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Ip-RINGS AND [(-MODULES

H.HAMZA

The main purpose of this paper is to study Iy - rings (introduced by
Nicholson [7]) and Iy-modules. In section 1, we investigate the polynomial
ring over an [p-ring (Theorem 1.2) and we give a new characterization of Iy-
ring by means of the notion of cyclic flat modules (Theorem 1.4). In section
2, we give the conditions for the endomorphism ring of a module to be an
Iy- ring (Theorem 2.2). In particular, we show that the endomophism ring
of a regular module is an Iy-ring (Theorem 2.5). In section 3, first we give a
characterization of a finitely generated semiperfect module (Theorem 3.1).
Next we show that every projective module over an Iy-ring is an Ip-module
(Theorem 3.2). Finally we show that if R, S (Morita equivalent) and R is
an Ip-ring, then S is an Ip-ring (Theorem 3.9).

Throughout this paper R means an associative ring with identity and
modules mean unitary R-modules. Also we denote the Jacobson radical of
a module M by J(M).

1. Ig-RINGS.

Lemma 1.1. [7, Lemma 1.1} For a ring R, the following conditions are
equivalent:

(1) Ewvery left ideal L ¢ J(R) contains a nonzero idempotent.

(2) Every right ideal L ¢ J(R) contains a nonzero idempotent.

(3) If a ¢ J(R), then zaz = z for some (0 #)z € R.
Following [7], we call a ring R Iy-ring if it satisfies equivalent conditions of
Lemma 1.1. All local rings and all (von Neumann) regular rings are typical
ezamples of Iy-rings.

An element a € R is said to be regular if there exists an element b € R
such that ¢ = aba.

Lemma 1.2. Let I' = R[z] be the polynomial ring over a ring R in the
commuting indeterminant x, and a € R. Then the following statements are
equivalent:

(1) The element a is regular.
(2) T'a +I'z is a projective right ideal of I
(3) R/Ra is a flat left R-module.
(3+1) the left-right symmetry of (1 +1), i = 2,3.
The equivalence of (1) and (2) was proved in the proof of [8], and the equiv-
alence of (1) and (3) was essentially proved in [4, 11.24,p.434].

The following theorem is an immediate consequence of the lemma above.
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Theorem 1.3. Let R be a ring and I' = R[z]. Then the following state-
ments are equivalent:
(1) R is an Iy-ring.
(2) For each a € R — J(R), there ezists a nonzero a* € aR such that
a*T" + zI" is a projective right ideal of T'.
(3) For each a € R — J(R), there ezists a nonzero a* € aR such that
R/Ra* is a flat as a left R-module.
(3+i) The left-right symmetry of (1 +1), i = 2,3.

Proof. (1)=>(2). Suppose that R is an Ip-ring. Then if ¢ € R and a ¢
J(R),4ad = 6 for some 4 € R and & # 0. Since & ¢ J(R), a"da" = a” for
some a” € R and a” # 0. We put a* = ada” and e = a*4. Then a* = a*da*
and e is an idempotent element of R. Thus we have a* = (e + (1 — e)z)a*,
e+(l—e)z =a*d+x(l —e) and v = (e + (1 — e)z)(1 — e + ezx) and so
a*T'+ 2l = (e+ (1 —e)z)[. We put g = e+ (1 —e)z. As is easily seen, g is
a non zero divisor of I'. Hence I' = gTI',that is, a*T" + z[ is a projective right
ideal of T'. :

(2)=(1). Let a € R and a ¢ J(R). Then there exist a nonzero element
a* of R such that a*T" + zI" is a projective right ideal of I'. We put K =
a*T" + zI'. By Dual Basis Lemma, there exist ['-homomorphisms « and g3
from K into I" such that y = a*a(y) + z8(y) for each y € K. In particular,
a* —a*a(a*) = zB(a*). Since z is in center of I' and « is a I'-homorophism,
ra(a*) = ala*)z = a(r)a*, and so a*z = a*a(z)a* + z2B(a*) - (#). We
put a(z) = by + by + boz? +--- + biz', where b; € R (i = 1,2,...,1). Then
we have a* = a*bja*, comparing with coeficients of z of 1 both sides in
equality (#). Thus a*b; is idempotent and is in a*R. Hence R is an Iy-ring.
(1)=(3). Let a € R and a ¢ J(R). Then there exists a nonzero idempotent
e € aR by assumption. Thus R = Re ® R(1 — e), that is, R/Re is flat as a
left R-module.

