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THE QUASI KO,-TYPES OF STUNTED
MOD 8 LENS SPACES

YASUZO NISHIMURA AND ZEN-ICHI YOSIMURA

0. INTRODUCTION

Let E be a ring spectrum with unit. Given CW-spectra X and Y we say
that X is quasi F,-equivalent to Y if EA X is equivalent to EAY as an E-
module spectrum (see [14]). In this case there existsamap f: Y 5> EA X
inducing an isomorphism f, : E.Y — E,X, which is called a quasi E,-
equivalence. For the real K-spectrum KO we are interested in the quasi
KO,-types of the mod g lens space L" and its stunted space L7 ; = L"/ I
when ¢ is a power of 2. Here we simply denote by L?*™*+! the (2m + 1)-
dimensional standard mod q lens space L™(q) and by L?™ its 2m-skeleton
L7 (g). In [16] and [18] we have completely determined the quasi KO,-types
of the stunted mod 2 and mod 4 lens spaces. In this paper we shall determine
the quasi K O.-types of the stunted mod 8 lens spaces.

The complex K-spectrum KU possesses the conjugation zbal. Given CW-
spectra X and Y we say that X has the same C-type as YV if KU, X is iso-
morphic to KU,Y as an abelian group with involution 1,[)51. In the previous
papers [16] and [18] we investigated all the C-types of the stunted mod 2
and mod 4 lens spaces L' | in order to determine their quasi KO,-types.
However it is very bothersome to investigate all the C-types of the stunted
mod 8 lens spaces L}, because the behaviour of the conjugations 1/)51 on
K UOL?+1 is complicated. To avoid a wasted effort in this paper we shall
discuss several basic properties about the quasi K O,-types of the stunted
mod g lens spaces L}, ; (Propositions 1 and 2) by using Thom complexes
and weighted projective spaces as stated below. These results assert that it
is sufficient for us to determine only the quasi K O,-types of L>™ = LT(8)
and Li* = L2*(8)/L}(8) in order to establish our purpose (Theorems 2.8,
2.10 and 2.11) completely.

The second named author was partially supported by Grant-in-Aid for the Science
Research of the Ministry of Education, 09640103.
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Let &am+1 be the cancnical complex line bundle over L™(q) and &5y

its restriction onto L{*(g). The stunted mod q lens space Lg’;”‘ is cellu-
lar homeomorphic to the Thom complex T'(keo(£,)), and Lgiii‘ is so to

T(keo(£n))/ 2, where € stands for the realification. On the other hand,
the S-dual DL%’;”’"“ is (stably) homotopy equivalent to the Thom com-
plex T(—keo(éam+1) — 7) where 7 denotes the tangent vector bundle over
L™(q). Using these facts we can show

Proposition 1. i) The stunted mod q lens space L;‘_::f is quasi KO,-

equivalent to S*LT. In particular, ngi? and ng*’"
to TAML™ and LM v DML respectively. (Proposition 2.3).
ii) The S-dual DL?"” 1s quasi KO,-equivalent to 2_45_3L‘313_",'_3_1 when

0 <r < 3. (Proposition 2.4).

are quast K O, -equivalent

The mod g lens spaces L{'(g) and L™(g) are exhibited as the fibers of
certain maps ig : P™ — PL™~1 and i : P™ — PL™, respectively. Here
P™ = P™(1,1,---,1) is the usual complex projective space of dimension
m, and PV™~1 = P™(q,1,---,1) is the weighted projective space of type
(¢,1,---,1). Since the quasi KO.-types of weighted projective spaces have

been determined in [12], we can show

Proposition 2. When q is even, the stunted mod q lens space L?s“l 18
quast K O,-equivalent to the wedge sum Lfs'z v B4l put L?"H is not so
to L}* v B4+ (Proposition 2.6).

In §1 we construct new small spectra PP, ;. VPP ;50 MPP, , .
and so on appearing in Theorems 2.8, 2.10 and 2.11, and then study the be-
haviour of the conjugations ¢El on their KU-homology groups. Moreover
we characterize the quasi K O,-types of CW-spectra having the same C-type
as PP/ ;0 (VPP 4p,) or MPP .
adopted in [15] or [18] (Theorem 1.7). In the first part of §2 we discuss

such several properties of the stunted mod ¢ lens spaces L}, ; as Proposi-

by developing the same method as

tions 1 and 2 by using Thom complexes and weighted projective spaces. In
the latter part of §2 we investigate the behaviour of the conjugations qbal
on KU°(L™(8)) and KU®(L?%(8)/L'(8)), and then dualize their results to
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determine the C-types of L>™ = L™(8) and L3° = L3°(8)/L}(8) (Proposi-
tions 2.7 and 2.9). Applying the characterization given in Theorem 1.7 to
L™ and L3® we can easily determine their quasi KO,-types. Consequently
we can prove our main results (Theorems 2.8, 2.10 and 2.11) by virtue of
Propositions 1 and 2, as is stated above.

1. SMALL SPECTRA PP, AND MPP;

s,t.pg ,8,4,0,9

1.1. Let SZ/2™ (m > 1) be the Moore spectrum of type Z/2™, and i :
¥0 — §Z/2™ and j: SZ/2™ — T! be the bottom cell inclusion and the top
cell projection, respectively. The stable Hopf map 7 : £! — X0 of order 2
admits an extension 7 : ¥15Z/2™ — ¥° and a coextension 7j : £2 — SZ/2™
satisfying i = n and j7 = 7. Let us denote by Pmn, Pp v Prny vPmn
and v Py, ,, the small spectra constructed as the cofibers of the following
maps 7j, i7, i + 7j : L' SZ/2" — SZ/2™, iyqj : £1SZ/2" — Vi, and
ifji, : T71V1 — SZ/2™, respectively. Here we adopt the notations V5, and
V, inplaceof P, _, | and P, 51, respectively, and iy : SZ/2™! — Vi, is the
canonical inclusion and ji, : V; = £2§Z/2"! is the canonical projection.
According to [11, Proposition 3.2] and its dual, the spectra v Py, » and v Py, ,,
are quasi KO,-equivalent to Ean+1,m—-1 and ZSP,'I_I’m 41, respectively.

As in [13] (or [18]) we denote by PP, , P'Pp; s, vPP/,, and vP' Py,

r,s,p’ Ty8,p
the small spectra constructed as the cofibers of the following maps

(i, i) : S'SZ/2P — SZ/2" v §Z/2°, ifV @j : B SZ/2T vV 1822 — SZ)2P,
(ivag, i) : B1SZ/2P - V. v §Z/2°, ifji, V7j: 71V v EISZ/2° - SZ/2P,
respectively. Evidently there hold the S-dualities S3DPP], , = P'P,,
and 3Dy PP, , = yP'Pp; ;. Note that PP}, , = Prp, vPPl,, = vPp,
vPP|,, = P;,,, and their duals hold. In [18, Propositions 2.1 and 2.3]
these small spectra were written as Us rp, Uy, 5, Vsrpand V. .. According
to [18, Corollary 3.4] the spectra P'Pp,; and v P'P,,, are quasi KO,-
equivalent to X2P

! 6 ! .
s+1,r—1,p and Z°v PP, ., ., respectively.

