Math. J. Okayama Univ. 40 (1998), 91-97 [2000]

I₀-RINGS AND I₀-MODULES

H.HAMZA

The main purpose of this paper is to study I_0 - rings (introduced by Nicholson [7]) and I_0 -modules. In section 1, we investigate the polynomial ring over an I_0 -ring (Theorem 1.2) and we give a new characterization of I_0 -ring by means of the notion of cyclic flat modules (Theorem 1.4). In section 2, we give the conditions for the endomorphism ring of a module to be an I_0 -ring (Theorem 2.2). In particular, we show that the endomorphism ring of a regular module is an I_0 -ring (Theorem 2.5). In section 3, first we give a characterization of a finitely generated semiperfect module (Theorem 3.1). Next we show that every projective module over an I_0 -ring is an I_0 -module (Theorem 3.2). Finally we show that if R, S (Morita equivalent) and R is an I_0 -ring, then S is an I_0 -ring (Theorem 3.9).

Throughout this paper R means an associative ring with identity and modules mean unitary R-modules. Also we denote the Jacobson radical of a module M by J(M).

1. I_0 -RINGS.

Lemma 1.1. [7, Lemma 1.1] For a ring R, the following conditions are equivalent:

- (1) Every left ideal $L \not\subset J(R)$ contains a nonzero idempotent.
- (2) Every right ideal $L \not\subset J(R)$ contains a nonzero idempotent.
- (3) If $a \notin J(R)$, then xax = x for some $(0 \neq)x \in R$.

Following [7], we call a ring R I_0 -ring if it satisfies equivalent conditions of Lemma 1.1. All local rings and all (von Neumann) regular rings are typical examples of I_0 -rings.

An element $a \in R$ is said to be regular if there exists an element $b \in R$ such that a = aba.

Lemma 1.2. Let $\Gamma = R[x]$ be the polynomial ring over a ring R in the commuting indeterminant x, and $a \in R$. Then the following statements are equivalent:

- (1) The element a is regular.
- (2) $\Gamma a + \Gamma x$ is a projective right ideal of Γ .
- (3) R/Ra is a flat left R-module.
- (3+i) the left-right symmetry of (1+i), i=2,3.

The equivalence of (1) and (2) was proved in the proof of [8], and the equivalence of (1) and (3) was essentially proved in [4, 11.24,p.434].

The following theorem is an immediate consequence of the lemma above.

92 H.HAMZA

Theorem 1.3. Let R be a ring and $\Gamma = R[x]$. Then the following statements are equivalent:

- (1) R is an I_0 -ring.
- (2) For each $a \in R J(R)$, there exists a nonzero $a^* \in aR$ such that $a^*\Gamma + x\Gamma$ is a projective right ideal of Γ .
- (3) For each $a \in R J(R)$, there exists a nonzero $a^* \in aR$ such that R/Ra^* is a flat as a left R-module.
- (3+i) The left-right symmetry of (1+i), i=2,3.

Proof. (1) \Rightarrow (2). Suppose that R is an I_0 -ring. Then if $a \in R$ and $a \notin J(R)$, aaa = a for some $a \in R$ and $a \neq 0$. Since $a \notin J(R)$, a''aa'' = a'' for some $a'' \in R$ and $a'' \neq 0$. We put $a^* = aaa''$ and $a = a^*a$. Then $a^* = a^*aa^*$ and $a = a^*aa = a^*aa^*$ and $a = a^*aa = a^*aa^*$ and $a = a^*aa = a^*aa = a^*aa^*$. Thus we have $a^* = (a + (1 - a)x)a^*$, $a + (1 - a)x = a^*aa + x(1 - a)$ and a = (a + (1 - a)x)(1 - a + ax) and so $a^*\Gamma + x\Gamma = (a + (1 - a)x)\Gamma$. We put a = a + (1 - a)x. As is easily seen, a = aaaa = aaaa is a non zero divisor of a = aaaa. Hence a = aaaa is a projective right ideal of a = aaaa.

