = 0$. Now our result is immediate.
- 2.2. For the canonical complex line bundle ξ_{2n+1} over the mod 8 lens space $L^n(8)$ we set $\sigma = \xi_{2n+1} \theta_C$ and $\sigma(k) = (\xi_{2n+1})^{\otimes 2^k} \theta_C$ where θ_C denotes the trivial complex line bundle over $L^n(8)$. Recall that the (reduced) KU-cohomology groups $KU^0L^n(8) \cong Z[\sigma]/(\sigma^{n+1}, \sigma(3))$ are given as follows [7, Proposition 3.7]:
- (2.2)i) $KU^0L^1(8) \cong \mathbb{Z}/8$, generated by σ ;
- ii) $KU^0L^2(8)\cong Z/16\oplus Z/4$, generated by σ and $\sigma(1)$;
- iii) $KU^0L^{4t-1}(8) \cong \mathbb{Z}/2^{4t+1} \oplus \mathbb{Z}/2^{2t} \oplus \mathbb{Z}/2^{2t} \oplus \mathbb{Z}/2^{t-1} \oplus \mathbb{Z}/2^{t-1} \oplus \mathbb{Z}/2^{t-1} \oplus \mathbb{Z}/2^{t-1} \oplus \mathbb{Z}/2^{t-1}$, generated by σ , $\sigma(1) + 2^t \sigma$, $\sigma(1) \sigma$, $\sigma(2) + 2^t \sigma(1) + 2^{3t} \sigma$, $\sigma(2) \sigma 2^t \sigma(1) \sigma + 2^{3t+1} \sigma$, $\sigma(2) \sigma(1) 2^{t+1} \sigma(1)$, $\sigma(2) \sigma(1) \sigma$;
- iv) $KU^0L^{4t}(8)\cong Z/2^{4t+2}\oplus Z/2^{2t+1}\oplus Z/2^{2t}\oplus Z/2^t\oplus Z/2^{t-1}\oplus Z/2^{t-1}\oplus Z/2^{t-1},$ generated by $\sigma,\sigma(1),\sigma(1)\sigma-2^{2t+1}\sigma,\sigma(2),\sigma(2)\sigma-2^t\sigma(1)\sigma+2^{3t+1}\sigma,$ $\sigma(2)\sigma(1)-2^{t+1}\sigma(1),\sigma(2)\sigma(1)\sigma-2^{3t+2}\sigma;$
- v) $KU^0L^{4t+1}(8) \cong Z/2^{4t+3} \oplus Z/2^{2t+1} \oplus Z/2^{2t+1} \oplus Z/2^t \oplus Z/2^t \oplus Z/2^{t-1} \oplus Z/2^{t-1},$ generated by σ , $\sigma(1) + 2^{2t+1}\sigma$, $\sigma(1)\sigma$, $\sigma(2) 2^{t+1}\sigma(1)$, $\sigma(2)\sigma$, $\sigma(2)\sigma(1) 2^{t+1}\sigma(1)\sigma 2^{t+1}\sigma(1) + 2^{3t+2}\sigma$, $\sigma(2)\sigma(1)\sigma + 2^{t+1}\sigma(1)\sigma + 2^{t+2}\sigma(1) 2^{3t+3}\sigma$;
- vi) $KU^0L^{4t+2}(8) \cong \mathbb{Z}/2^{4t+4} \oplus \mathbb{Z}/2^{2t+2} \oplus \mathbb{Z}/2^{2t+1} \oplus \mathbb{Z}/2^t \oplus \mathbb{Z}/2^t \oplus \mathbb{Z}/2^t \oplus \mathbb{Z}/2^{t-1}$,

generated by σ , $\sigma(1)$, $\sigma(1)\sigma + 2^{2t+2}\sigma$, $\sigma(2) + 2^{t+1}\sigma(1) + 2^{3t+3}\sigma$, $\sigma(2)\sigma + 2^{3t+3}\sigma$, $\sigma(2)\sigma(1)$, $\sigma(2)\sigma(1)\sigma + 2^{t+1}\sigma(1)\sigma - 2^{t+2}\sigma(1) - 2^{3t+3}\sigma$.