: ! / /
We introduce new small spectra Prsp.g, Pp g ;60 VFrspqVFpgrs PP, Stpa?
P'Ppgrs,v PP, r’,S.t,p,q and v P'Pp g r s+ constructed as the cofibers of the fol-

lowing maps
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ifjpVaj : LT'PpVEISZ/29 5 §Z/28,
(iphj i) : T'8Z[2* - P} v SZ/2,
ifvipVaj : ETlyP,VEISZ/29 5 §Z/28,

(vipij,if) : E'5Z/2° » yP) v S5Z/2,
ifjpV ijjp : TT'PpVET'P - §Z/2°,
(ip0d,ipin) : T'SZ[2° —» P, V Py,
ifivipViijjp : TlyPpVETIP - §Z/2°,
(vipnd,ipi) : E'SZ[2° = yP] V Py,

respectively. Here ip : §Z/2% = Py, ip: §Z/2°P - P, ., vip : SZ/2P —
va’,', are the canonical inclusions, and jp : P, — ¥28Z/2P, vjp: vBrp—
£287/2P, jb - P/, — ¥25Z/29 are the canonical projections. Evidently
there hold the S-dualities X*DPrspq = Py grsr Z2DvPrspq = vPh g
S3DPP., 00 = P'Prgrsi and Z3DyPP. = vP'Ppq,.s Note that
Prspo = PP, vPrspo = vPP ;,, vPispq = P'Pspiig, PPy g, =
Prspa VPP;,S,O,p,q =vPrspa VPPII,s,t,p,q = s,,t,p+1,q and their duals hold.

! ] ! !
The spectra Prsp,gy Ppgrsr VPrspa vE PP g P'Pogrst

p.g.T.8)
v PP and yP'P, 4,1 are exhibited as the cofibers of the following

r,s,t.,p.q
maps
Rjjprp: E‘IP’Ps,p,q — 8Z/2", ippifj:B1SZ/2" — PP;,M,
(1.2) iviljipp : BT P Pypg — Vi, ipprifjy : BTV = PR,

ﬁjjpvpﬂ’P : E_IP‘;,t,p’q - SZ/2T, lp’l:pp'iﬁ : 21SZ/2’ - Pp,q,s,h
wwijippmp : X IPy 0 = Vo, Lpippifijy t BTV = Pt

respectively. Here ippr : §Z/2° — PP, , lp : PP, — Ppgs: are the
canonical inclusions, and jpip : P'Psp 4 — ¥28Z/2P, Tp Ps”t)p:q — PP,
are the canonical projections.

For Y = P,3pq Or vP, 554 we observe that KUY = 0 and KUpY
is isomorphic to the direct sum KUpPP}, , ® KUyS2SZ/27 if s > gq, to
KUySZ/2" @ KUgP'Psp 4 if 7 > p, and to KUgPyp, @ KUgPy 4 if 7 > p >
s, T<p>s,p>s>qorp>s<gq. For X =PP/,,, oryPF .,
similarly we observe that KU; X = 0 and KUy X is isomorphic to the direct
sum KUgPr s p,g® KUoSZ/2" if ¢ > t,t0 KUySZ/2" @ KUy Py, ,, . if 7 > p, to
KUoPP,,,® KUpP, ifs>¢q, s>2g<t,r>p<s>gorr<p<s>g,
and to KUpP;p ® KUpPP,,
p> s < q <t. Inorder to investigate the behavior of the conjugations ng.l

fp>s, r<p>s, p>2s<g>tor
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on KUY and KUy X we recall the following result shown in [18, Proposition
2.1 )] (or [13, Proposition 1.1]).

Proposition 1.1. When X = PP, , oryPP,,, (r,p>1 and s >0), the

T,8,p
conjugation 1/)51 on KUpX is represented by the following matriz A, s p:

(1) r>p>s (2) r>p<s
KUpX = Z/27@Z/?P®Z/2 zZ/2r @ Z/2P" @ Z/2°H!
1 277 0 1 or—ptl _gr-p
Yo = 0 -1 0 0 -1 1
0 -1 1 0 0 1
(3) r<p>s (4) r<p<s
KUpX = Z/7 le@z/?tlgZ/2° Z/2 '@ )P @ Z/2° %]
1 0 0 1 0 0
Vot = —2p~T2 1 0 —op-rtl 1 1
—op—r+l 1 1 0 0 1

When X = P'Pyys or yP'Pyrs (r,p > 1 and s > 0), the conjugation
1/)51 on KUpX is immediately given as a dual of Proposition 1.1 (see [18,

Proposition 2.1 ii)]), by making use of the universal coefficient sequence
0 - Ext(KU-1DX,Z) - KUpX — Hom(KUyDX,Z) — 0

where DX stands for the S-dual of X. By a routine argument using Propo-

sition 1.1 and its dual we can easily show

Proposition 1.2. When X = PP, . or vPP, ,,, (r,5,p,q > 1 and
t > 0), the conjugation d)gl on KUyX is represented by the following matriz

Ar,s,t,p,q:
(yr>p>s>g>t (2)r>p>s>q<t
ZI2"@Z/2PDZ/2° ®Z[29D Z/2 Z[2" D Z/2P D Z[2° ® Z/297 @ Z/2tH!
1 2P 0 0 0 1 27=P 0 0 0
0 -1 0 1} 0 0 -1 o 0 0
0 -1 1 272 0 0 -1 1 2s—9tl _3s—q
1} 0 0 -1 0 0 0 -1 1
0 0 0 -1 1 0 0 0 1
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B)r>p>s<g>t, r>p>s<q>t
Zir @ Z/r@ Z[2 " zZ/29 @ Z/2¢

1 27-Pp 0 0 0
0 -1 0 0 0
0 -1 1 0 0
0 29—+l _g9-e+2 7 9

0 0 —29—s+l 1 1
(Byr>p<s>g>tr>p<s>qg>t
Zirezjr- ezt 9 Z/290 Z/2¢

1 2r—p¥l  _or-p 0 0
0 -1 1 29 0
0 0 1 2s—atl
0 0 -1 0
0 0 0 -1 1

r>p<s<qg>t, r>p<s<g>t
ro>p<s<g>t, r>2p<s<qg>t
Ziro z/2Pr @ Z/20 @ Zf29t @ Z/2¢

(M

1 2Pl _or-p 0 0
0 -1 1 0 0
0 0 1 0o 0
0 0 —2¢—s+l 1 ¢
0 0 —29- 1 1

9)yr<p>s>g>t
Zizr-lgzjptl @ Z/2° @ Z/29 @ Z/2*
1 0o 0 0 o
—2p-T+2 1 0 0 0
—2p-r+l 1 1 2079 0
0 0 -1 0
i} 60 0 -1 1
() r<p>s<g2xt

(=]

z/r-lg zZ/rt @ Z/2° @ Z/29%1 @ Z/2¢

1 0 0 0 0
—op—r+2 -1 0 0 o
—2p—r+l -1 1 0 0
0 29-s+1  _99-s+2  _1
0 29— 29l 1 1

(183) r<p<s>g>t, r<p<s>g>t

z/i2r 1@ z/ppro z/22 P ® Z[290 Z/2!