(3)=(1). Let a € R and a ¢ J(R). Then there exists a* in aR and a* # 0
such that R/Ra* is flat as a left R-module. Thus for an exact sequence
0 - Ra* - R = R/Ra* — 0 of left R-modules Ra* Na*R = a*RRa* =
a*Ra* by [5, Theorem 10.5.1]. Since a* € Ra* N a*R, there exists b € R
such that a* = a*ba*, that is, a*b is idempotent and a*b € aR. Hence, R is
an Ip-ring. O

Let M be module and N a submodule of M. We call N is small in M if
for submodule X of M such that M = N 4+ X implies that X = M. Also we

call an exact sequence 0 — Ker f — P 4y M = 0 of modules a projective
cover of M if P is projective and Ker f is small in P.

Following [2],we call a ring R semiperfect if every cyclic R-module has pro-
jective cover.

Proposition 1.4. For a ring R, the following conditions are equivalent:

(1) R is a local ring.
(2) R is an Iy-ring and 1 is a primitive idempotent.
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(3) R is semiperfect and 1 is a primitive idempotent.

Proof. (1)=>(2) is obvious. (2)=>(1). Let r be in R. If r is in J(R), then
1 —ris a unit. If 7 ¢ J(R), then there exists a nonzero idempotent e € rR.
Since 1 = (1 — e) + e and 1 is a primitive idempotent, e = 1, that is, r is a
unit. (1)<(3) are obvious from [9]. O

2. I3-ENDOMORPHISM RINGS.
R. Ware showed the following:

Lemma 2.1 ([9, Corollary 3.2]). Let M be a right R-module ,S = Endg(M)
and f € S. Then f is regular if and only if for each f € S, Im f and Ker f
are direct summands of M.

The following theorem easily follows from this lemma.

Theorem 2.2. Let M be a right R-module and S = Endgr(M). Then the
following conditions are equivalent:
(1) S is an Iy-ring.
(2) For each f € S and f ¢ J(S), there exists g € S and g # 0 such that
Ker fg and Im fg are direct summands of M.
(3) For f € S and f ¢ J(S), there erists g € S and g # 0 such that Kergf

and Imgf are direct summands of M.

Corollary 2.3. Let Pg be a projective module and S = Endg(P). Then
the following conditions are equivalent:
(1) S is an Iy-ring.
(2) For any f € S and f ¢ J(S), there ezists a non-zero ¢ € S such that
f¥(P) is a nonzero direct summand of P.
(3) For any f € S and f ¢ J(S), there ezxists a non-zero ¥ € S such that
Yf(P) is a nonzero direct summand of P.

Proof. (1)=>(2). It suffices to proof (2)=(1). If Im(f) is a nonzero di-
rect summand of P, then it is projective. Hence the exact sequence 0 —
Ker(fy) - P — Im(f) — 0 splits, and so our claim follows from Theorem
2.2. O

3. Iy-MODULES.

Let Pg be a projective module. As is well-known, J(P) = PJ(R) and
P # PJ(R).

A projective module Pg is called an Ip-module if every submodule which
is not contained in J(R) contains a direct summand of P.

A projective module Pp is called semiperfect if every factor module of P
has a projective cover.

For a finitely generated projective module, we have the following result.

Theorem 3.1. Let Pgr be a finitely generated projective module. Then the
following conditions are equivalent:
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(1) P is a semiperfect module.

(2) P is an Iy-module and P/J(P) is semisimple.

(3) P is an Iy-module with mazimum condition for direct summands.

(4) If A is a submodule of P, then A = Py + D, where Py is a direct
summand of P and D is a submodule of J(P).

Proof. (1)=>(2). It is easy to see that P is an Iy-module. By [5, Theorem
11.3.1] P/J(P) is semisimple.