Set $\Sigma = (\sigma, \sigma(1), \sigma(1)\sigma, \sigma(2), \sigma(2)\sigma, \sigma(2)\sigma(1), \sigma(2)\sigma(1)\sigma)$. Then the conjugation ψ_C^{-1} on $KU^0L^n(8)$ behaves as $\psi_C^{-1}\Sigma = \Sigma P$ when the matrix P is given as follows:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & -2 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & 1 & -2 & -2 & 2 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 1 & -2 & 0 & -1 & -1 & 2 \\ 1 & 0 & -1 & 0 & -1 & 0 & 1 \end{pmatrix}.$$

Therefore the conjugation ψ_C^{-1} on $KU^0L^n(8)$ is represented by the matrix $B^{-1}PB$ if $\Sigma B = (g_1, \dots, g_7)$ forms a basis of $KU^0L^n(8)$.

In order to express concisely the matrix representing the conjugation ψ_C^{-1} on $KU^0L^n(8)$ we here modify the direct sum decompositions given in (2.2) slightly as follows:

- (2.3) i) $KU^0L^1(8) \cong \mathbb{Z}/8$, generated by σ ;
- ii) $KU^0L^2(8) \cong \mathbb{Z}/16 \oplus \mathbb{Z}/4$, generated by σ and $\sigma(1) 4\sigma$;
- $$\begin{split} &\text{iv) } KU^0L^{4t}(8) \cong Z/2^{4t+2} \oplus Z/2^{2t+1} \oplus Z/2^{2t} \oplus Z/2^t \oplus Z/2^{t-1} \oplus Z/2^{t-1} \oplus Z/2^{t-1}, \\ &\text{generated by } (1+2^{3t})\sigma + 2^{2t}\sigma(1) 2^{t-1}(1+3\cdot 2^t)\sigma(1)\sigma + \sigma(2)\sigma + 2^{t-2}\sigma(2)\sigma(1), \\ &(1+2^t)\{\sigma(1)+\sigma(1)\sigma\} \sigma(2) \sigma(2)\sigma, \ -2^{2t+1}\sigma + 5\cdot 2^t\sigma(1) + (1+2^t)\sigma(1)\sigma \sigma(2)\sigma \sigma(2)\sigma(1), \ \sigma(2), \ -2^{t+1}\sigma(1) + \sigma(2)\sigma(1), \ 2^{3t+1}\sigma 2^t\sigma(1)\sigma + \sigma(2)\sigma, \\ &-2^{3t+2}\sigma 2^{t+2}\sigma(1) + 2\sigma(2) + \sigma(2)\sigma(1) + \sigma(2)\sigma(1)\sigma; \end{split}$$
- $\begin{array}{l} \text{v) } KU^0L^{4t+1}(8) \cong Z/2^{4t+3} \oplus Z/2^{2t+1} \oplus Z/2^t \oplus Z/2^{t-1} \oplus Z/2^{2t+1} \oplus Z/2^t \oplus \\ Z/2^{t-1}, \text{ generated by } (1+2^{3t}-2^{4t+2})\sigma 2^{t-1}(1-3\cdot 2^t)\sigma(1) + (1-2^{t-1}+3\cdot 2^{2t-1})\sigma(1)\sigma + 2^{t-1}\{\sigma(2) + \sigma(2)\sigma \sigma(2)\sigma(1)\}, \ 2^{2t+1}\sigma (1-2^t-2^{2t})\{\sigma(1) + \sigma(1)\sigma\} + \sigma(2)\sigma \sigma(2)\sigma(1), \ 2^{3t+2}\sigma \sigma(2) \sigma(2)\sigma \sigma(2)\sigma(1) \sigma(2)\sigma(1)\sigma, \\ -2^{3t+2}\sigma 2^{t+1}\sigma(1) + 2\sigma(2) + 2\sigma(2)\sigma + \sigma(2)\sigma(1) + \sigma(2)\sigma(1)\sigma, \ -2^{2t+1}(1+2^{t+1}\sigma(1) + 2^{t+1}\sigma(1)) + 2^{t+1}\sigma(1) + 2^{t+1}\sigma(1$