1 0 0 0 0
—2rp-r+l 1 1 2272 0
0 0 1 279k ¢
0 (VI -1 0
0 0 0 -1 1

4r>p>s5<g<t r>p>s<q<t
Zir@Z/2P Z/2*" @ Z/29 @ Z/2tH!
1 2r~°p

o o o ©

-1
-1

20+

0

0 0 0
0 0 0
1 0 0
—29-s+l 1}
0 0 1

(6)r>p<s>q<t
Zj2m @ Zj2Pr~ 1 g Z/2st @ Z /2971 @ Z/2H1
_9r—p

1 2r-pHl
-1

o o o ©

O O = =

0 0
2s—g+l1 —923—q
2s—q+2 _gs—gq+1

-1 1

0 1

B)yr>p<s<qg<tr>p<s<qg<t

Z/2 © Z/2P" ' @ Z)2° @ Z/29 @ Z/2t+)

1 2r-ptl
0o -1
0 0
0 0
0 0

~2""P 0 O
1 0o 0
1 0 0
—2¢7 -1 1
0 0 1

(10)r<p>s>g<t

1
_op—r+2
—op—r+l

0

0

1
—gp-r+2
—op—r+1

0

0

0
-1
-1
0
0
(12)r<p>s<g<t

0

-1
-1
202

0

0

0
1
0
0

Zj2r-l@ Zppl g z/2c @ Z/29 @ Zf2tH)

0 0

0 0
9s—q+1 _gs—gq

-1 1

0 1

zj2r-l@ zZ/prtl @ Z/2°" 1 @ Z/29 @ Z/2t !

0 0 0
0 0 0
1 0 0
—929—s+1 _1 1
0 0 1

(14) r<p<s>g<t

1
—_op—r+1
0
0
0

0
-1
0
0
0

0
1
1
0
0

Zjer-l @ 2/2P @ Z/2*H @ Z/29-1 @ Z/2t+)

0 0
2s-a+1 0
2s—q+2 _2s~q+l

-1 1

0 1
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(15) r<p<s<g>t, r<p<s<qg2t (16) r<p<s<qg<t
z)2-lez/raz/2 0z @Z/2t Z/TT'®Z/2P®Z/2°© 2/ Z/2tH!
1 0 0 0 0 1 ] 0 0 0
—op-T+1l 1 1 0 o0 —2p—r+l 1 0 0
0 0 1 0 o0 0 0 1 0 o
0 0 297+l _1 o0 0 0 -297* -1 1
0 0 29— -1 1 0 0 0 0 1

When X = P'Ppgr st 08 vP'Ppgrsy (r,8,p,g > 1 and t > 0), the conju-
gation 1/)51 on KUy X is immediately given as a dual of Proposition 1.2. As

an immediate result of Proposition 1.2 and its dual we obtain

Corollary 1.3. i) The spectra Prspq and vPy 554 (r,8,p > 1 and ¢ > 0)
have the same C-type as Equ+l.p,s,r—1-
ii) The spectra P'Pygr st and yP'Ppgr st (1,80, > 1 and t > 0) have

the same C-type as z:zppzl+1,s,r—1,q.p'

1.2. Let us denote by My, My, MPy, n, P'M;, ., MPP]  and P'PM,

rls|p p’r’s
the small spectra constructed as the cofibers of the following maps

in: 3l — §Z/2™, nj:SZ/2m — 20,

inVvHj:SvBlsZ/2" — SZ/2™, (nj,in): X1SZ/2™ —» £lv §Z/2n,

inVijjp: BV ETIP, - SZ[27, (nj,ipif): Z'SZ[2" — TV B,
respectively. In [18, Proposition 2.4]-the spectra M Pp, 5 and MPP; ; , were
written as MV, , and MU, ,, respectively.

Recall that the spectrum V;, is exhibited as the cofiber of the map 2™~ 17 :
$0 — C(7) where C(7j) denotes the cofiber of the map 7 : Z!1§Z/2 — X0
and i : £% — C(#) is the bottom cell inclusion. Denote by v My, vM Py p
and y M PP, ; , the small spectra constructed as the cofibers of the following

maps

iv(n A1) : SIC®H) = Vin,
iv(n A1) Viynj : BIC(H) V B1SZ/2" = Vi,
iv(n A1) Vivijjp: B1C(H) VETIP, —» V,

respectively, where iy : C(7j) — Vi, is the canonical inclusion. According
to [17, Lemma 1.5] the spectrum yM,, is quasi KO,-equivalent to M.
By virtue of [18, Theorem 3.3] (or [13, Theorem 1.2]) we observe that the
spectra yMPp, n and v M PP,',S,p are quasi KO,-equivalent to M P, , and
MPP]

r.s,pr TESPectively.
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Using the maps given in (1.2) we introduce new small spectra M P,

VMPrspg MPP, ;.. vMPP,

!
as the cofibers of the following maps

iV njjep
iv(n A1) Vivijjpp
inVajjppTp
wv(nAl) Viyijjpprp
(ng, ipprif)
(nj,lpippif)

(1.3)

r.s,t.p,Q’

s!p’q,

P'M, . and P'PM, ., constructed

LV EIPP,, — S22,
SIC@H) VEIP'Pypg -V,
SIVETIR, L, SZ),
SICH VETP p0 = Vr,
$i§z/2m 5 Bty PP, s

£18Z/2" 5 BV Py gsis

respectively. Evidently there hold the S-dualities Z3DMP, ; ,, = P’ M, ors
and S3DMPP!,, . = P'PM,. ... Note that MP.,,o = MPP.,
YMP,opo=vMPP,, , MPP. o = MP.,pq vMPP. o =yMP,,,,
and their duals hold. The spectra MP, 549, vMP,;pg4, M’PP,”s,t’p’q,
vMPP, . .P'"My .  and P'PM, ., are exhibited as the cofibers of

the following maps

vipiv(n A1) : E1C(7) = vPrspa
vippiv(n A1) : BC(G) = vPPl g0
njipp T P Ppgres = T,

ipin: IS P spa
(1.4) ippin:E' — PP, .,
Miip: ¥ Py s — E1,
respectively. Here ip : §Z/2" — P pq, vip :
S§Z/2" = PP, ;54 virp : Vs = vPP, ., are the canonical inclusions,
and jp : Py, = $28Z/2" and jpip : P'Ppgrst — £28Z/2" are the
canonical projections.
For X = MPPF|,,,,
KUyPP;,;,, and KU1 X = 0.

the conjugation 1/)51 on KUpX we recall the following result shown in [18,

Ve — VPr,s,p,q, ippr :

or yMPP;,,,, it is obvious that KUpX =~ Z @

In order to investigate the behavior of

Proposition 2.3] (or [13, Proposition 1.1]).