(2) \Rightarrow (1). Let $a \in R$ and $a \notin J(R)$. Then there exist a nonzero element a^* of R such that $a^*\Gamma + x\Gamma$ is a projective right ideal of Γ . We put $K = a^*\Gamma + x\Gamma$. By Dual Basis Lemma, there exist Γ -homomorphisms α and β from K into Γ such that $y = a^*\alpha(y) + x\beta(y)$ for each $y \in K$. In particular, $a^* - a^*\alpha(a^*) = x\beta(a^*)$. Since x is in center of Γ and α is a Γ -homorophism, $x\alpha(a^*) = \alpha(a^*)x = \alpha(x)a^*$, and so $a^*x = a^*\alpha(x)a^* + x^2\beta(a^*)\cdots(\#)$. We put $\alpha(x) = b_0 + b_1x + b_2x^2 + \cdots + b_lx^l$, where $b_i \in R$ $(i = 1, 2, \ldots, l)$. Then we have $a^* = a^*b_1a^*$, comparing with coefficients of x of 1 both sides in equality (#). Thus a^*b_1 is idempotent and is in a^*R . Hence R is an I_0 -ring. $(1)\Rightarrow(3)$. Let $a\in R$ and $a\notin J(R)$. Then there exists a nonzero idempotent $e\in aR$ by assumption. Thus $R=Re\oplus R(1-e)$, that is, R/Re is flat as a left R-module.

(3) \Rightarrow (1). Let $a \in R$ and $a \notin J(R)$. Then there exists a^* in aR and $a^* \neq 0$ such that R/Ra^* is flat as a left R-module. Thus for an exact sequence $0 \to Ra^* \to R \to R/Ra^* \to 0$ of left R-modules $Ra^* \cap a^*R = a^*RRa^* = a^*Ra^*$ by [5, Theorem 10.5.1]. Since $a^* \in Ra^* \cap a^*R$, there exists $b \in R$ such that $a^* = a^*ba^*$, that is, a^*b is idempotent and $a^*b \in aR$. Hence, R is an I_0 -ring.

Let M be module and N a submodule of M. We call N is small in M if for submodule X of M such that M = N + X implies that X = M. Also we call an exact sequence $0 \to \operatorname{Ker} f \to P \xrightarrow{f} M \to 0$ of modules a projective cover of M if P is projective and $\operatorname{Ker} f$ is small in P.

Following [2], we call a ring R semiperfect if every cyclic R-module has projective cover.

Proposition 1.4. For a ring R, the following conditions are equivalent:

- (1) R is a local ring.
- (2) R is an I_0 -ring and 1 is a primitive idempotent.

(3) R is semiperfect and 1 is a primitive idempotent.

Proof. $(1)\Rightarrow(2)$ is obvious. $(2)\Rightarrow(1)$. Let r be in R. If r is in J(R), then 1-r is a unit. If $r\notin J(R)$, then there exists a nonzero idempotent $e\in rR$. Since 1=(1-e)+e and 1 is a primitive idempotent, e=1, that is, r is a unit. $(1)\Leftrightarrow(3)$ are obvious from [9].

2. I_0 -Endomorphism Rings.

R. Ware showed the following:

Lemma 2.1 ([9, Corollary 3.2]). Let M be a right R-module, $S = \operatorname{End}_R(M)$ and $f \in S$. Then f is regular if and only if for each $f \in S$, $\operatorname{Im} f$ and $\operatorname{Ker} f$ are direct summands of M.

The following theorem easily follows from this lemma.

Theorem 2.2. Let M be a right R-module and $S = \operatorname{End}_R(M)$. Then the following conditions are equivalent:

- (1) S is an I_0 -ring.
- (2) For each $f \in S$ and $f \notin J(S)$, there exists $g \in S$ and $g \neq 0$ such that Ker fg and Im fg are direct summands of M.
- (3) For $f \in S$ and $f \notin J(S)$, there exists $g \in S$ and $g \neq 0$ such that $\operatorname{Ker} gf$ and $\operatorname{Im} gf$ are direct summands of M.

Corollary 2.3. Let P_R be a projective module and $S = \operatorname{End}_R(P)$. Then the following conditions are equivalent:

- (1) S is an I_0 -ring.
- (2) For any $f \in S$ and $f \notin J(S)$, there exists a non-zero $\psi \in S$ such that $f\psi(P)$ is a nonzero direct summand of P.
- (3) For any $f \in S$ and $f \notin J(S)$, there exists a non-zero $\psi \in S$ such that $\psi f(P)$ is a nonzero direct summand of P.