$$\begin{split} &2^{t+1}-2^{2t})\sigma - (1-2^{t+1}-2^{2t})\sigma(1) + 2^t\sigma(1)\sigma - \sigma(2)\sigma(1), \ -2^{t+1}\{\sigma(1) + \sigma(1)\sigma\} + \\ &\sigma(2) + \sigma(2)\sigma(1), \ 2^{3t+2}\sigma - 2^{t+1}\{\sigma(1) + \sigma(1)\sigma\} + \sigma(2)\sigma; \\ &\text{vi) } KU^0L^{4t+2}(8) \cong Z/2^{4t+4} \oplus Z/2^{2t+2} \oplus Z/2^{2t+1} \oplus Z/2^t \oplus Z/2^{t-1} \oplus Z/2^t \oplus Z/2^t, \\ &\text{generated by } (1-2^{3t+4}+2^{4t+3})\sigma + 3\cdot 2^t\sigma(1) + 2^t\sigma(1)\sigma + \sigma(2) + \sigma(2)\sigma, \\ &(1-2^{t+1})\{\sigma(1) + \sigma(1)\sigma\} - \sigma(2) - \sigma(2)\sigma, \ 2^{2t+2}(1-7\cdot 2^t)\sigma - 2^t\sigma(1) + (1-2^t)\sigma(1)\sigma - 2\sigma(2) - \sigma(2)\sigma - \sigma(2)\sigma(1), \ -2^{t+1}\{\sigma(1) + \sigma(1)\sigma\} + \sigma(2) + \sigma(2)\sigma(1), \\ &-2^{3t+3}\sigma - 2^{t+3}\sigma(1) - 2^{t+1}\sigma(1)\sigma + 2\sigma(2) + 2\sigma(2)\sigma(1) + \sigma(2)\sigma(1)\sigma, \ -2^{t+1}\sigma(1) + \sigma(2)\sigma(1), \end{split}$$

By means of (2.3) we can easily see that the conjugation ψ_C^{-1} on $KU^0L^n(8)$ is represented by the following matrix:

(2.4) i)
$$\psi_C^{-1} = 1$$
 on $Z/8$ when $n = 1$;

ii)
$$\psi_C^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$
 on $Z/16 \oplus Z/4$ when $n = 2$;

iii)
$$\psi_C^{-1} = \begin{pmatrix} 1 - 2^{2t} & 2^{2t+1}(1 - 2^{2t-1}) \\ 1 & -1 \end{pmatrix} \oplus \begin{pmatrix} 1 - 2^t & 2^{t+1} \\ 1 & -1 \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \oplus 1$$

on $Z/2^{4t+1} \oplus Z/2^{2t} \oplus Z/2^{2t} \oplus Z/2^{t-1} \oplus Z/2^{t-1} \oplus Z/2^{t-1} \oplus Z/2^{t-1}$ when n=4t-1;

$$\mathrm{iv}) \; \psi_C^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \; ,$$

on $Z/2^{4t+2} \oplus Z/2^{2t+1} \oplus Z/2^{2t} \oplus Z/2^t \oplus Z/2^{t-1} \oplus Z/2^{t-1} \oplus Z/2^{t-1}$ when n = 4t;

$$\text{v) } \psi_C^{-1} = \begin{pmatrix} 1 - 2^{2t+1} & 2^{2t+2}(1 - 2^{2t}) \\ 1 & -1 \end{pmatrix} \oplus \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ -2^{t+1} & 2^{t+2} & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

on $Z/2^{4t+3}\oplus Z/2^{2t+1}\oplus Z/2^t\oplus Z/2^{t-1}\oplus Z/2^{2t+1}\oplus Z/2^t\oplus Z/2^{t-1}$ when n=4t+1;

$$\text{vi) } \psi_C^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$$

on $Z/2^{4t+4} \oplus Z/2^{2t+2} \oplus Z/2^{2t+1} \oplus Z/2^t \oplus Z/2^{t-1} \oplus Z/2^t \oplus Z/2^t$ when n=4t+2.