Proposition 1.4. When X = MPP,, oryMPPF, , (r,p>1ands>0),
the conjugation ¥z on KUpX = Z & KUyPPF,
-1 0

Ar,s,p
Here the matriz A, ,p is expressed separately into four cases (1) ~ (4) in
Proposition 1.1, and the integer z is defined to be 0, 0, 2P~"+1 or 277

according as (1) r>p>s, (2)r>p<s, (8)r<p>sor({)r<p<s.

is represented by the

matriz ) for a certain column vector b transposed (—1,z,0)..

By a routine argument using Proposition 1.4 we can show
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Proposition 1.5. When X = MPP, or yMPP, .. (r,5,p,q > 1

s,t.p.q
and t > 0), the conjugation 1/;51 on KUpX = Z & KUyP 7",s,t,p,q is repre-
-1 0
sented by the matriz for a certain column vector b trans-
Ar,s,t,p,q

posed (—1,z,vy,0,0). Here the matriz A, ;tpq s erpressed separately into
sizteen cases (1) ~ (16) in Proposition 1.2, and the integers z, y are given

in each case as follows :

(0, 0) in cases of (1) ~ (8)
(2P-7+1, 0) in cases of (9) ~ (10)
(2p~7+1 2P=T) in cases of (11) ~ (12)
(2P-T, 0) in cases of (18) ~ (16).

(z, y) =

For X = Py, vPnny MPnyp, PP, vPP., ot MPP., (m,r,5,p>
1 and n > 0) we recall the KO-homology groups KO; X (0 <1 <7) tabled
below (see [17, Proposition 2.2], [18, Propositions 2.2 and 2.4] or [13, Propo-
sition 1.1]:

ANX  Pmon v Pm,n MPpm n PP, ., vPP!, MPP}, .,
0 zjem zjam-1 z/2m zZir @ Z/2° Z/r'e@Z/2  Z/2 @ Z)2°
1 z/2 0 0 Z[2 0 0
2 (*)n,m zjntl  z@z/2ntl (x)poa, ® Z/2 Z/2P® Z/2 ZDZ/IPSZ/2
3 zZ/2 Z/2 z/2 z[2 z/2 zZ/2
4 Fm-2n41 (Fm-tnt1 (Nm-rn+1  Z/27 7Y@ Z/2°FY Zj2m @ Zy2°+) Zj2m @ Z/2° )
5 0 z/2 0 0 z/2 0
6 zj2n (Mn-t,m Z®2Z/2" zZjor (*)p=1, Z®Z/2P
7 0 0 0 0 0 o

where (%) = Z/2¥+2 and (¥)i, = Z/2F @ Z/24f 1 > 2.
For X = P, 1, vPy s P'My, 0, P'Pprsy vP' Py s, PPPM,, . (m,7,8,p >

1 and n > 0) the KO-homology groups KO; X (0 < i < 7) are immediately
given by making use of the universal coefficient sequence

0 — Ext(KO3_;DX, Z) - KO;X — Hom(KO4_;DX,Z) — 0

where DX stands for the S-dual of X. Using these results we can easily
compute

Proposition 1.6. When X = PP/, ,vPP/ ,,,0r MPP] . (r,5,p,q

>1andt >0), the KO-homology groups KO;X (0 < i < 7) are tabled as
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follows:

\NX PP'r",s,t,p,q VPP,f'S,t‘p‘q AfPP,f,s,t’p?q
0 Z/2’EBZ/2SG§Z/2t Z/2"_1€BZ/256BZ/2‘ Zjl2r®Z/2° @ Z)2t
1 Z/2 0 0
2 ($)p=1,r ® (¥)g-1,641 Z/2 @ ($)g-1441  Z O Z[2° B (*)g—1.441
3 Z/2 Z/2 zZ/2
4 Z/rleZ/2c@ Z/2tYY Z)2r @ Z/2° @ Z/2HHY Z/27 @ Z/2° @ Z/2tH)
5 0 Z[2 0
6 Z/2*r e Z/2? (*)e—1,r B Z/29 ZoZ/2?r® Z/2°
7 0 0 0

where (*)k1 =2 Z/282 and (x)p, = Z/2% @ Z/2 if 1 > 2.

When X = P'Ppgrsty vP' Ppgrst or PPPMyg sy (r,8,p,g > 1 and
t > 0) the KO-homology groups KO;X (0 < i < 7) are immediately given
as a dual of Proposition 1.6.

Recall that the conjugation ¢51 on K UgP{,’m is represented by the fol-
lowing matrix:

m>n m=n
zjamtl g z/2n ! zZ/2me Z/2n
1— 2m—n+1 2m——n+2(1 _ 2m—n) 1 —1
( 1 —1 + 2m-n+l ) (0 —1)
m<n

Z/Qm_l o) Z/2n+1
1 —2n-ml 1
2n—m+2(1 _ 2n—m) —14+ 2n—m+1

and KO;Py, , = Z/2™, 0, Z/2", 0 according as i = 0,1, 2,3 mod 4 (see [17,
Propositions 2.1 and 2.2]). Note that $2P7

4 pn
nm and X°Pp o have the same

quasi KO,-type as Py, ,.

Let X be a CW-spectrum having the same C-type as the wedge sum
YV (ViPy, ,.), where Y = §Z/2", M, (r > 1), PP/, ,, MPF,,  (r,p>1
and s > 0), PP, ;,,0or MPP, , . (r,8,p,¢ > 1andt > 0). Then we note
that KO\ X @ KOs X = Z/2 or 0, and KO3X & KO7X = Z/2. Applying
the same method as adopted in [15, Theorems 3.3 and 4.2] or [18, Theorem
3.3] we can show
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Theorem 1.7. i) Let Y be the small spectrum SZ/2" (r > 1), PP,
(r,p >1and s >0) or PP, ,,, (rs,p,g > 1 andt >0). Ifa CW-
spectrum X has the same C-type as the wedge sum Y V (V.,-P,',’l‘_ n;)s then it is
quasi KO,-equivalent to the wedge sum W V (V;Py,. ..). Here W is one of
the following four spectra:

(1) SZ/2’ $457/2", V, and B4V, when Y = SZ/27;

(2) PP ,sp, S4PP!, . vPP.,, and Sy PP, when Y = PP, ;

(3) PP, ;4 p 4 S4PP. 1 pgr VPPripq and 24y PP v s tpg When
Y = PPl,pa

ii) Let Y be the small spectrum M, (r > 1), MPP, ; , (r,p >1 ands >0)
or MPP, i ;4 (r,8,p,¢>1 and t > 0). If a CW -spectrum X has the same
C-type as the wedge sum Y V (ViPp,. ,.), then it is quasi KO,-equivalent to
the wedge sum WV (V;Py,. ,.). Here W is either of the following two spectra:
(1) M, and Y4M, whenY = M,;
(2) MPP, ,sp and S*MPP], , when Y = MPP[