(2)=(3) is trivial.

(3)=-(4). Let A be a submodule of P. We may assume that A ¢ J(P).
By hypothesis, there exists a direct summands Py of P which maximal with
respect to the property that Pp C P. If P = Py & L, then and A =
Py & (LN A). Since P is an Iy-module and since P is maximal with respect
to the above property, we conclude that LN A C J(P).

(4)=(1) follows from [5, Theorem 11.3.1]. O

Theorem 3.2. Let R be an Iy-ring and Pr projective module. Then P is
an Iy-module.

Proof. First we prove that any finitely generated free module is an Ip-
module.

Let Fgr be a free module with basis {z1,-+- ,zp}. Then F =z, R®--- &
T, R.
Let A be a submodule of F such that A ¢ J(F). Then there exists a € A
such that a ¢ J(A). As is easily seen, J(F) = z1J(R)®- - -®znJ(R). We put
a=1z171+ +TpTy, 7 € R(i =1,--- ,n).Without loss of generality, we may
assume that vy ¢ J(R).Then there exists non-zero idempotent e € r; R.We
put e = 718 for some s in R. Then ase = z,e + zor2se + - -« + Tyrpse.We
can easily see that F = aseR® (z1(l —7)R® z2R & -+ ® z,R). Hence F
is an Iy - module. Second we prove that every free module is an Ij-module.
Let Gr be a free module with basis {z)}xca and A a submodule of G such
that A ¢ J(F). Then there exists a € A and a ¢ J(F) = FJ(R). We put
a=ziuLiy+- - +8inTin, ri; ER(j=1,---,n)and G, =z RO+ S zin K.
Since aR C G, and aR ¢ J(G,), there exists a submodule H of aR such
that it is a direct summand of G, by first case. Also since G, is a direct
summand of G, H is a direct summand of G. Hence G is an Iy-module. Final
we shall complete the proof of this theorem. Let P be a projective module.
Then P is a direct summand of a free module F. We put F = P® F", where
F" is a submodule of F. Let C be a submodule of P such that C ¢ J(P).
Then J(F) = J(P) & J(F"), and so PN J(F) = J(P). Since C ¢ J(F),
there exists a direct summand @ of F such that Q@ C C. Weput F = Q& Q".
Then P = Q & (P N Q') by modular law, that is, @ is a direct summand of
P. Hence P is an Ip-module. O

Now we investigate the endomorphism ring of an Is-module.

Lemma 3.3. Let Pr be a projective module and S = Endg(P). If S is an
Iy-ring, then J(P) is small in P.
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Proof. From [9, Proposition 1. 1], J(S) C Homg(P,J(P)). Let f €
Hompg(P,J(P)). If f ¢ J(S), then there exists a non-zero idempotent e
of S such that e € fS. Thus e(P) is a direct summand of P. We put
P =¢(P) @ P. Then J(e(P)) = e(P)NJ(P). Also since e € fS, there ex-
ists ¥ € S such that e = fy. Then we have e(P) = fy(P) C f(P) C J(P)
and so e(P) = J(e(P)). Hence e(P) = 0, that is, e = 0. This is a contradic-
tion. Thus f € J(S) and so J(S) = Homg(P, J(P)). Hence J(P) is small
in P by [1, Proposition 2.4]. O

Proposition 3.4. Let Pp be a projective module and S = Endg(P). Then
the following conditions equivalent:
(1) P is an Iy-module.

(2) If f € S such that f ¢ Hompg(P, J(P)), then Im f contains a non- zero
direct summand of P.

Proof. (1)=>(2) follows from the definition of Iy-modules. (2)=>(1). Let A
be a submodule of P such that A ¢ J(P). Then there exists a maximal sub-
module D of P which is not contained in D and so P = A+D. By [1, Lemma
2.2],8 = A+D , where A = Hompg(P, A) and D = Hompg(P, D). Thus there
exist ¥ € A and ¢ € D such that 1 = ¢ + ¢ and ¥ ¢ Homg(P, J(P)). In
fact, if ¥ € Homg (P, J(P)), P =9¢(P)+ ¢(P)=J(P)+ D = P. Thisis a
contradiction. Hence ¥ ¢ Hompg (P, J(P)). By assumption, ¥(P) contains a
non-zero direct summand of P. Thus P is an Ig-module. O

Theorem 3.5. Let Pr be a projective module and S = Endg(P). Then the
following conditions are equivalent:

(1) P is an Iy-module, and J(P) is small in P.