Dualizing (2.4) to use Proposition 1.2 (1) and (5) we obtain

Proposition 2.7. The suspended mod 8 lens space $\Sigma^1 L_0^n(8) = \Sigma^1 L^{2n}$ has the same C-type as the following small spectrum:

$$\begin{split} &\Sigma^2 SZ/8,\ P_{4,2},\ \Sigma^2 SZ/4 \vee P_{4,3}'',\ PP_{4t+2,2t,t-1,2t+1,t}' \vee P_{t-1,t-1}'',\ PP_{t,2t,t-1,t,t}' \vee \\ &P_{4t+2,2t+2}'',\ PP_{4t+4,2t+1,t-1,2t+2,t}' \vee P_{t,t}'',\ SZ/2^t \vee P_{4t+4,2t+3}'' \vee P_{2t+1,t+1}'' \vee P_{t,t}'' \\ &according\ as\ n=1,2,3,4t,4t+1,4t+2,4t+3\ (t\geq 1). \end{split}$$

Using Theorem 1.7, Propositions 2.3, 2.6 and 2.7 and Lemma 2.5 we can show the following result.

Theorem 2.8. The suspended stunted mod 8 lens spaces $\Sigma^{1-4m}L_{4m+1}^{4m+n}$ is quasi KO_* -equivalent to the small spectrum:

 $\begin{array}{l} \Sigma^{2},\ \Sigma^{2}SZ/8,\ \Sigma^{4}\vee\Sigma^{2}SZ/8,\ _{V}P_{4,2},\ MP_{4,2},\ \Sigma^{6}V_{2}\vee P_{4,3}'',\ \Sigma^{0}\vee\Sigma^{6}V_{2}\vee P_{4,3}'',\\ PP_{4t+2,2t,t-1,2t+1,t}'\vee P_{t-1,t-1}'',\ MPP_{4t+2,2t,t-1,2t+1,t}'\vee P_{t-1,t-1}'',\ _{V}PP_{t,2t,t-1,t,t}'\vee P_{4t+2,2t+2}'',\ _{V}PP_{4t+4,2t+1,t-1,2t+2,t}'\vee P_{t,t}'',\ MPP_{4t+4,2t+1,t-1,2t+2,t}'\vee P_{t,t}'',\ SZ/2^{t}\vee P_{4t+4,2t+3}''\vee P_{t,t}'',\ \Sigma^{0}\vee SZ/2^{t}\vee P_{4t+4,2t+3}''\vee P_{2t+1,t+1}''\vee P_{2t+1,t$

according as $n = 1, 2, \dots, 7, 8t, 8t + 1, \dots, 8t + 7 \ (t \ge 1)$.

Proof. By virtue of Proposition 2.3 we may assume that m=0. When n is even, we use Proposition 2.7 combined with Lemma 2.5 and then apply Theorem 1.7 to obtain our result. When $n \equiv 3 \mod 4$ our result is immediate from Proposition 2.6 i). When $n \equiv 1 \mod 4$ the attaching map $\alpha_L : \Sigma^{n-1} \to L^{n-1}$ is not KO_* -trivial because of Proposition 2.6 ii). Since $KO_{n-1}L^{n-1} \cong \mathbb{Z}/2$, our result is easily observed by use of (1.4) and Corollary 1.8 iii). \square

2.3. Consider the homomorphism $i^*: KU^0L^{2m}(8) \to KU^0L^1(8)$ induced by the inclusion $i: L^1(8) \to L^{2m}(8)$. The induced homomorphism i^* carries $\Sigma = (\sigma, \sigma(1), \sigma(1)\sigma, \sigma(2), \sigma(2)\sigma, \sigma(2)\sigma(1), \sigma(2)\sigma(1)\sigma)$ to $(\sigma, 2\sigma, 0, 4\sigma, 0, 0, 0)$. Hence the (reduced) KU-cohomology groups $KU^0(L^{2m}(8)/L^1(8))$ are given as follows:

(2.5) i) $KU^{0}(L^{2}(8)/L^{1}(8)) \cong \mathbb{Z}/8$, generated by $2\sigma - \sigma(1)$;

ii)
$$KU^0(L^{4t}(8)/L^1(8)) \cong Z/2^{4t+1} \oplus Z/2^{2t} \oplus Z/2^{2t} \oplus Z/2^{t-1} \oplus Z/2^{t-1}$$
, generated by $2\sigma - \sigma(1)$, $2\sigma(1) - \sigma(2)$, $-2^{2t+1}\sigma + \sigma(1)\sigma$, $2\sigma(2)$, $2^{3t+1}\sigma - 2^t\sigma(1)\sigma + \sigma(2)\sigma$, $-2^{t+1}\sigma(1) + \sigma(2)\sigma(1)$, $2^{3t+2}\sigma + \sigma(2)\sigma(1)\sigma$; iii) $KU^0(L^{4t+2}(8)/L^1(8)) \cong Z/2^{4t+3} \oplus Z/2^{2t+1} \oplus Z/2^{2t+1} \oplus Z/2^{t-1} \oplus Z/2^t \oplus Z/2^t \oplus Z/2^t \oplus Z/2^{t-1}$, generated by $2\sigma - \sigma(1)$, $-2^{3t+3}\sigma + 2(1-2^t)\sigma(1) - \sigma(2)$, $2^{2t+2}\sigma + \sigma(1)\sigma$, $2^{3t+4}\sigma + 2^{t+2}\sigma(1) + 2\sigma(2)$, $2^{3t+3}\sigma + \sigma(2)\sigma$, $\sigma(2)\sigma(1)$, $-2^{3t+3}\sigma - 2^{t+2}\sigma(1) + 2^{t+1}\sigma(1)\sigma + \sigma(2)\sigma(1)\sigma$.

In order to express concisely the matrix representing the conjugation ψ_C^{-1} on $KU^0(L^{2m}(8)/L^1(8))$ we here modify the direct sum decompositions given in (2.5) slightly as follows:

$$(2.6) \ i) \ KU^0(L^2(8)/L^1(8)) \cong Z/8, \ \text{generated by } 2\sigma - \sigma(1);$$
 ii) $KU^0(L^{4t}(8)/L^1(8)) \cong Z/2^{4t+1} \oplus Z/2^{2t} \oplus Z/2^{2t} \oplus Z/2^{t-1} \oplus$

By a routine computation we can easily see that the conjugation ψ_C^{-1} on $KU^0(L^{2m}(8)/L^1(8))$ is represented by the following matrix:

(2.7) i)
$$\psi_C^{-1} = 1$$
 on $\mathbb{Z}/8$ when $m = 1$;

ii)
$$\psi_C^{-1} = 1 \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$$

on $Z/2^{4t+1} \oplus Z/2^{2t} \oplus Z/2^{2t} \oplus Z/2^{t-1} \oplus Z/2^{t-1} \oplus Z/2^{t-1} \oplus Z/2^{t-1}$ when m=2t;

$$\begin{split} &\text{iii)} \ \psi_C^{-1} = 1 \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \oplus \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \\ &\text{on} \ Z/2^{4t+3} \oplus Z/2^{2t+1} \oplus Z/2^{2t+1} \oplus Z/2^t \oplus Z/2^t \oplus Z/2^{t-1} \oplus Z/2^{t-1} \ \text{when} \\ &m = 2t+1. \end{split}$$

Dualizing (2.7) we can immediately obtain

Proposition 2.9. The suspended stunted mod 8 lens space $\Sigma^1 L_3^{4m}$ has the same C-type as the following small spectrum:

$$SZ/8, SZ/2^{4t+1} \vee P_{2t,2t}'' \vee P_{t-1,t-1}'' \vee P_{t-1,t-1}'', \ SZ/2^{4t+3} \vee P_{2t+1,2t+1}'' \vee P_{t,t}'' \vee P_{t-1,t-1}''$$

according as $m = 1, 2t, 2t + 1 \ (t \ge 1)$.

Using Theorems 1.7 and 2.8, Propositions 2.3, 2.4, 2.6 and 2.9 and Lemma 2.5 we can show the following result.