(3) MPP, and S*MPP; whenY = MPP!

r s,t,0,q RN X ,8:0.p.q"

Combining Theorem 1.7 with Corollarly 1.3 and Proposition 1.5 we can
immediately obtain

Corollary 1.8. i) The spectrum vPrspq (1,8,p > 1 and ¢ > 0) is quasi
KO,-equivalent to $2Py 1 psr—1.

ii) The spectra P'Ppgr st and vP'Ppgrst (18,0, > 1 and t > 0) are
quasi KO,-equivalent to L2PP[,, ., ., and SOyPP,) or_1qp TESDEC-
tively.

iii) The spectrum vMPP; ,

equivalent to MPP, ;..

pg (180, > 1 and t > 0) is quasi KO-
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2. THE STUNTED MOD 8 LENS SPACES

2.1. Let E be an (associative) ring spectrum with unit and £ be an n-
dimensional real vector bundle over a CW-complex X. Let us denote by
T'(€) the Thom complex of &, thus T(£) = D(£)/S(€) where D(£) and S(£)
are the associated disc and sphere bundle, respectively. We say £ to be E-
orientable if there exists a Thom class ug € E™"T(£) such that the composite
map (ug A py)A : T(€) - E"E A X, is a quasi E.-equivalence. Here
A:T(€) — T(€) AD(£)4 is induced by the diagonal map and p : D(§) - X
denotes the projection, and Y, stands for the based CW-complex with the
additional base point + for any CW-complex Y.

Proposition 2.1. Let £ be an n-dimensional real vector bundle over X. If
€ is E-orientable, then the Thom complezr T(€ & a) is quasi E,-equivalent
to L"T(a) for any real vector bundle o over X.

Proof. Consider the composite map (ug A l)p : T(E ® a) & L"E AT(a)
where p : T(E B a) = T(£ x a) 2 T(£) AT(a) is the canonical map. If « is
the trivial bundle of dimension m, then (ug Al)p = (ug Ap4)A : EMT(€) —
TMME A X4, thus (ug A 1)p is a quasi Es-equivalence. For a general a we
apply the Mayer-Vietoris exact sequence to observe that the map (ug A 1)¢

is a quasi E,-equivalence. 0

Let L™(q) be the (2m + 1)-dimensional standard mod ¢ lens space and
L™(q) its 2m-skeleton. For simplicity we set L?™+! = L™(q) and L™ =
L{*(g). Let €am41 be the canonical complex line bundle over L™(g) and
£2m denote the restriction of éam41 onto LT (g). As is well known, the 8-
dimensional real vector bundle 2¢(&,) & 46 over L™ is K O-orientable where
€0 stands for the realification and @ denotes the trivial real line bundle over

L™, Hence we see

Corollary 2.2. The Thom complezx T'(2¢0(€n) ® o) is quasi K O,-equivalent

to £*T(a) for any real vector bundle o over L™.

The stunted mod ¢ lens space L*/L! (n > | > 0) is simply written to

be L}, as usual. Recall that the stunted mod ¢ lens spaces Lg’ﬁ" is cel-

lular homeomorphic to the Thom complex T'(keo(&r)), and Lgﬁi’f is so to
T(keo(£n))/E%* (see [3, Theorem 1] or [6, Theorem 4.7 and Corollary 4.8]).

From Corollary 2.2 we can immediately show
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n+4
I+4

to 4LT. In particular, Lzzi? and Limm are quasi KO,-equivalent to
TR gnd T4 v BAMLR ) respectively.

Proposition 2.3. The stunted mod q lens space L 15 quasi KO, -equivalent

According to the duality theorem [2, Theorem 3.3] for Thom complexes,
the S-dual DL%;H"H‘I = DT (kep(€2m+1)) is (stably) homotopy equivalent
to T(—keo(€am4+1) — 7) where 7 denotes the tangent vector bundle over
L™(qg). Choose a positive integer N such that it is divisible by the J-
order of €y(&am+1) — 20. Then we can observe that the S-dual DL%,’:Jrzm+1
is (stably) homotopy equivalent to yi-2N Lg%:g’;:;m_z because 7 ® 6 =
(m + 1)eg(é2m+1). This implies directly that the S-dual DL} is (stably)
homotopy equivalent to B1=2N L2N"1"1 even if (n,1) = (2k +2m, 2k), (2k+
2m + 1,2k + 1) or (2k + 2m, 2k + 1). (See [10, Proposition 5] or [8, Lemma
2.9]). Applying Proposition 2.3 we can immediately obtain

Proposition 2.4. The S-dual DL{**" is quasi KO, -equivalent to £—4s—3 L3431
when 0 <r < 3.

Let S?"tl(qq,-+-,g,) denote the unit sphere §?"+! c C"t! with §l-
action defined by X - (zq,--- ,z,) = (A\Pzg, -+ , A% z,) € C**! for any )\ €
S C C. The orbit space P"(qo, - ,qn) = §%"*1(qo,- ,qn)/S" is called a
weighted projective space. For simplicity we set P* = P"(1,1,---,1) and
Pln—l = p*(q,1,---,1) for a fixed positive integer g. Hereafter we shall
assume that ¢ is even. Of course, P" is the usual complex projective space
CP" of dimension n. In [12, Theorem 2.4] we have determined the quasi
KO.-types of weighted projective spaces P™(qo,--- ,¢n). In fact, the spaces
p2m prm+l pl2m—1 anq PL2™ are quasi KO,-equivalent to the wedge
sum Vi, C(1), (Vi C(n))VE™H2, B2v(Vy_1C(5))VE™ and 22V(V,, C (7)),
respectively, where C(n) denotes the cofiber of the stable Hopf map 5 : &! —
%0,

The mod g lens spaces L?" = L?(q) and L?"+! = L"(q) are related to the
weighted projective spaces P*, PL»~1 and P by the following (homotopy)

commutative diagram

L2n —s pn i) Pl,n—l
bir [ bi

2n4+1  _% n i 1,n
L — PP — P
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with two cofiber sequences (see [4]). Here 4, i and ij are the canoni-
cal inclusions, 7 is the natural surjection and the map iy is defined by
io[Zo,** yTn-1,Tn) = [Th,Z0,"** ,Tn-1]- Notice that the stunted weighted
projective spaces P2mtn/p2m  p2mintl;p2m+l  pl2m+n-1/pl2m-1 554
Pl2min /plL2m are quasi K O,-equivalent to $4mpn, ypém+2pln-1 ydm pla-1
and B4m+2P" respectively. Then we have the following cofiber sequences
of KO-module spectra with e = 0 or 1:

(2.1)
KOnLgntinte 5 SImMKOAPT 5 TMKQ A PLn-lte
KOALg¥te o mim-2KQAPLn o SimEO A PLA-lte
KOALjntin=2te 5 pim=2KQ A PLn-l o Eim-2KQ A Prte
- Tim-2KO A Prte,

KO AL:mt%n—2+e — 24m—2K0 APrH—l

Note that K Os;(Lim17) and TorKOo;(Lim*7) are Z/2-modules because
KUo(L3rE?) = 0 and KUp(Lim13) = Z, where TorG stands for the torsion

subgroup of G. By means of (2.1) we can immediately compute

Lemma 2.5. When q is even, the stunted mod g lens spaces Li'gig satisfies

1) KOuym(Li™E?) = 0 = TorK Oy (L3™*7) if n = 1,2,3,4,5 mod 8;
i) KOum+4(LimtD) = 0 = TorK Ogma(LiT*7) if n=0,1,5,6,7 mod 8;
iii) KOum+6(LimE?) = 0 = TorK Oam+6(Li™F3); and

iv) TorK Ogpm42(LiT*T) = 0.