Proof. $(1)\Rightarrow(2)$. It suffices to proof $(2)\Rightarrow(1)$. If $\text{Im}(f\psi)$ is a nonzero direct summand of P, then it is projective. Hence the exact sequence $0 \to \text{Ker}(f\psi) \to P \to \text{Im}(f\psi) \to 0$ splits, and so our claim follows from Theorem 2.2.

3. I_0 -Modules.

Let P_R be a projective module. As is well-known, J(P) = PJ(R) and $P \neq PJ(R)$.

A projective module P_R is called an I_0 -module if every submodule which is not contained in J(R) contains a direct summand of P.

A projective module P_R is called semiperfect if every factor module of P has a projective cover.

For a finitely generated projective module, we have the following result.

Theorem 3.1. Let P_R be a finitely generated projective module. Then the following conditions are equivalent:

94 H.HAMZA

- (1) P is a semiperfect module.
- (2) P is an I_0 -module and P/J(P) is semisimple.
- (3) P is an I_0 -module with maximum condition for direct summands.
- (4) If A is a submodule of P, then $A = P_0 + D$, where P_0 is a direct summand of P and D is a submodule of J(P).

Proof. (1) \Rightarrow (2). It is easy to see that P is an I_0 -module. By [5, Theorem 11.3.1] P/J(P) is semisimple.

- $(2) \Rightarrow (3)$ is trivial.
- $(3)\Rightarrow (4)$. Let A be a submodule of P. We may assume that $A \not\subset J(P)$. By hypothesis, there exists a direct summands P_0 of P which maximal with respect to the property that $P_0 \subseteq P$. If $P = P_0 \oplus L$, then and $A = P_0 \oplus (L \cap A)$. Since P is an I_0 -module and since P_0 is maximal with respect to the above property, we conclude that $L \cap A \subseteq J(P)$.
 - $(4)\Rightarrow(1)$ follows from [5, Theorem 11.3.1].

Theorem 3.2. Let R be an I_0 -ring and P_R projective module. Then P is an I_0 -module.

Proof. First we prove that any finitely generated free module is an I_0 -module.

Let F_R be a free module with basis $\{x_1, \dots, x_n\}$. Then $F = x_1 R \oplus \dots \oplus x_n R$.

Let A be a submodule of F such that $A \not\subset J(F)$. Then there exists $a \in A$ such that $a \notin J(A)$. As is easily seen, $J(F) = x_1 J(R) \oplus \cdots \oplus x_n J(R)$. We put $a=x_1r_1+\cdots+x_nr_n,\ r_i\in R(i=1,\cdots,n)$. Without loss of generality, we may assume that $r_1 \notin J(R)$. Then there exists non-zero idempotent $e \in r_1R$. We put $e = r_1 s$ for some s in R. Then $ase = x_1 e + x_2 r_2 s e + \cdots + x_n r_n s e$. We can easily see that $F = aseR \oplus (x_1(1-r)R \oplus x_2R \oplus \cdots \oplus x_nR)$. Hence F is an I_0 - module. Second we prove that every free module is an I_0 -module. Let G_R be a free module with basis $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ and A a submodule of G such that $A \not\subset J(F)$. Then there exists $a \in A$ and $a \notin J(F) = FJ(R)$. We put $a = x_{i1}x_{i1} + \cdots + s_{in}r_{in}, \ r_{ij} \in R \ (j = 1, \cdots, n) \text{ and } G_n = x_{i1}R \oplus \cdots \oplus x_{in}R.$ Since $aR \subseteq G_n$ and $aR \not\subset J(G_n)$, there exists a submodule H of aR such that it is a direct summand of G_n by first case. Also since G_n is a direct summand of G, H is a direct summand of G. Hence G is an I_0 -module. Final we shall complete the proof of this theorem. Let P be a projective module. Then P is a direct summand of a free module F. We put $F = P \oplus F$, where F is a submodule of F. Let C be a submodule of P such that $C \not\subset J(P)$. Then $J(F) = J(P) \oplus J(F)$, and so $P \cap J(F) = J(P)$. Since $C \not\subset J(F)$, there exists a direct summand Q of F such that $Q \subseteq C$. We put $F = Q \oplus Q$. Then $P = Q \oplus (P \cap Q)$ by modular law, that is, Q is a direct summand of P. Hence P is an I_0 -module.