Theorem 2.10. The suspended stunted mod 8 lens space $\Sigma^{1-4m}L_{4m-1}^{4m+n-4}$ is quasi KO_* -equivalent to the following small spectrum:

$$\begin{split} &\Sigma^{0},\, SZ/8, M_{3},\, P'_{2,4},\, \Sigma^{4}\vee P'_{2,4},\, V_{4t+1}\vee P''_{2t,2t}\vee P''_{t-1,t-1}\vee P''_{t-1,t-1},\, M_{4t+1}\vee P''_{2t,2t}\vee P''_{t-1,t-1},\, V''_{t-1,t-1},\, M_{4t+1}\vee P''_{2t,2t}\vee P''_{t-1,t-1},\, \Sigma^{0}\vee PP'_{t,2t,4t+1,t,2t+1}\vee P''_{t-1,t-1},\, \Sigma^{0}\vee PP'_{t,2t,4t+1,t,2t+1}\vee P''_{t-1,t-1},\, SZ/2^{4t+3}\vee P''_{2t+1,2t+1}\vee P''_{t,t}\vee P''_{t-1,t-1},\, M_{4t+3}\vee P''_{2t+1,2t+1}\vee P''_{t,t}\vee P''_{t-1,t-1},\, VPP'_{t,2t+1,4t+3,t,2t+2}\vee P''_{t,t},\, \Sigma^{4}\vee VPP'_{t,2t+1,4t+3,t,2t+2}\vee P''_{t,t}\\ &according\,\,as\,\,n=3,4,\cdots,7,\,\,8t,\,\,8t+1,\,\,\cdots\,\,,\,\,8t+7\,\,(t\geq 1). \end{split}$$

Proof. By virtue of Proposition 2.3 we may assume that m=1. According to Proposition 2.4, $\Sigma^{-4s-3}L_3^{4s+2}$ is quasi KO_* -equivalent to the S-dual DL^{4s} . By dualizing Theorem 2.8 and using Corollary 1.8 we can immediately obtain our result when $n\equiv 2 \mod 4$. Using Proposition 2.9 in place of Proposition 2.7 we can show our result by a similar discussion to Theorem 2.8 when $n\not\equiv 2 \mod 4$.

Let us denote by $M'M_m$ the small spectrum constructed as the cofiber of the map $h'_M\eta: \Sigma^2 \to M'_m$, in which $h'_M: \Sigma^1 \to M'_m$ satisfies $j'_Mh'_M=i$ for the bottom cell collapsing $j'_M: M'_m \to \Sigma^1 SZ/2^m$ (cf. [17, (1.7)]). Notice that the spectra $M'M_m$ and $\Sigma^4 M'M_m$ have the same quasi KO_* -type (see [19, Theorem 5.3] or [15, (4.4)]). Using Theorems 2.8 and 2.10, Propositions 2.3, 2.4 and 2.6 and Lemma 2.5 we can show the following result.

Theorem 2.11. The suspended stunted mod 8 lens space $\Sigma^{1-4m}L_{4m-2}^{4m+n-4}$ is quasi KO_* -equivalent to the following small spectrum:

 $\begin{array}{lll} \Sigma^{7},\, \Sigma^{0}\vee\Sigma^{7},\, \Sigma^{7}M_{3}',\, \Sigma^{3}M'M_{3},\, \Sigma^{2}P'M_{2,4}',\, \Sigma^{4}\vee\Sigma^{2}P'M_{2,4}',\, \Sigma^{3}M_{4t+1}'\vee P_{2t,2t}'\vee P_{t-1,t-1}'' &\vee P_{t-1,t-1}'',\, \Sigma^{3}M'M_{4t+1}\vee P_{2t,2t}'' &\vee P_{t-1,t-1}'' &\vee P_{t-1,t-1}'',\, \Sigma^{6}P'PM_{2t+1,t,4t+2,2t,t-1}'\vee P_{t-1,t-1}'',\, \Sigma^{0}\vee\Sigma^{6}P'PM_{2t+1,t,4t+2,2t,t-1}'\vee P_{t-1,t-1}'',\, \Sigma^{7}M_{4t+3}'\vee P_{2t+1,2t+1}'\vee P_{t,t}''\vee P_{t-1,t-1}',\, \Sigma^{3}M'M_{4t+3}\vee P_{2t+1,2t+1}'\vee P_{t,t}''\vee P_{t-1,t-1}'',\, \Sigma^{2}P'PM_{2t+2,t,4t+4,2t+1,t-1}'\vee P_{t,t}'' &\vee P_{t-1,t-1}'',\, \Sigma^{4}\vee\Sigma^{2}P'PM_{2t+2,t,4t+4,2t+1,t-1}'\vee P_{t,t}'' &\text{according as } n=2,3,\cdots,7,8t,8t+1,\cdots,8t+7 \ (t\geq 1). \end{array}$