Proposition 2.6. Assume that q is even.

i) The stunted mod q lens space L;“_l is quast KO,-equivalent to the
wedge sum Lf3_2 v £4-1 (Cf. [13, Proposition 3.4]).

ii) The stunted mod q lens space L;“‘H is never quasi KO,-equivalent to
the wedge sum Lj* v T4+l

Proof. i) When | = 4m + 1 or 4m we consider the following commutative
diagram

Tim+in KO Tim-l g o A pln-l ﬂ, Tim-1KO A P

| NS +
gimingo L% goaLimtm M go A pimtin

1AG
-

with two cofiber sequences. Recall that P!™~1 and P!'™ are quasi KO,-
equivalent to the wedge sum X2 V (V;__1C(7)) and 2 V (Vs_m_1C(n)) V
»4s-m)  respectively, when n = 2(s — m) — 1. Then we can immediately
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observe that the upper left map 1A & is trivial. When I = 4m — 1 or 4m — 2
we use the following commutative diagram

n4m+2n-2 ) lﬂ’) sé4m=3 o A P" ﬂ) sé4m=3 o A prtl

l 1) !
$ém+2n-2 g 1&{« KO /\Lz4m+2n—2 1_/\14 KO AL;Im+2n—1

with two cofiber sequences. Since P" is quasi K O,-equivalent to the wedge
sum V;_,,C(n) when n = 2(s — m), it is obvious that the upper left map
1 A a is trivial.

ii) By virtue of Proposition 2.3 we may assume that ! # 0 mod 4. Us-
ing (2.1) we can easily compute that KOsmLjmis = KOspmyaLijmisite =
TorK Ogm Li™ 8" = TorK Oupma Lym 154 =2 Z/2, but KOym LM 18 = 7/2
or 0. Moreover we can see that KOsmLimt3"2 = 7/2. From the above i) it
follows that KOunLimt31™! = Z/2 @ Z/2. This implies that KOgmLim*8
must be Z/2. By means of Lemma 2.5 we can conclude that Tor{ KOyL{* ®
KO4L{*} = Z/2, but Tor{KOL;**' ® KO4L;**'} = 0. Now our result is

immediate. O

2.2. For the canonical complex line bundle &;,4; over the mod 8 lens space
L™(8) we set o = 3741 — B¢ and a(k) = (§2n+1)®2k — 6¢ where 8¢ denotes
the trivial complex line bundle over L”?(8). Recall that the (reduced) KU-
cohomology groups KU®L"(8) & Z[o]/(c™*!,0(3)) are given as follows [7,
Proposition 3.7):

(2.2)i) KU®LL(8) = Z/8, generated by o;

ii) KU°L?(8) = Z/16 ® Z/4, generated by ¢ and o(1);

i) KUPLY#-1(8) @ Z/24 @ Z/2% @ Z /2% @ Z/2" L @ Z/2 @ Z/2t ' &
Z/271, generated by o, o(1) + 2o, o(1)o, o(2) + 2t0(1) + 230, o(2)0 —
2to(1)o + 23 1a, 0(2)a(1) — 2t+10(1), o(2)o(1)0;

iv) KUCL¥(8) = Z/24+2 g Z/22 ¥ g Z /2% @ Z/2' @ Z/2t ' @ Z/2 ' @
Z/2t71, generated by o, o(1), o(1)o—2%*+1g, 0(2), 0(2)0 —2t0(1)o+23t g,
o(2)o(1) — 2t+1a(1), o(2)o(1)o — 23tH+20;

V) KU0L4t+1(8) o~ Z/24t+3 @ Z/22t+1 @ Z/ZZH—I ® Z/2t @ Z/2t ® Z/2t—1 )
Z/2'71, generated by o, o(1) + 22%*lo, o(1)o, o(2) — 2tt10(1), o(2)0,
o(2)o(1) 2o (1)o — 2110 (1) +2%* 20, 0(2)0(1)o+2t o (1) o 42120 (1) —
93t+35.

vi) KUOLY2(8) = Z/24 4 Z /22 20 Z /22 e Z/ 2@ Z 20 Z /2@ Z /2t
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generated by o, o(1), 0(1)0+2%* 20, 6(2)+2t 0 (1)+2%+30, 0(2)0 +23135,
a(2)o(1), 0(2)o(1)o + 2H1o(1)a — 26725(1) — 23436,

Set ¥ = (0,0(1),0(1)0,0(2),0(2)s,0(2)a(1),0(2)o(1)c). Then the con-
jugation ;' on KU®L™(8) behaves as $5'S = TP when the matrix P is

given as follows:

/10 0 0 0 0 o)
11-200 0 0
10-100 0 0
P=|11-11 -2 -2 2
1000 -1 0 0
11 -20 -1 -1 2
\1 0 -1 0 -1 0 1

Therefore the conjugation 1,[151 on KUYL™(8) is represented by the matrix
B-'PBif B = (g1, ,97) forms a basis of KU°L"(8).

In order to express concisely the matrix representing the conjugation 1/151
on KUYL"™(8) we here modify the direct sum decompositions given in (2.2)
slightly as follows:

(2.3) i) KUL'(8) = Z/8, generated by o;

ii) KU°L%(8) = Z/16 & Z/4, generated by o and o(1) — 4o;

iii) KU LY 1(8) x z/2Y Mt @ Z/2% @ Z/22 @ Z/2t L @ Z/2 L@ Z/20 1 @
Z/2'71, generated by (1+5-2%1)o +5-2¢"15(1) + 3-2!"1o(1)o + 0(2)0 —
a(2)a(1), 22(1-22)o+ (1-3-2){a(1) +o(1)o} +0(2) — o(2)0 +20(2)a(1),
2243 + 2% + (1), 3- 23%a + 2t (1) + 0(2) + 0(2)a (1), 3 - 230 + 2¢{a (1) —
o(l)o} +0(2) +0(2)o, —3-28F1g —21+25(1) +0(2)o (1) + 0(2)o(1)0, 230 +
2to(1) + 0(2);

iv) KUOL*(8) = Z/2%+2qZ/2% g z/ %0 Z/2'aZ /2 '0Z/2 e Z/2t !,
generated by (142%)0+2%0(1)—21"1(14-3-2t)0(1)o +0(2)0+2¢ 20 (2)0 (1),
(1+29){a(1) +o(l)o} —o(2) —o(2)o, —2%* g +5-2t(1) + (1 +2)o(1)o —
o(2)o — o(2)a(1), a(2), —=2t*1o(1) + 0(2)o(1), 23*t1e — 2i0(1)o + o(2)0,
—23t+25 _ 2t+25(1) + 20(2) + 0(2)a(1) + o(2)0(1)0;

v) KUSLAH1(8) = z /243 @ Z/2H @ Z/2t @ Z /20 @ Z/2% @ Z/2' @
Z/2t!, generated by (1+ 23t —2%+2)g — 2t-1(1-3.20(1)+ (1 —2t"1 +3-
22-1g(1)o + 28" Ho(2) + 0(2)o — 0(2)0(1)}, 220 — (1 — 28 — 22) {0 (1) +
o(1)a} + o(2)o — a(2)a(1), 2820 — 0(2) — 0(2)0 — 0(2)a(1) — o(2)o(1)0,
—23t+25 _ 2t+lg(1) + 20(2) + 20(2)0 + o(2)a(1) + o(2)a(1)a, —2%F1(1 +



THE QUASI KO.-TYPES OF STUNTED MOD 8 LENS SPACES 129

2+l _92t) 5 (1 -2t+1 225 (1) +2!0(1)0 —a(2)a(1), -2 {o(1)+o(1)o} +
o(2) + 0(2)a(1), 23+20 — 217 (1) + o(1)o} + 0(2)0;

vi) KUPLA+2(8) = z/24t g z/ 22 29 Z 23 g Z /2t Z/2 '@ Z /2t Z /2!,
generated by (1 — 23¢+4 4+ 2443)g 4 3. 215(1) + 2'0(1)0 + 0(2) + o(2)0,
(1 —2t*1Y{o(1) + o(1)o} — o(2) — o(2)o, 2272(1 - 7- 2%)0 — 2'0(1) + (1 —
M) o(1)o —20(2) —o(2)o —a(2)o(1), 21t {o(1) +o(1)o} +0(2) +o(2)o(1),
— B35 _9t+3g(1) —2t+g(1)0+20(2) +20(2)0(1) +0(2)a(1)0, =210 (1) +
o(2) + 0(2)o + o(2)a (1), 2120 (1) — a(2)a(1).

By means of (2.3) we can easily see that the conjugation ¢3! on KU°L"(8)
is represented by the following matrix:

(2.4) 1) z,bg.l =1on Z/8 when n =1;

1
ii) T/Jc_:l = (1 _01) on Z/16 ® Z/4 when n = 2;

B 1_22t 22t+1(1_22t—1 1_2t 2t+1 -1 0
m)%l:( 1 -1 ) ® 1 -1 ® -1 1 el

on Z/2%t @ Z/2% @ Z/2% @ Z/2' " @ Z/2 " @ Z/20 " @ Z/2'! when
n=4t—1;

0 0 0 ©
-1 -2 0 O
-1 0
0O 1 0 0 EB( )
-1 1
0 1 -1 -2 '
0 0 0 1

on Z/2%2 @ Z/22 @ Z/2% @ Z/2' @ Z/2t ' @ Z/21 " @ Z/2'! when
n = 4t;

iv) gt =

S OO =

1 0 0 0 O
1 -1 0 O 0
1— 22t+l 22t+2 1— 22t
v) ¥t = ( ) (_1 Nel-a+ 2021 ¢ o
0 0 1 -1 -2

0 0 0 0 1

on Z/24t3 @ Z/22 @ Z/2t @ Z/2t @ Z /22 @ Z /2! @ Z/2'! when
n=4t+1;
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0 0 o0 0
-1 -2 0 0
-1 0
0 1 o0 O EB( )
-1 1
0 1 -1 -2
0o 0 0 1

on Z/2H @ Z/2%+2 @ Z/2M @ Z/2' @ Z/2t"' @ Z/2! & Z/2! when
n =4t + 2.

vi) P! =

S O O = o=

Dualizing (2.4) to use Proposition 1.2 (1) and (5) we obtain

Proposition 2.7. The suspended mod 8 lens space L1L}(8) = T1L?" has
the same C-type as the following small spectrum:
22SZ/8, P4_2, 2252/4\/134',3’ PP4t+2,2t,t—1,2t+1,t VPtn—l,t—l’ PPt,,2t,t—l,t,t v

Piiaatr2y PPiyasiiii—120024 YV Ploy SZ/2'V Py g3V Poiyy o V B,
according as n = 1,2,3,4t,4t + 1,4t + 2,4t + 3 (t > 1).

Using Theorem 1.7, Propositions 2.3, 2.6 and 2.7 and Lemma 2.5 we can

show the following result.

Theorem 2.8. The suspended stunted mod 8 lens spaces E““"‘Liﬁi{' is

quast KO, -equivalent to the small spectrum:

¥2, £252/8, £V £252/8, vPya, MPyy, T3 V Plly, SO0V S8V, V Py,
PPy pati-12641,4 VP 10— MPPyy o4 120414V 10-1 VP Piaggo144V
Pityoserzr =0V vPPos 140V Pliiaosssss VPPliasiiis120e2: V Pt
MPPyy o4t 0-120424V Prits SZ/2'V Py g 50 sV Py i VP, B0VSZ/2t

PgiiasiesV Poyran1 V Pry
according asn =1,2,--- ,7,8t,8t+1,--- ,8t+7 (t > 1).

Proof. By virtue of Proposition 2.3 we may assume that m = 0. When n
is even, we use Proposition 2.7 combined with Lemma 2.5 and then apply
Theorem 1.7 to obtain our result. When n = 3 mod 4 our result is immediate
from Proposition 2.6 i). When n = 1 mod 4 the attaching map ay : &1 —
L™"! is not KO,-trivial because of Proposition 2.6 ii). Since KO,_;L""! =

Z /2, our result is easily observed by use of (1.4) and Corollary 1.8 iii). O

2.3. Consider the homomorphism i* : KU°L?*™(8) — KU®L!(8) induced
by the inclusion i : L!(8) — L?™(8). The induced homomorphism i* carries
Y = (o,0(1),0(1)0,0(2),0(2)0,0(2)a(1),0(2)0(1)0) to (o,20,0,40,0,0,0).
Hence the (reduced) KU-cohomology groups KU%(L?™(8)/L'(8)) are given

as follows:
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(2.5) i) KU®(L%(8)/L(8)) = Z/8, generated by 20 — o(1);

ii) KUY(L*(8)/L}(8)) = Z/2%*' ¢ Z/2% & Z/2% & Z/2'' @ Z/2"' @
Z/2t"1@Z/2!71, generated by 20—0(1), 20(1)—0(2), —2%*1g+0(1)0,20(2),
2Bty _ 2t (1o + 0(2)a, —211a(1) + o(2)a(1), 23420 + o(2)a(1)0;

iii) KUY(L4*2(8)/L1(8)) = Z/2¥ B g 22 g Z/ 22 @ Z/2t 1 Z/2'
Z[2t & Z/2'71, generated by 20 — o(1), —23*30 + 2(1 — 2!)a(1) — o(2),
224254 6(1)0, 2810 +2¢H20(1)+20(2), 2830 +0(2)0, 0(2)o (1), —23t+30—
2t+20(1) + 2110 (1)0 + o(2)o(1)o.