Now we investigate the endomorphism ring of an I_0 -module.

Lemma 3.3. Let P_R be a projective module and $S = \operatorname{End}_R(P)$. If S is an I_0 -ring, then J(P) is small in P.

Proof. From [9, Proposition 1. 1], $J(S) \subseteq \operatorname{Hom}_R(P,J(P))$. Let $f \in \operatorname{Hom}_R(P,J(P))$. If $f \notin J(S)$, then there exists a non-zero idempotent e of S such that $e \in fS$. Thus e(P) is a direct summand of P. We put $P = e(P) \oplus P$. Then $J(e(P)) = e(P) \cap J(P)$. Also since $e \in fS$, there exists $\psi \in S$ such that $e = f\psi$. Then we have $e(P) = f\psi(P) \subseteq f(P) \subseteq J(P)$ and so e(P) = J(e(P)). Hence e(P) = 0, that is, e = 0. This is a contradiction. Thus $f \in J(S)$ and so $J(S) = \operatorname{Hom}_R(P,J(P))$. Hence J(P) is small in P by [1, Proposition 2.4].

Proposition 3.4. Let P_R be a projective module and $S = \operatorname{End}_R(P)$. Then the following conditions equivalent:

- (1) P is an I_0 -module.
- (2) If $f \in S$ such that $f \notin \operatorname{Hom}_R(P, J(P))$, then $\operatorname{Im} f$ contains a non-zero direct summand of P.

Proof. (1) \Rightarrow (2) follows from the definition of I_0 -modules. (2) \Rightarrow (1). Let A be a submodule of P such that $A \not\subset J(P)$. Then there exists a maximal submodule D of P which is not contained in D and so P = A + D. By [1, Lemma 2.2], $S = \hat{A} + \hat{D}$, where $\hat{A} = \operatorname{Hom}_R(P, A)$ and $\hat{D} = \operatorname{Hom}_R(P, D)$. Thus there exist $\psi \in \hat{A}$ and $\varphi \in \hat{D}$ such that $1 = \psi + \varphi$ and $\psi \notin \operatorname{Hom}_R(P, J(P))$. In fact, if $\psi \in \operatorname{Hom}_R(P, J(P))$, $P = \psi(P) + \varphi(P) = J(P) + D = P$. This is a contradiction. Hence $\psi \notin \operatorname{Hom}_R(P, J(P))$. By assumption, $\psi(P)$ contains a non-zero direct summand of P. Thus P is an I_0 -module.

Theorem 3.5. Let P_R be a projective module and $S = \operatorname{End}_R(P)$. Then the following conditions are equivalent:

- (1) P is an I_0 -module, and J(P) is small in P.
- (2) If $f \in S$ such that $f \notin \operatorname{Hom}_R(P, J(P))$, then $\operatorname{Im} f$ contains a non-zero direct summand of P and J(P) is small in P.
- (3) S is an I_0 -ring.

Proof. (1) \Leftrightarrow (2) follows from Proposition 3.4. (2) \Rightarrow (3). Since J(P) is small in P, $J(S) = \operatorname{Hom}_R(P, J(P))$ by [1, Proposition 2.4]. Let $f \in S$ and $f \notin J(S)$. Since $f(P) \not\subset J(P)$, f(P) contains a non-zero direct summand N of P. Let e be the projection from P to N. Then $e = e^2 \in S$ and $e(P) \subseteq f(P)$. Thus $eS \subseteq fS$ by [1, Lemma 2.1], that is, S is an I_0 -ring. (3) \Rightarrow (1).By Lemma 3.3, J(P) is small in P and P is an I_0 -module from Proposition 3.4.

Following [10], a module M_R is called regular if for each m, there exists $f \in \operatorname{Hom}_R(M,R)$ such that mf(m)=m.

R. Ware gave an example of a regular module which does not have a regular endomophism ring [9, Example 3.4.].

It is well-know that the Jacobcon radical of a regular module is zero. Hence by Theorem 3.5, we have

Corollary 3.6. Let M_R be a regular module and $S = \operatorname{End}_R(M)$. Then S is an I_0 -ring and J(S) = 0.