(2) If f € S such that f ¢ Hompg(P, J(P)), then Im f contains a non-zero
direct summand of P and J(P) is small in P.

(3) S is an Iy-ring.

Proof. (1)<(2) follows from Proposition 3.4. (2)=(3). Since J(P) is small
in P, J(S) = Hompg(P, J(P)) by [1, Proposition 2.4]. Let f € S and f ¢
J(S). Since f(P) ¢ J(P), f(P) contains a non-zero direct summand N of P.
Let e be the projection from P to N. Then e = ¢? € S and e(P) C f(P).
Thus eS C fS by [l, Lemma 2.1], that is, S is an Iy-ring. (3)=(1).By
Lemma 3.3, J(P) is small in P and P is an Iy-module from Proposition
34. a

Following [10], a module Mp, is called regular if for each m, there exists
f € Homg(M, R) such that mf(m) =m.

R.Ware gave an example of a regular module which does not have a regular
endomophism ring [9, Example 3.4.].

It is well-know that the Jacobcon radical of a regular module is zero.
Hence by Theorem 3.5, we have

Corollary 3.6. Let Mg be a regular module and S = Endr(M). Then S
is an Iy-ring and J(S) = 0.
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As is well-known, if P is a finitely generated module, then J(P) is small
in P. By Theorem 3.5, we have

Corollary 3.7. Let Pr be a finitely generated projective module and S =
Endg(P). Then the following conditions are equivalent:

(1) P is an Iy-module.
(2) S is an Iy-ring.

Following [2], we call an ideal A of R left T-nilpotent if given any sequence
{a;} of elements in A, there exists an n such that a; ---a, = 0.

Theorem 3.8. The following conditions are equivalent:
(1) R is an Iy-ring and J(R) is left T-nilpotent.
(2) Endg(P) is an Iy-ring for each projective module Pg.
(3) Endg(F) is an Iy-ring for each free module Fg.

Proof. (1)=(2). Let Pg be a projective module. Since J(R) is left T-
nilpotent, J(P) is small in P by [5, Corollary 11.5.6]. From Theorem 3.5,
Endg(P) is an Ip-ring. (2)=>(1) is clear from Theorem 3.5. and [5, Theorem
11.5.5]. The proof (1)=>(3) is analogous. a

Theorem 3.9. Let R; and Ry are rings with identities and Ry an Iy-ring.
If Ry s Morita equivalent to R), then Ry is an Iy-ring.

Proof. Since Rj is Morita equivalent to R;, there exists a finitely generated
projective module P as a right R;-module such that Ry = Endg, (P). Also
since Ry is an Ip-ring, Pg, is an Jp-module. Thus Endg, (P) is an Ij-ring
that is, Ry is an [y-ring. O

Proposition 3.10. Let Pp be a projective module, S = Endg(P) and S* =
Endr(P/J(P))S. If R is an Iy-ring, then S* is an Iy-ring and J(S*) = 0.

Proof. By [9, Proposition 1.1], there exists a ring epimorphism ¢ : § — S*
with Kerp = Homg(P, J(P)). Let f* € S* and f* # 0. Then there exists
f € S and f # 0 such that ¢(f) = f*. Since f ¢ Keryp, f(P) ¢ J(P). Thus
f(P) contains a non-zero direct summand N of P. Let e be the projection
from P to N. Since e = €2 € S and e(P) C f(P),eS C fS by [1, Lemma
2.1]. We put e* = @(e). As is easily seen, e* is an idempotent of S* and
e*S* C f*S*. Hence S* is an Iy-ring. If J(S*) # 0, then there exists p* € S*
and ¢* # 0*. Thus there exists a non-zero idempotent in ©*S C J(S*). This
is a contradiction. Hence J(S*) = 0. a
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