In order to express concisely the matrix representing the conjugation 1,051
on KU®(L?*™(8)/L'(8)) we here modify the direct sum decompositions given
in (2.5) slightly as follows:

(2.6) i) KU®(L?(8)/L'(8)) = Z/8, generated by 20 — o(1);

it) KUYL*(8)/L'(8)) = Z/2%*1 g Z/2% @ Z/2% @ Z/2' 1 @ Z/2t 1 @
Z[2t" 1@ Z/2t 1, generated by 2(1 —2%)o — (1—2¢+2)o (1) +0(1)o +0(2)0 —
o(2)o(1), —2%+1g + 2t+15(1) + o(1)o, 2%+20 + 2(1 — 2810 (1) 4 0(2) +
20(2)o(1) + o(2)o(1)o, —2t1a(1) + 0(2)a(1), 2t+20(1) + 20(2), 23t —
2ta(1)o + a(2)a, =23 2g — 2t+1g(1) + 20(2) + a(2)o(1) + o(2)o(1)0;

iii) KUO(L4H2(8)/L1(8)) ~ Z/24t+3 @ Z/22t+1 ) Z/22t+l o) Z/2t ® Z/Qt Py
Z/2" '@ Z/2!71, generated by 2(1—22+1 —9.2441) 5 (14.9.2t4.9.224)5(1) -
(1-2tYo(1)o— 9-2t"10(2) -0 (2)0, —221+2(1-15-2%)0+28(3+5-2tF )0 (1) +
o(1)o+5-2t"10(2) +0(2)o, 2273(1+3-2 )0 +2(14+3-2)a (1) — 2t (1)o +
o(2) — a(2)a(1) — o(2)o(1)o, —2*25(1) + 2t*+1o(1)0 + o(2)0 — a(2)o(1),
23135 — 215 (1)o + 0(2)0(1), —23+30 — 21+35(1)+ 3.2t o(1)o — 20(2) +
a(2)a(1)o, —2t25(1) — 2t+25(1)0 + 20(2).

By a routine computation we can easily see that the conjugation «/)El on
KU°(L?>™(8)/L'(8)) is represented by the following matrix:

(2.7) i) Y5' = 1 on Z/8 when m = 1;

1 -1 0 -1 0 -1 0
) ve _169(—1 1)65(—1 1)®(—1 1)

on Z/21 @ Z/2% @ Z/22 @ Z/2' 1 @ Z/2! 1 @ Z/2t 1 @ Z/2¢ ! when
m = 2t;
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oy 1 -1 0 -1 0 -1 0
i) Yo =10 (—1 1) ® (—1 1) ® (—1 1)

on Z/24+3 g Z7/2%+1 @ 7/224 @ Z/2t @ Z/2t @ Z/2t-1 @ Z/2¢! when
m=2t+ 1.

Dualizing (2.7) we can immediately obtain

Proposition 2.9. The suspended stunted mod 8 lens space T'L{™ has the
same C-type as the following small spectrum:

SZ[8,SZ/2" IV Pyoy V Py, \V Py 1, SZ[2*FV Py 0y VPV
Pl

according as m = 1,2¢,2t + 1 (¢t > 1).
Using Theorems 1.7 and 2.8, Propositions 2.3, 2.4, 2.6 and 2.9 and Lemma

2.5 we can show the following result.

Theorem 2.10. The suspended stunted mod 8 lens space L' ~4m L7114 45
quasi KO, -equivalent to the following small spectrum:

20’ SZ/S’-M3’ P21,4: IRV P2,.4J Va1 v P2"t,2t v Ptu—l,t—l v Ptn—l,t—h My V
Py o VP s VP 1 PPy arrgori VP io1 s SOVPP g 41001V
Pl SZ/2"V Py 0 VPV Py, MyyaV Py 90 VPRV
Pl vPP g avatoie V P TV VPP g s V B
according as n = 3,4,---,7, 8¢, 8t +1,--- , 8+ 7 (t>1).

Proof. By virtue of Proposition 2.3 we may assume that m = 1. Accord-
ing to Proposition 2.4, 2*43_3L§’+2 is quasi K O,-equivalent to the S-dual
DL*. By dualizing Theorem 2.8 and using Corollary 1.8 we can immedi-
ately obtain our result when n = 2 mod 4. Using Proposition 2.9 in place of
Proposition 2.7 we can show our result by a similar discussion to Theorem
2.8 when n # 2 mod 4. O

Let us denote by M'M,,, the small spectrum constructed as the cofiber of
the map hym : £% — M}, in which b}, : ! — M, satisfies j} b}, = i for
the bottom cell collapsing jy, : M), — E1§Z/2™ (cf. [17, (1.7)]). Notice
that the spectra M'M,, and £*M'M,, have the same quasi KO,-type (see
[19, Theorem 5.3] or [15, (4.4)]). Using Theorems 2.8 and 2.10, Propositions
2.3, 2.4 and 2.6 and Lemma 2.5 we can show the following result.

Theorem 2.11. The suspended stunted mod 8 lens space T'~4mL{M+1—4 45

quasi KO, -equivalent to the following small spectrum:
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¥, 20vyT, 2”%1;, L3M'M;, Z2P'Mé’4, viv ZQP'MéA, E3Mit+1 VPZHt,zt Y
Pt”—l,t—l v Ptu—l,t—lf 2311/[’11/[““ v P2”t,2t v Pt”—1,t—1 v Pt”—l,t—lJ
LOP'PMy, g g aern0ti—1V Pii1sots SOVESP PMy, ) s aranoei1 VP11
TTMyy s VP 0 VP VP g, T3M' My 3V Py g 90 VP VP,
2P PMy; ot arvanirri—1 V Pits SV PP PMy, ot arranirt -1 V Pry
according as n = 2,3,--- ,7,8t,8t+1,--- 8t +7 (¢t >1).

Proof. By virtue of Proposition 2.3 we may assume that m = 1. According
to Proposition 2.4, £=%73L3* and £~%73L3**? are quasi KO,-equivalent
to the S-duals DLgH'1 and DL*t1 respectively. Therefore we dualize The-
orems 2.8 and 2.10 to obtain our result when n is even. On the other hand,
we can show our result by a similar discussion to Theorem 2.8 when n is
odd. O
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