Proof. By virtue of Proposition 2.3 we may assume that m=1. According to Proposition 2.4, $\Sigma^{-4s-3}L_2^{4s}$ and $\Sigma^{-4s-3}L_2^{4s+2}$ are quasi KO_* -equivalent to the S-duals DL_3^{4s+1} and DL^{4s+1} , respectively. Therefore we dualize Theorems 2.8 and 2.10 to obtain our result when n is even. On the other hand, we can show our result by a similar discussion to Theorem 2.8 when n is odd.

References

- [1] A. Al. Amrani: Complex K-theory of weighted projective spaces, J. Pure and Applied Algebra 93 (1994), 113-127.
- [2] M. F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
- [3] T. Kambe, H. Matsunaga and H. Toda: A note on stunted lens space,J. Math. Kyoto Univ. 5 (1966), 143-149.
- [4] T. Kawasaki: Cohomology of twisted projective spaces and lens complexes, Math. Ann. 206 (1973), 243-248.
- [5] T. Kobayashi: KO-cohomology of the Lens Space mod 8, Mem. Fac. Sci. Kochi Univ. (Math.) 7 (1986), 33-57.
- [6] T. Kobayashi and M.Sugawara: On stable homotopy types of the stunted lens spaces, I, Hiroshima Math. J. 1 (1970), 287-304.
- [7] T. Kobayashi and M. Sugawara: On stable homotopy types of the stunted lens spaces, II, Hiroshima Math. J. 7 (1977), 689-705.
- [8] S. Kôno: Stable homotopy types of stunted lens spaces mod 4, Osaka J. Math. 29 (1992), 697-717.
- [9] S. Kôno and A. Tamamura: *J-groups of suspensions of stunted lens spaces mod 8*, Osaka J. Math. **30** (1993), 203-234.
- [10] M. Mimura, J. Mukai and G. Nishida: Representing elements of stable homotopy groups by symmetric maps, Osaka J. Math. 11 (1974), 105-111.

- [11] H. Nakai and Z.Yosimura: Quasi KO_* -types of CW-spectra X with $KU_*X \cong \mathbb{Z}/2^m \oplus \mathbb{Z}/2^n$, Mem. Fac. Sci. Kochi Univ. (Math.) 17 (1996), 111-140.
- [12] Y. Nishimura and Z. Yosimura: The quasi KO_{*}-types of weighted projective spaces, J. Math. Kyoto Univ. 37-2 (1997), 251-259.
- [13] Y. Nishimura and Z. Yosimura: The quasi KO_{*}-types of weighted mod 4 lens spaces, Osaka J. Math. 35 (1998), 895-914.
- [14] Z. Yosimura: Quasi K-homology equivalences, I, Osaka J. Math. 27 (1990), 465-498.
- [15] Z. Yosimura: Quasi K-homology equivalences, II, Osaka J. Math. 27 (1990), 499-528.
- [16] Z. Yosimura: The quasi KO-homology types of the stunted real projective spaces, J. Math. Soc. Japan 42 (1990), 445-466.
- [17] Z. Yosimura: KO-homologies of a few cells complexes, Kodai Math. J. 16 (1993), 269-294.
- [18] Z. Yosimura: The quasi KO_{*}-types of the stunted mod 4 lens spaces, Math. J. Okayama Univ. 35 (1993), 193-228.
- [19] Z. Yosimura: Quasi KO_* -types of CW-spectra X with $KU_*X \cong Free \oplus \mathbb{Z}/2^m$, Osaka J. Math. **36** (1999), to appear.

Yasuzo Nishimura
Department of Mathematics
Osaka City University
Osaka 558, Japan

ZEN-ICHI YOSIMURA
DEPARTMENT OF INTELLIGENCE AND COMPUTER SCIENCE
NAGOYA INSTITUTE OF TECHNOLOGY
NAGOYA 466, JAPAN

(Received August 21, 1998) (Revised November 24, 1998)