96 H.HAMZA

As is well-known, if P is a finitely generated module, then J(P) is small in P. By Theorem 3.5, we have

Corollary 3.7. Let P_R be a finitely generated projective module and $S = \operatorname{End}_R(P)$. Then the following conditions are equivalent:

- (1) P is an I_0 -module.
- (2) S is an I_0 -ring.

Following [2], we call an ideal A of R left T-nilpotent if given any sequence $\{a_i\}$ of elements in A, there exists an n such that $a_1 \cdots a_n = 0$.

Theorem 3.8. The following conditions are equivalent:

- (1) R is an I_0 -ring and J(R) is left T-nilpotent.
- (2) End_R(P) is an I_0 -ring for each projective module P_R .
- (3) End_R(F) is an I_0 -ring for each free module F_R .

Proof. (1) \Rightarrow (2). Let P_R be a projective module. Since J(R) is left T-nilpotent, J(P) is small in P by [5, Corollary 11.5.6]. From Theorem 3.5, $\operatorname{End}_R(P)$ is an I_0 -ring. (2) \Rightarrow (1) is clear from Theorem 3.5. and [5, Theorem 11.5.5]. The proof (1) \Rightarrow (3) is analogous.

Theorem 3.9. Let R_1 and R_2 are rings with identities and R_1 an I_0 -ring. If R_2 is Morita equivalent to R_1 , then R_2 is an I_0 -ring.

Proof. Since R_2 is Morita equivalent to R_1 , there exists a finitely generated projective module P as a right R_1 -module such that $R_2 \cong \operatorname{End}_{R_1}(P)$. Also since R_1 is an I_0 -ring, P_{R_1} is an I_0 -module. Thus $\operatorname{End}_{R_1}(P)$ is an I_0 -ring that is, R_2 is an I_0 -ring.

Proposition 3.10. Let P_R be a projective module, $S = \operatorname{End}_R(P)$ and $S^* = \operatorname{End}_R(P/J(P))S$. If R is an I_0 -ring, then S^* is an I_0 -ring and $J(S^*) = 0$.

Proof. By [9, Proposition 1.1], there exists a ring epimorphism $\varphi: S \to S^*$ with $\operatorname{Ker} \varphi = \operatorname{Hom}_R(P,J(P))$. Let $f^* \in S^*$ and $f^* \neq 0$. Then there exists $f \in S$ and $f \neq 0$ such that $\varphi(f) = f^*$. Since $f \notin \operatorname{Ker} \varphi, f(P) \not\subset J(P)$. Thus f(P) contains a non-zero direct summand N of P. Let e be the projection from P to N. Since $e = e^2 \in S$ and $e(P) \subseteq f(P), eS \subseteq fS$ by [1, Lemma 2.1]. We put $e^* = \varphi(e)$. As is easily seen, e^* is an idempotent of S^* and $e^*S^* \subseteq f^*S^*$. Hence S^* is an I_0 -ring. If $J(S^*) \neq 0$, then there exists $\varphi^* \in S^*$ and $\varphi^* \neq 0^*$. Thus there exists a non-zero idempotent in $\varphi^*S \subseteq J(S^*)$. This is a contradiction. Hence $J(S^*) = 0$.

REFERENCES

- [1] G. Azumaya: F-semiperfect modules, J. Algebra, 136 (1991), 73-85.
- [2] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95(1960), 466 - 488.
- [3] H. Cartan and S. Eilenberg: Homological Algebra, Princeton Univ. Press, 19(1956).
- [4] C.Faith: Algebra, Rings, Modules and Categories, T.2, Springer-Verlag 190(1981).
- [5] F. Kasch: Modules and Rings, London Math. Soc. Mono. 17 (1982).
- [6] E. A. Mares: Semi-perfect modules, Math. Zeit. 82(1963), 347-360.

- [7] W.K. Nicholson: I-rings, Trans Amer. Math. Soc. 207 (1975), 361-373.
- [8] P.Pillay: On semihereditary noncommutative palynomial rings, Proc.Amer. Math.Soc. 78 (1980),473-474.
- [9] R. Ware: Endomorphism ring of projective module, Trans. Amer. Math. Soc. 155 (1971), 233-256.
- [10] J.Zelmanowitz: Regular modules, Trans. Amer. Math. Soc. 163 (1972), 1-18.

H.HAMZA
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
DAMASCUS UNIVERSITY
(Received January 25, 1999)
(Revised January 6, 2000)